Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34 struct cpu_hw_events {
35         /* Array of events on this cpu. */
36         struct perf_event       *events[MIPS_MAX_HWEVENTS];
37
38         /*
39          * Set the bit (indexed by the counter number) when the counter
40          * is used for an event.
41          */
42         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44         /*
45          * Software copy of the control register for each performance counter.
46          * MIPS CPUs vary in performance counters. They use this differently,
47          * and even may not use it.
48          */
49         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52         .saved_ctrl = {0},
53 };
54
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57         unsigned int event_id;
58         /*
59          * MIPS performance counters are indexed starting from 0.
60          * CNTR_EVEN indicates the indexes of the counters to be used are
61          * even numbers.
62          */
63         unsigned int cntr_mask;
64         #define CNTR_EVEN       0x55555555
65         #define CNTR_ODD        0xaaaaaaaa
66         #define CNTR_ALL        0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68         enum {
69                 T  = 0,
70                 V  = 1,
71                 P  = 2,
72         } range;
73 #else
74         #define T
75         #define V
76         #define P
77 #endif
78 };
79
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84
85 struct mips_pmu {
86         u64             max_period;
87         u64             valid_count;
88         u64             overflow;
89         const char      *name;
90         int             irq;
91         u64             (*read_counter)(unsigned int idx);
92         void            (*write_counter)(unsigned int idx, u64 val);
93         const struct mips_perf_event *(*map_raw_event)(u64 config);
94         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95         const struct mips_perf_event (*cache_event_map)
96                                 [PERF_COUNT_HW_CACHE_MAX]
97                                 [PERF_COUNT_HW_CACHE_OP_MAX]
98                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99         unsigned int    num_counters;
100 };
101
102 static struct mips_pmu mipspmu;
103
104 #define M_CONFIG1_PC    (1 << 4)
105
106 #define M_PERFCTL_EXL                   (1      <<  0)
107 #define M_PERFCTL_KERNEL                (1      <<  1)
108 #define M_PERFCTL_SUPERVISOR            (1      <<  2)
109 #define M_PERFCTL_USER                  (1      <<  3)
110 #define M_PERFCTL_INTERRUPT_ENABLE      (1      <<  4)
111 #define M_PERFCTL_EVENT(event)          (((event) & 0x3ff)  << 5)
112 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << 16)
113
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter)         0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter)         ((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
119
120 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(0)
121 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(1)
122 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid)            ((tcid)   << 22)
124 #define M_PERFCTL_WIDE                  (1      << 30)
125 #define M_PERFCTL_MORE                  (1      << 31)
126 #define M_PERFCTL_TC                    (1      << 30)
127
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (M_PERFCTL_EXL |                \
129                                         M_PERFCTL_KERNEL |              \
130                                         M_PERFCTL_USER |                \
131                                         M_PERFCTL_SUPERVISOR |          \
132                                         M_PERFCTL_INTERRUPT_ENABLE)
133
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
136 #else
137 #define M_PERFCTL_CONFIG_MASK           0x1f
138 #endif
139 #define M_PERFCTL_EVENT_MASK            0xfe0
140
141
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters;
144
145 static DEFINE_RWLOCK(pmuint_rwlock);
146
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
149                          0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 #else
151 /*
152  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154  */
155 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
156                          0 : smp_processor_id())
157 #endif
158
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
161 {
162         if (num_possible_cpus() > 1)
163                 return 1;
164
165         return 0;
166 }
167
168 static unsigned int counters_total_to_per_cpu(unsigned int counters)
169 {
170         return counters >> vpe_shift();
171 }
172
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #define vpe_id()        0
175
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
182
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184 {
185         if (vpe_id() == 1)
186                 idx = (idx + 2) & 3;
187         return idx;
188 }
189
190 static u64 mipsxx_pmu_read_counter(unsigned int idx)
191 {
192         idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194         switch (idx) {
195         case 0:
196                 /*
197                  * The counters are unsigned, we must cast to truncate
198                  * off the high bits.
199                  */
200                 return (u32)read_c0_perfcntr0();
201         case 1:
202                 return (u32)read_c0_perfcntr1();
203         case 2:
204                 return (u32)read_c0_perfcntr2();
205         case 3:
206                 return (u32)read_c0_perfcntr3();
207         default:
208                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209                 return 0;
210         }
211 }
212
213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214 {
215         idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217         switch (idx) {
218         case 0:
219                 return read_c0_perfcntr0_64();
220         case 1:
221                 return read_c0_perfcntr1_64();
222         case 2:
223                 return read_c0_perfcntr2_64();
224         case 3:
225                 return read_c0_perfcntr3_64();
226         default:
227                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228                 return 0;
229         }
230 }
231
232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233 {
234         idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236         switch (idx) {
237         case 0:
238                 write_c0_perfcntr0(val);
239                 return;
240         case 1:
241                 write_c0_perfcntr1(val);
242                 return;
243         case 2:
244                 write_c0_perfcntr2(val);
245                 return;
246         case 3:
247                 write_c0_perfcntr3(val);
248                 return;
249         }
250 }
251
252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253 {
254         idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256         switch (idx) {
257         case 0:
258                 write_c0_perfcntr0_64(val);
259                 return;
260         case 1:
261                 write_c0_perfcntr1_64(val);
262                 return;
263         case 2:
264                 write_c0_perfcntr2_64(val);
265                 return;
266         case 3:
267                 write_c0_perfcntr3_64(val);
268                 return;
269         }
270 }
271
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273 {
274         idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276         switch (idx) {
277         case 0:
278                 return read_c0_perfctrl0();
279         case 1:
280                 return read_c0_perfctrl1();
281         case 2:
282                 return read_c0_perfctrl2();
283         case 3:
284                 return read_c0_perfctrl3();
285         default:
286                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287                 return 0;
288         }
289 }
290
291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292 {
293         idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295         switch (idx) {
296         case 0:
297                 write_c0_perfctrl0(val);
298                 return;
299         case 1:
300                 write_c0_perfctrl1(val);
301                 return;
302         case 2:
303                 write_c0_perfctrl2(val);
304                 return;
305         case 3:
306                 write_c0_perfctrl3(val);
307                 return;
308         }
309 }
310
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312                                     struct hw_perf_event *hwc)
313 {
314         int i;
315
316         /*
317          * We only need to care the counter mask. The range has been
318          * checked definitely.
319          */
320         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323                 /*
324                  * Note that some MIPS perf events can be counted by both
325                  * even and odd counters, wheresas many other are only by
326                  * even _or_ odd counters. This introduces an issue that
327                  * when the former kind of event takes the counter the
328                  * latter kind of event wants to use, then the "counter
329                  * allocation" for the latter event will fail. In fact if
330                  * they can be dynamically swapped, they both feel happy.
331                  * But here we leave this issue alone for now.
332                  */
333                 if (test_bit(i, &cntr_mask) &&
334                         !test_and_set_bit(i, cpuc->used_mask))
335                         return i;
336         }
337
338         return -EAGAIN;
339 }
340
341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342 {
343         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
344
345         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349                 /* Make sure interrupt enabled. */
350                 M_PERFCTL_INTERRUPT_ENABLE;
351         if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352                 /* enable the counter for the calling thread */
353                 cpuc->saved_ctrl[idx] |=
354                         (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
356         /*
357          * We do not actually let the counter run. Leave it until start().
358          */
359 }
360
361 static void mipsxx_pmu_disable_event(int idx)
362 {
363         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
364         unsigned long flags;
365
366         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368         local_irq_save(flags);
369         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372         local_irq_restore(flags);
373 }
374
375 static int mipspmu_event_set_period(struct perf_event *event,
376                                     struct hw_perf_event *hwc,
377                                     int idx)
378 {
379         u64 left = local64_read(&hwc->period_left);
380         u64 period = hwc->sample_period;
381         int ret = 0;
382
383         if (unlikely((left + period) & (1ULL << 63))) {
384                 /* left underflowed by more than period. */
385                 left = period;
386                 local64_set(&hwc->period_left, left);
387                 hwc->last_period = period;
388                 ret = 1;
389         } else  if (unlikely((left + period) <= period)) {
390                 /* left underflowed by less than period. */
391                 left += period;
392                 local64_set(&hwc->period_left, left);
393                 hwc->last_period = period;
394                 ret = 1;
395         }
396
397         if (left > mipspmu.max_period) {
398                 left = mipspmu.max_period;
399                 local64_set(&hwc->period_left, left);
400         }
401
402         local64_set(&hwc->prev_count, mipspmu.overflow - left);
403
404         mipspmu.write_counter(idx, mipspmu.overflow - left);
405
406         perf_event_update_userpage(event);
407
408         return ret;
409 }
410
411 static void mipspmu_event_update(struct perf_event *event,
412                                  struct hw_perf_event *hwc,
413                                  int idx)
414 {
415         u64 prev_raw_count, new_raw_count;
416         u64 delta;
417
418 again:
419         prev_raw_count = local64_read(&hwc->prev_count);
420         new_raw_count = mipspmu.read_counter(idx);
421
422         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423                                 new_raw_count) != prev_raw_count)
424                 goto again;
425
426         delta = new_raw_count - prev_raw_count;
427
428         local64_add(delta, &event->count);
429         local64_sub(delta, &hwc->period_left);
430 }
431
432 static void mipspmu_start(struct perf_event *event, int flags)
433 {
434         struct hw_perf_event *hwc = &event->hw;
435
436         if (flags & PERF_EF_RELOAD)
437                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439         hwc->state = 0;
440
441         /* Set the period for the event. */
442         mipspmu_event_set_period(event, hwc, hwc->idx);
443
444         /* Enable the event. */
445         mipsxx_pmu_enable_event(hwc, hwc->idx);
446 }
447
448 static void mipspmu_stop(struct perf_event *event, int flags)
449 {
450         struct hw_perf_event *hwc = &event->hw;
451
452         if (!(hwc->state & PERF_HES_STOPPED)) {
453                 /* We are working on a local event. */
454                 mipsxx_pmu_disable_event(hwc->idx);
455                 barrier();
456                 mipspmu_event_update(event, hwc, hwc->idx);
457                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458         }
459 }
460
461 static int mipspmu_add(struct perf_event *event, int flags)
462 {
463         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464         struct hw_perf_event *hwc = &event->hw;
465         int idx;
466         int err = 0;
467
468         perf_pmu_disable(event->pmu);
469
470         /* To look for a free counter for this event. */
471         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472         if (idx < 0) {
473                 err = idx;
474                 goto out;
475         }
476
477         /*
478          * If there is an event in the counter we are going to use then
479          * make sure it is disabled.
480          */
481         event->hw.idx = idx;
482         mipsxx_pmu_disable_event(idx);
483         cpuc->events[idx] = event;
484
485         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486         if (flags & PERF_EF_START)
487                 mipspmu_start(event, PERF_EF_RELOAD);
488
489         /* Propagate our changes to the userspace mapping. */
490         perf_event_update_userpage(event);
491
492 out:
493         perf_pmu_enable(event->pmu);
494         return err;
495 }
496
497 static void mipspmu_del(struct perf_event *event, int flags)
498 {
499         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
500         struct hw_perf_event *hwc = &event->hw;
501         int idx = hwc->idx;
502
503         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504
505         mipspmu_stop(event, PERF_EF_UPDATE);
506         cpuc->events[idx] = NULL;
507         clear_bit(idx, cpuc->used_mask);
508
509         perf_event_update_userpage(event);
510 }
511
512 static void mipspmu_read(struct perf_event *event)
513 {
514         struct hw_perf_event *hwc = &event->hw;
515
516         /* Don't read disabled counters! */
517         if (hwc->idx < 0)
518                 return;
519
520         mipspmu_event_update(event, hwc, hwc->idx);
521 }
522
523 static void mipspmu_enable(struct pmu *pmu)
524 {
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526         write_unlock(&pmuint_rwlock);
527 #endif
528         resume_local_counters();
529 }
530
531 /*
532  * MIPS performance counters can be per-TC. The control registers can
533  * not be directly accessed accross CPUs. Hence if we want to do global
534  * control, we need cross CPU calls. on_each_cpu() can help us, but we
535  * can not make sure this function is called with interrupts enabled. So
536  * here we pause local counters and then grab a rwlock and leave the
537  * counters on other CPUs alone. If any counter interrupt raises while
538  * we own the write lock, simply pause local counters on that CPU and
539  * spin in the handler. Also we know we won't be switched to another
540  * CPU after pausing local counters and before grabbing the lock.
541  */
542 static void mipspmu_disable(struct pmu *pmu)
543 {
544         pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546         write_lock(&pmuint_rwlock);
547 #endif
548 }
549
550 static atomic_t active_events = ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex);
552 static int (*save_perf_irq)(void);
553
554 static int mipspmu_get_irq(void)
555 {
556         int err;
557
558         if (mipspmu.irq >= 0) {
559                 /* Request my own irq handler. */
560                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561                                   IRQF_PERCPU | IRQF_NOBALANCING |
562                                   IRQF_NO_THREAD | IRQF_NO_SUSPEND |
563                                   IRQF_SHARED,
564                                   "mips_perf_pmu", &mipspmu);
565                 if (err) {
566                         pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
567                                 mipspmu.irq);
568                 }
569         } else if (cp0_perfcount_irq < 0) {
570                 /*
571                  * We are sharing the irq number with the timer interrupt.
572                  */
573                 save_perf_irq = perf_irq;
574                 perf_irq = mipsxx_pmu_handle_shared_irq;
575                 err = 0;
576         } else {
577                 pr_warn("The platform hasn't properly defined its interrupt controller\n");
578                 err = -ENOENT;
579         }
580
581         return err;
582 }
583
584 static void mipspmu_free_irq(void)
585 {
586         if (mipspmu.irq >= 0)
587                 free_irq(mipspmu.irq, &mipspmu);
588         else if (cp0_perfcount_irq < 0)
589                 perf_irq = save_perf_irq;
590 }
591
592 /*
593  * mipsxx/rm9000/loongson2 have different performance counters, they have
594  * specific low-level init routines.
595  */
596 static void reset_counters(void *arg);
597 static int __hw_perf_event_init(struct perf_event *event);
598
599 static void hw_perf_event_destroy(struct perf_event *event)
600 {
601         if (atomic_dec_and_mutex_lock(&active_events,
602                                 &pmu_reserve_mutex)) {
603                 /*
604                  * We must not call the destroy function with interrupts
605                  * disabled.
606                  */
607                 on_each_cpu(reset_counters,
608                         (void *)(long)mipspmu.num_counters, 1);
609                 mipspmu_free_irq();
610                 mutex_unlock(&pmu_reserve_mutex);
611         }
612 }
613
614 static int mipspmu_event_init(struct perf_event *event)
615 {
616         int err = 0;
617
618         /* does not support taken branch sampling */
619         if (has_branch_stack(event))
620                 return -EOPNOTSUPP;
621
622         switch (event->attr.type) {
623         case PERF_TYPE_RAW:
624         case PERF_TYPE_HARDWARE:
625         case PERF_TYPE_HW_CACHE:
626                 break;
627
628         default:
629                 return -ENOENT;
630         }
631
632         if (event->cpu >= nr_cpumask_bits ||
633             (event->cpu >= 0 && !cpu_online(event->cpu)))
634                 return -ENODEV;
635
636         if (!atomic_inc_not_zero(&active_events)) {
637                 mutex_lock(&pmu_reserve_mutex);
638                 if (atomic_read(&active_events) == 0)
639                         err = mipspmu_get_irq();
640
641                 if (!err)
642                         atomic_inc(&active_events);
643                 mutex_unlock(&pmu_reserve_mutex);
644         }
645
646         if (err)
647                 return err;
648
649         return __hw_perf_event_init(event);
650 }
651
652 static struct pmu pmu = {
653         .pmu_enable     = mipspmu_enable,
654         .pmu_disable    = mipspmu_disable,
655         .event_init     = mipspmu_event_init,
656         .add            = mipspmu_add,
657         .del            = mipspmu_del,
658         .start          = mipspmu_start,
659         .stop           = mipspmu_stop,
660         .read           = mipspmu_read,
661 };
662
663 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
664 {
665 /*
666  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
667  * event_id.
668  */
669 #ifdef CONFIG_MIPS_MT_SMP
670         return ((unsigned int)pev->range << 24) |
671                 (pev->cntr_mask & 0xffff00) |
672                 (pev->event_id & 0xff);
673 #else
674         return (pev->cntr_mask & 0xffff00) |
675                 (pev->event_id & 0xff);
676 #endif
677 }
678
679 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
680 {
681
682         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
683                 return ERR_PTR(-EOPNOTSUPP);
684         return &(*mipspmu.general_event_map)[idx];
685 }
686
687 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
688 {
689         unsigned int cache_type, cache_op, cache_result;
690         const struct mips_perf_event *pev;
691
692         cache_type = (config >> 0) & 0xff;
693         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
694                 return ERR_PTR(-EINVAL);
695
696         cache_op = (config >> 8) & 0xff;
697         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
698                 return ERR_PTR(-EINVAL);
699
700         cache_result = (config >> 16) & 0xff;
701         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
702                 return ERR_PTR(-EINVAL);
703
704         pev = &((*mipspmu.cache_event_map)
705                                         [cache_type]
706                                         [cache_op]
707                                         [cache_result]);
708
709         if (pev->cntr_mask == 0)
710                 return ERR_PTR(-EOPNOTSUPP);
711
712         return pev;
713
714 }
715
716 static int validate_group(struct perf_event *event)
717 {
718         struct perf_event *sibling, *leader = event->group_leader;
719         struct cpu_hw_events fake_cpuc;
720
721         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
722
723         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
724                 return -EINVAL;
725
726         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
727                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
728                         return -EINVAL;
729         }
730
731         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
732                 return -EINVAL;
733
734         return 0;
735 }
736
737 /* This is needed by specific irq handlers in perf_event_*.c */
738 static void handle_associated_event(struct cpu_hw_events *cpuc,
739                                     int idx, struct perf_sample_data *data,
740                                     struct pt_regs *regs)
741 {
742         struct perf_event *event = cpuc->events[idx];
743         struct hw_perf_event *hwc = &event->hw;
744
745         mipspmu_event_update(event, hwc, idx);
746         data->period = event->hw.last_period;
747         if (!mipspmu_event_set_period(event, hwc, idx))
748                 return;
749
750         if (perf_event_overflow(event, data, regs))
751                 mipsxx_pmu_disable_event(idx);
752 }
753
754
755 static int __n_counters(void)
756 {
757         if (!(read_c0_config1() & M_CONFIG1_PC))
758                 return 0;
759         if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
760                 return 1;
761         if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
762                 return 2;
763         if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
764                 return 3;
765
766         return 4;
767 }
768
769 static int n_counters(void)
770 {
771         int counters;
772
773         switch (current_cpu_type()) {
774         case CPU_R10000:
775                 counters = 2;
776                 break;
777
778         case CPU_R12000:
779         case CPU_R14000:
780         case CPU_R16000:
781                 counters = 4;
782                 break;
783
784         default:
785                 counters = __n_counters();
786         }
787
788         return counters;
789 }
790
791 static void reset_counters(void *arg)
792 {
793         int counters = (int)(long)arg;
794         switch (counters) {
795         case 4:
796                 mipsxx_pmu_write_control(3, 0);
797                 mipspmu.write_counter(3, 0);
798         case 3:
799                 mipsxx_pmu_write_control(2, 0);
800                 mipspmu.write_counter(2, 0);
801         case 2:
802                 mipsxx_pmu_write_control(1, 0);
803                 mipspmu.write_counter(1, 0);
804         case 1:
805                 mipsxx_pmu_write_control(0, 0);
806                 mipspmu.write_counter(0, 0);
807         }
808 }
809
810 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
811 static const struct mips_perf_event mipsxxcore_event_map
812                                 [PERF_COUNT_HW_MAX] = {
813         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
815         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
816         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
817 };
818
819 /* 74K/proAptiv core has different branch event code. */
820 static const struct mips_perf_event mipsxxcore_event_map2
821                                 [PERF_COUNT_HW_MAX] = {
822         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
823         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
824         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
825         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
826 };
827
828 static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
829         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
830         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
831         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
832         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
833 };
834
835 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
836         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
837         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
838         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
839         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
840         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
841         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
842         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
843 };
844
845 static const struct mips_perf_event bmips5000_event_map
846                                 [PERF_COUNT_HW_MAX] = {
847         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
848         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
849         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
850 };
851
852 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
853         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
854         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
855         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
856         [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
857         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
858         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
859 };
860
861 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
862 static const struct mips_perf_event mipsxxcore_cache_map
863                                 [PERF_COUNT_HW_CACHE_MAX]
864                                 [PERF_COUNT_HW_CACHE_OP_MAX]
865                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
866 [C(L1D)] = {
867         /*
868          * Like some other architectures (e.g. ARM), the performance
869          * counters don't differentiate between read and write
870          * accesses/misses, so this isn't strictly correct, but it's the
871          * best we can do. Writes and reads get combined.
872          */
873         [C(OP_READ)] = {
874                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
875                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
876         },
877         [C(OP_WRITE)] = {
878                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
879                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
880         },
881 },
882 [C(L1I)] = {
883         [C(OP_READ)] = {
884                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
885                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
886         },
887         [C(OP_WRITE)] = {
888                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
889                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
890         },
891         [C(OP_PREFETCH)] = {
892                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
893                 /*
894                  * Note that MIPS has only "hit" events countable for
895                  * the prefetch operation.
896                  */
897         },
898 },
899 [C(LL)] = {
900         [C(OP_READ)] = {
901                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
902                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
903         },
904         [C(OP_WRITE)] = {
905                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
906                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
907         },
908 },
909 [C(DTLB)] = {
910         [C(OP_READ)] = {
911                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
912                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
913         },
914         [C(OP_WRITE)] = {
915                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
916                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
917         },
918 },
919 [C(ITLB)] = {
920         [C(OP_READ)] = {
921                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
922                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
923         },
924         [C(OP_WRITE)] = {
925                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
926                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
927         },
928 },
929 [C(BPU)] = {
930         /* Using the same code for *HW_BRANCH* */
931         [C(OP_READ)] = {
932                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
933                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
934         },
935         [C(OP_WRITE)] = {
936                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
937                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
938         },
939 },
940 };
941
942 /* 74K/proAptiv core has completely different cache event map. */
943 static const struct mips_perf_event mipsxxcore_cache_map2
944                                 [PERF_COUNT_HW_CACHE_MAX]
945                                 [PERF_COUNT_HW_CACHE_OP_MAX]
946                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
947 [C(L1D)] = {
948         /*
949          * Like some other architectures (e.g. ARM), the performance
950          * counters don't differentiate between read and write
951          * accesses/misses, so this isn't strictly correct, but it's the
952          * best we can do. Writes and reads get combined.
953          */
954         [C(OP_READ)] = {
955                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
956                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
957         },
958         [C(OP_WRITE)] = {
959                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
960                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
961         },
962 },
963 [C(L1I)] = {
964         [C(OP_READ)] = {
965                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
966                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
967         },
968         [C(OP_WRITE)] = {
969                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
970                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
971         },
972         [C(OP_PREFETCH)] = {
973                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
974                 /*
975                  * Note that MIPS has only "hit" events countable for
976                  * the prefetch operation.
977                  */
978         },
979 },
980 [C(LL)] = {
981         [C(OP_READ)] = {
982                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
983                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
984         },
985         [C(OP_WRITE)] = {
986                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
987                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
988         },
989 },
990 /*
991  * 74K core does not have specific DTLB events. proAptiv core has
992  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
993  * not included here. One can use raw events if really needed.
994  */
995 [C(ITLB)] = {
996         [C(OP_READ)] = {
997                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
998                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
999         },
1000         [C(OP_WRITE)] = {
1001                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1002                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1003         },
1004 },
1005 [C(BPU)] = {
1006         /* Using the same code for *HW_BRANCH* */
1007         [C(OP_READ)] = {
1008                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1009                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1010         },
1011         [C(OP_WRITE)] = {
1012                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1013                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1014         },
1015 },
1016 };
1017
1018 static const struct mips_perf_event loongson3_cache_map
1019                                 [PERF_COUNT_HW_CACHE_MAX]
1020                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1021                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1022 [C(L1D)] = {
1023         /*
1024          * Like some other architectures (e.g. ARM), the performance
1025          * counters don't differentiate between read and write
1026          * accesses/misses, so this isn't strictly correct, but it's the
1027          * best we can do. Writes and reads get combined.
1028          */
1029         [C(OP_READ)] = {
1030                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1031         },
1032         [C(OP_WRITE)] = {
1033                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1034         },
1035 },
1036 [C(L1I)] = {
1037         [C(OP_READ)] = {
1038                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1039         },
1040         [C(OP_WRITE)] = {
1041                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1042         },
1043 },
1044 [C(DTLB)] = {
1045         [C(OP_READ)] = {
1046                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1047         },
1048         [C(OP_WRITE)] = {
1049                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1050         },
1051 },
1052 [C(ITLB)] = {
1053         [C(OP_READ)] = {
1054                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1055         },
1056         [C(OP_WRITE)] = {
1057                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1058         },
1059 },
1060 [C(BPU)] = {
1061         /* Using the same code for *HW_BRANCH* */
1062         [C(OP_READ)] = {
1063                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1064                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1065         },
1066         [C(OP_WRITE)] = {
1067                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1068                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1069         },
1070 },
1071 };
1072
1073 /* BMIPS5000 */
1074 static const struct mips_perf_event bmips5000_cache_map
1075                                 [PERF_COUNT_HW_CACHE_MAX]
1076                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1077                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1078 [C(L1D)] = {
1079         /*
1080          * Like some other architectures (e.g. ARM), the performance
1081          * counters don't differentiate between read and write
1082          * accesses/misses, so this isn't strictly correct, but it's the
1083          * best we can do. Writes and reads get combined.
1084          */
1085         [C(OP_READ)] = {
1086                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1087                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1088         },
1089         [C(OP_WRITE)] = {
1090                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1091                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1092         },
1093 },
1094 [C(L1I)] = {
1095         [C(OP_READ)] = {
1096                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1097                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1098         },
1099         [C(OP_WRITE)] = {
1100                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1101                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1102         },
1103         [C(OP_PREFETCH)] = {
1104                 [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1105                 /*
1106                  * Note that MIPS has only "hit" events countable for
1107                  * the prefetch operation.
1108                  */
1109         },
1110 },
1111 [C(LL)] = {
1112         [C(OP_READ)] = {
1113                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1114                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1115         },
1116         [C(OP_WRITE)] = {
1117                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1118                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1119         },
1120 },
1121 [C(BPU)] = {
1122         /* Using the same code for *HW_BRANCH* */
1123         [C(OP_READ)] = {
1124                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1125         },
1126         [C(OP_WRITE)] = {
1127                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1128         },
1129 },
1130 };
1131
1132
1133 static const struct mips_perf_event octeon_cache_map
1134                                 [PERF_COUNT_HW_CACHE_MAX]
1135                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1136                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1137 [C(L1D)] = {
1138         [C(OP_READ)] = {
1139                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1140                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1141         },
1142         [C(OP_WRITE)] = {
1143                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1144         },
1145 },
1146 [C(L1I)] = {
1147         [C(OP_READ)] = {
1148                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1149         },
1150         [C(OP_PREFETCH)] = {
1151                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1152         },
1153 },
1154 [C(DTLB)] = {
1155         /*
1156          * Only general DTLB misses are counted use the same event for
1157          * read and write.
1158          */
1159         [C(OP_READ)] = {
1160                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1161         },
1162         [C(OP_WRITE)] = {
1163                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1164         },
1165 },
1166 [C(ITLB)] = {
1167         [C(OP_READ)] = {
1168                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1169         },
1170 },
1171 };
1172
1173 static const struct mips_perf_event xlp_cache_map
1174                                 [PERF_COUNT_HW_CACHE_MAX]
1175                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1176                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1177 [C(L1D)] = {
1178         [C(OP_READ)] = {
1179                 [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1180                 [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1181         },
1182         [C(OP_WRITE)] = {
1183                 [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1184                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1185         },
1186 },
1187 [C(L1I)] = {
1188         [C(OP_READ)] = {
1189                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1190                 [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1191         },
1192 },
1193 [C(LL)] = {
1194         [C(OP_READ)] = {
1195                 [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1196                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1197         },
1198         [C(OP_WRITE)] = {
1199                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1200                 [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1201         },
1202 },
1203 [C(DTLB)] = {
1204         /*
1205          * Only general DTLB misses are counted use the same event for
1206          * read and write.
1207          */
1208         [C(OP_READ)] = {
1209                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1210         },
1211         [C(OP_WRITE)] = {
1212                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1213         },
1214 },
1215 [C(ITLB)] = {
1216         [C(OP_READ)] = {
1217                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1218         },
1219         [C(OP_WRITE)] = {
1220                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1221         },
1222 },
1223 [C(BPU)] = {
1224         [C(OP_READ)] = {
1225                 [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1226         },
1227 },
1228 };
1229
1230 #ifdef CONFIG_MIPS_MT_SMP
1231 static void check_and_calc_range(struct perf_event *event,
1232                                  const struct mips_perf_event *pev)
1233 {
1234         struct hw_perf_event *hwc = &event->hw;
1235
1236         if (event->cpu >= 0) {
1237                 if (pev->range > V) {
1238                         /*
1239                          * The user selected an event that is processor
1240                          * wide, while expecting it to be VPE wide.
1241                          */
1242                         hwc->config_base |= M_TC_EN_ALL;
1243                 } else {
1244                         /*
1245                          * FIXME: cpu_data[event->cpu].vpe_id reports 0
1246                          * for both CPUs.
1247                          */
1248                         hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1249                         hwc->config_base |= M_TC_EN_VPE;
1250                 }
1251         } else
1252                 hwc->config_base |= M_TC_EN_ALL;
1253 }
1254 #else
1255 static void check_and_calc_range(struct perf_event *event,
1256                                  const struct mips_perf_event *pev)
1257 {
1258 }
1259 #endif
1260
1261 static int __hw_perf_event_init(struct perf_event *event)
1262 {
1263         struct perf_event_attr *attr = &event->attr;
1264         struct hw_perf_event *hwc = &event->hw;
1265         const struct mips_perf_event *pev;
1266         int err;
1267
1268         /* Returning MIPS event descriptor for generic perf event. */
1269         if (PERF_TYPE_HARDWARE == event->attr.type) {
1270                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1271                         return -EINVAL;
1272                 pev = mipspmu_map_general_event(event->attr.config);
1273         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1274                 pev = mipspmu_map_cache_event(event->attr.config);
1275         } else if (PERF_TYPE_RAW == event->attr.type) {
1276                 /* We are working on the global raw event. */
1277                 mutex_lock(&raw_event_mutex);
1278                 pev = mipspmu.map_raw_event(event->attr.config);
1279         } else {
1280                 /* The event type is not (yet) supported. */
1281                 return -EOPNOTSUPP;
1282         }
1283
1284         if (IS_ERR(pev)) {
1285                 if (PERF_TYPE_RAW == event->attr.type)
1286                         mutex_unlock(&raw_event_mutex);
1287                 return PTR_ERR(pev);
1288         }
1289
1290         /*
1291          * We allow max flexibility on how each individual counter shared
1292          * by the single CPU operates (the mode exclusion and the range).
1293          */
1294         hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1295
1296         /* Calculate range bits and validate it. */
1297         if (num_possible_cpus() > 1)
1298                 check_and_calc_range(event, pev);
1299
1300         hwc->event_base = mipspmu_perf_event_encode(pev);
1301         if (PERF_TYPE_RAW == event->attr.type)
1302                 mutex_unlock(&raw_event_mutex);
1303
1304         if (!attr->exclude_user)
1305                 hwc->config_base |= M_PERFCTL_USER;
1306         if (!attr->exclude_kernel) {
1307                 hwc->config_base |= M_PERFCTL_KERNEL;
1308                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1309                 hwc->config_base |= M_PERFCTL_EXL;
1310         }
1311         if (!attr->exclude_hv)
1312                 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1313
1314         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1315         /*
1316          * The event can belong to another cpu. We do not assign a local
1317          * counter for it for now.
1318          */
1319         hwc->idx = -1;
1320         hwc->config = 0;
1321
1322         if (!hwc->sample_period) {
1323                 hwc->sample_period  = mipspmu.max_period;
1324                 hwc->last_period    = hwc->sample_period;
1325                 local64_set(&hwc->period_left, hwc->sample_period);
1326         }
1327
1328         err = 0;
1329         if (event->group_leader != event)
1330                 err = validate_group(event);
1331
1332         event->destroy = hw_perf_event_destroy;
1333
1334         if (err)
1335                 event->destroy(event);
1336
1337         return err;
1338 }
1339
1340 static void pause_local_counters(void)
1341 {
1342         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1343         int ctr = mipspmu.num_counters;
1344         unsigned long flags;
1345
1346         local_irq_save(flags);
1347         do {
1348                 ctr--;
1349                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1350                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1351                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1352         } while (ctr > 0);
1353         local_irq_restore(flags);
1354 }
1355
1356 static void resume_local_counters(void)
1357 {
1358         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1359         int ctr = mipspmu.num_counters;
1360
1361         do {
1362                 ctr--;
1363                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1364         } while (ctr > 0);
1365 }
1366
1367 static int mipsxx_pmu_handle_shared_irq(void)
1368 {
1369         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1370         struct perf_sample_data data;
1371         unsigned int counters = mipspmu.num_counters;
1372         u64 counter;
1373         int handled = IRQ_NONE;
1374         struct pt_regs *regs;
1375
1376         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1377                 return handled;
1378         /*
1379          * First we pause the local counters, so that when we are locked
1380          * here, the counters are all paused. When it gets locked due to
1381          * perf_disable(), the timer interrupt handler will be delayed.
1382          *
1383          * See also mipsxx_pmu_start().
1384          */
1385         pause_local_counters();
1386 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1387         read_lock(&pmuint_rwlock);
1388 #endif
1389
1390         regs = get_irq_regs();
1391
1392         perf_sample_data_init(&data, 0, 0);
1393
1394         switch (counters) {
1395 #define HANDLE_COUNTER(n)                                               \
1396         case n + 1:                                                     \
1397                 if (test_bit(n, cpuc->used_mask)) {                     \
1398                         counter = mipspmu.read_counter(n);              \
1399                         if (counter & mipspmu.overflow) {               \
1400                                 handle_associated_event(cpuc, n, &data, regs); \
1401                                 handled = IRQ_HANDLED;                  \
1402                         }                                               \
1403                 }
1404         HANDLE_COUNTER(3)
1405         HANDLE_COUNTER(2)
1406         HANDLE_COUNTER(1)
1407         HANDLE_COUNTER(0)
1408         }
1409
1410         /*
1411          * Do all the work for the pending perf events. We can do this
1412          * in here because the performance counter interrupt is a regular
1413          * interrupt, not NMI.
1414          */
1415         if (handled == IRQ_HANDLED)
1416                 irq_work_run();
1417
1418 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1419         read_unlock(&pmuint_rwlock);
1420 #endif
1421         resume_local_counters();
1422         return handled;
1423 }
1424
1425 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1426 {
1427         return mipsxx_pmu_handle_shared_irq();
1428 }
1429
1430 /* 24K */
1431 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1432         ((b) == 0 || (b) == 1 || (b) == 11)
1433
1434 /* 34K */
1435 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1436         ((b) == 0 || (b) == 1 || (b) == 11)
1437 #ifdef CONFIG_MIPS_MT_SMP
1438 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1439         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1440          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1441          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1442          ((b) >= 64 && (b) <= 67))
1443 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1444 #endif
1445
1446 /* 74K */
1447 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1448         ((b) == 0 || (b) == 1)
1449
1450 /* proAptiv */
1451 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1452         ((b) == 0 || (b) == 1)
1453 /* P5600 */
1454 #define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1455         ((b) == 0 || (b) == 1)
1456
1457 /* 1004K */
1458 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1459         ((b) == 0 || (b) == 1 || (b) == 11)
1460 #ifdef CONFIG_MIPS_MT_SMP
1461 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1462         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1463          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1464          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1465          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1466          ((b) >= 64 && (b) <= 67))
1467 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1468 #endif
1469
1470 /* interAptiv */
1471 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1472         ((b) == 0 || (b) == 1 || (b) == 11)
1473 #ifdef CONFIG_MIPS_MT_SMP
1474 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1475 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1476         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1477          (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1478          (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1479          (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1480          ((b) >= 64 && (b) <= 67))
1481 #define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1482 #endif
1483
1484 /* BMIPS5000 */
1485 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1486         ((b) == 0 || (b) == 1)
1487
1488
1489 /*
1490  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1491  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1492  * indicate the even/odd bank selector. So, for example, when user wants to take
1493  * the Event Num of 15 for odd counters (by referring to the user manual), then
1494  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1495  * to be used.
1496  *
1497  * Some newer cores have even more events, in which case the user can use raw
1498  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1499  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1500  */
1501 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1502 {
1503         /* currently most cores have 7-bit event numbers */
1504         unsigned int raw_id = config & 0xff;
1505         unsigned int base_id = raw_id & 0x7f;
1506
1507         switch (current_cpu_type()) {
1508         case CPU_24K:
1509                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1510                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1511                 else
1512                         raw_event.cntr_mask =
1513                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1514 #ifdef CONFIG_MIPS_MT_SMP
1515                 /*
1516                  * This is actually doing nothing. Non-multithreading
1517                  * CPUs will not check and calculate the range.
1518                  */
1519                 raw_event.range = P;
1520 #endif
1521                 break;
1522         case CPU_34K:
1523                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1524                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1525                 else
1526                         raw_event.cntr_mask =
1527                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1528 #ifdef CONFIG_MIPS_MT_SMP
1529                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1530                         raw_event.range = P;
1531                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1532                         raw_event.range = V;
1533                 else
1534                         raw_event.range = T;
1535 #endif
1536                 break;
1537         case CPU_74K:
1538         case CPU_1074K:
1539                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1540                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1541                 else
1542                         raw_event.cntr_mask =
1543                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1544 #ifdef CONFIG_MIPS_MT_SMP
1545                 raw_event.range = P;
1546 #endif
1547                 break;
1548         case CPU_PROAPTIV:
1549                 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1550                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1551                 else
1552                         raw_event.cntr_mask =
1553                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1554 #ifdef CONFIG_MIPS_MT_SMP
1555                 raw_event.range = P;
1556 #endif
1557                 break;
1558         case CPU_P5600:
1559                 /* 8-bit event numbers */
1560                 raw_id = config & 0x1ff;
1561                 base_id = raw_id & 0xff;
1562                 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1563                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1564                 else
1565                         raw_event.cntr_mask =
1566                                 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1567 #ifdef CONFIG_MIPS_MT_SMP
1568                 raw_event.range = P;
1569 #endif
1570                 break;
1571         case CPU_1004K:
1572                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1573                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1574                 else
1575                         raw_event.cntr_mask =
1576                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1577 #ifdef CONFIG_MIPS_MT_SMP
1578                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1579                         raw_event.range = P;
1580                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1581                         raw_event.range = V;
1582                 else
1583                         raw_event.range = T;
1584 #endif
1585                 break;
1586         case CPU_INTERAPTIV:
1587                 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1588                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1589                 else
1590                         raw_event.cntr_mask =
1591                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1592 #ifdef CONFIG_MIPS_MT_SMP
1593                 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1594                         raw_event.range = P;
1595                 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1596                         raw_event.range = V;
1597                 else
1598                         raw_event.range = T;
1599 #endif
1600                 break;
1601         case CPU_BMIPS5000:
1602                 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1603                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1604                 else
1605                         raw_event.cntr_mask =
1606                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1607                 break;
1608         case CPU_LOONGSON3:
1609                 raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1610         break;
1611         }
1612
1613         raw_event.event_id = base_id;
1614
1615         return &raw_event;
1616 }
1617
1618 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1619 {
1620         unsigned int raw_id = config & 0xff;
1621         unsigned int base_id = raw_id & 0x7f;
1622
1623
1624         raw_event.cntr_mask = CNTR_ALL;
1625         raw_event.event_id = base_id;
1626
1627         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1628                 if (base_id > 0x42)
1629                         return ERR_PTR(-EOPNOTSUPP);
1630         } else {
1631                 if (base_id > 0x3a)
1632                         return ERR_PTR(-EOPNOTSUPP);
1633         }
1634
1635         switch (base_id) {
1636         case 0x00:
1637         case 0x0f:
1638         case 0x1e:
1639         case 0x1f:
1640         case 0x2f:
1641         case 0x34:
1642         case 0x3b ... 0x3f:
1643                 return ERR_PTR(-EOPNOTSUPP);
1644         default:
1645                 break;
1646         }
1647
1648         return &raw_event;
1649 }
1650
1651 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1652 {
1653         unsigned int raw_id = config & 0xff;
1654
1655         /* Only 1-63 are defined */
1656         if ((raw_id < 0x01) || (raw_id > 0x3f))
1657                 return ERR_PTR(-EOPNOTSUPP);
1658
1659         raw_event.cntr_mask = CNTR_ALL;
1660         raw_event.event_id = raw_id;
1661
1662         return &raw_event;
1663 }
1664
1665 static int __init
1666 init_hw_perf_events(void)
1667 {
1668         int counters, irq;
1669         int counter_bits;
1670
1671         pr_info("Performance counters: ");
1672
1673         counters = n_counters();
1674         if (counters == 0) {
1675                 pr_cont("No available PMU.\n");
1676                 return -ENODEV;
1677         }
1678
1679 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1680         cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1681         if (!cpu_has_mipsmt_pertccounters)
1682                 counters = counters_total_to_per_cpu(counters);
1683 #endif
1684
1685         if (get_c0_perfcount_int)
1686                 irq = get_c0_perfcount_int();
1687         else if (cp0_perfcount_irq >= 0)
1688                 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1689         else
1690                 irq = -1;
1691
1692         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1693
1694         switch (current_cpu_type()) {
1695         case CPU_24K:
1696                 mipspmu.name = "mips/24K";
1697                 mipspmu.general_event_map = &mipsxxcore_event_map;
1698                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1699                 break;
1700         case CPU_34K:
1701                 mipspmu.name = "mips/34K";
1702                 mipspmu.general_event_map = &mipsxxcore_event_map;
1703                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1704                 break;
1705         case CPU_74K:
1706                 mipspmu.name = "mips/74K";
1707                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1708                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1709                 break;
1710         case CPU_PROAPTIV:
1711                 mipspmu.name = "mips/proAptiv";
1712                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1713                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1714                 break;
1715         case CPU_P5600:
1716                 mipspmu.name = "mips/P5600";
1717                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1718                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1719                 break;
1720         case CPU_1004K:
1721                 mipspmu.name = "mips/1004K";
1722                 mipspmu.general_event_map = &mipsxxcore_event_map;
1723                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1724                 break;
1725         case CPU_1074K:
1726                 mipspmu.name = "mips/1074K";
1727                 mipspmu.general_event_map = &mipsxxcore_event_map;
1728                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1729                 break;
1730         case CPU_INTERAPTIV:
1731                 mipspmu.name = "mips/interAptiv";
1732                 mipspmu.general_event_map = &mipsxxcore_event_map;
1733                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1734                 break;
1735         case CPU_LOONGSON1:
1736                 mipspmu.name = "mips/loongson1";
1737                 mipspmu.general_event_map = &mipsxxcore_event_map;
1738                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1739                 break;
1740         case CPU_LOONGSON3:
1741                 mipspmu.name = "mips/loongson3";
1742                 mipspmu.general_event_map = &loongson3_event_map;
1743                 mipspmu.cache_event_map = &loongson3_cache_map;
1744                 break;
1745         case CPU_CAVIUM_OCTEON:
1746         case CPU_CAVIUM_OCTEON_PLUS:
1747         case CPU_CAVIUM_OCTEON2:
1748                 mipspmu.name = "octeon";
1749                 mipspmu.general_event_map = &octeon_event_map;
1750                 mipspmu.cache_event_map = &octeon_cache_map;
1751                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1752                 break;
1753         case CPU_BMIPS5000:
1754                 mipspmu.name = "BMIPS5000";
1755                 mipspmu.general_event_map = &bmips5000_event_map;
1756                 mipspmu.cache_event_map = &bmips5000_cache_map;
1757                 break;
1758         case CPU_XLP:
1759                 mipspmu.name = "xlp";
1760                 mipspmu.general_event_map = &xlp_event_map;
1761                 mipspmu.cache_event_map = &xlp_cache_map;
1762                 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1763                 break;
1764         default:
1765                 pr_cont("Either hardware does not support performance "
1766                         "counters, or not yet implemented.\n");
1767                 return -ENODEV;
1768         }
1769
1770         mipspmu.num_counters = counters;
1771         mipspmu.irq = irq;
1772
1773         if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1774                 mipspmu.max_period = (1ULL << 63) - 1;
1775                 mipspmu.valid_count = (1ULL << 63) - 1;
1776                 mipspmu.overflow = 1ULL << 63;
1777                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1778                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1779                 counter_bits = 64;
1780         } else {
1781                 mipspmu.max_period = (1ULL << 31) - 1;
1782                 mipspmu.valid_count = (1ULL << 31) - 1;
1783                 mipspmu.overflow = 1ULL << 31;
1784                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1785                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1786                 counter_bits = 32;
1787         }
1788
1789         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1790
1791         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1792                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1793                 irq < 0 ? " (share with timer interrupt)" : "");
1794
1795         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1796
1797         return 0;
1798 }
1799 early_initcall(init_hw_perf_events);