Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / mips / cavium-octeon / octeon-platform.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2011 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_fdt.h>
22 #include <linux/libfdt.h>
23 #include <linux/usb/ehci_pdriver.h>
24 #include <linux/usb/ohci_pdriver.h>
25
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-rnm-defs.h>
28 #include <asm/octeon/cvmx-helper.h>
29 #include <asm/octeon/cvmx-helper-board.h>
30 #include <asm/octeon/cvmx-uctlx-defs.h>
31
32 /* Octeon Random Number Generator.  */
33 static int __init octeon_rng_device_init(void)
34 {
35         struct platform_device *pd;
36         int ret = 0;
37
38         struct resource rng_resources[] = {
39                 {
40                         .flags  = IORESOURCE_MEM,
41                         .start  = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42                         .end    = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43                 }, {
44                         .flags  = IORESOURCE_MEM,
45                         .start  = cvmx_build_io_address(8, 0),
46                         .end    = cvmx_build_io_address(8, 0) + 0x7
47                 }
48         };
49
50         pd = platform_device_alloc("octeon_rng", -1);
51         if (!pd) {
52                 ret = -ENOMEM;
53                 goto out;
54         }
55
56         ret = platform_device_add_resources(pd, rng_resources,
57                                             ARRAY_SIZE(rng_resources));
58         if (ret)
59                 goto fail;
60
61         ret = platform_device_add(pd);
62         if (ret)
63                 goto fail;
64
65         return ret;
66 fail:
67         platform_device_put(pd);
68
69 out:
70         return ret;
71 }
72 device_initcall(octeon_rng_device_init);
73
74 #ifdef CONFIG_USB
75
76 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
77
78 static int octeon2_usb_clock_start_cnt;
79
80 static void octeon2_usb_clocks_start(struct device *dev)
81 {
82         u64 div;
83         union cvmx_uctlx_if_ena if_ena;
84         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85         union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86         union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87         int i;
88         unsigned long io_clk_64_to_ns;
89         u32 clock_rate = 12000000;
90         bool is_crystal_clock = false;
91
92
93         mutex_lock(&octeon2_usb_clocks_mutex);
94
95         octeon2_usb_clock_start_cnt++;
96         if (octeon2_usb_clock_start_cnt != 1)
97                 goto exit;
98
99         io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
100
101         if (dev->of_node) {
102                 struct device_node *uctl_node;
103                 const char *clock_type;
104
105                 uctl_node = of_get_parent(dev->of_node);
106                 if (!uctl_node) {
107                         dev_err(dev, "No UCTL device node\n");
108                         goto exit;
109                 }
110                 i = of_property_read_u32(uctl_node,
111                                          "refclk-frequency", &clock_rate);
112                 if (i) {
113                         dev_err(dev, "No UCTL \"refclk-frequency\"\n");
114                         goto exit;
115                 }
116                 i = of_property_read_string(uctl_node,
117                                             "refclk-type", &clock_type);
118
119                 if (!i && strcmp("crystal", clock_type) == 0)
120                         is_crystal_clock = true;
121         }
122
123         /*
124          * Step 1: Wait for voltages stable.  That surely happened
125          * before starting the kernel.
126          *
127          * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
128          */
129         if_ena.u64 = 0;
130         if_ena.s.en = 1;
131         cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
132
133         /* Step 3: Configure the reference clock, PHY, and HCLK */
134         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
135
136         /*
137          * If the UCTL looks like it has already been started, skip
138          * the initialization, otherwise bus errors are obtained.
139          */
140         if (clk_rst_ctl.s.hrst)
141                 goto end_clock;
142         /* 3a */
143         clk_rst_ctl.s.p_por = 1;
144         clk_rst_ctl.s.hrst = 0;
145         clk_rst_ctl.s.p_prst = 0;
146         clk_rst_ctl.s.h_clkdiv_rst = 0;
147         clk_rst_ctl.s.o_clkdiv_rst = 0;
148         clk_rst_ctl.s.h_clkdiv_en = 0;
149         clk_rst_ctl.s.o_clkdiv_en = 0;
150         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
151
152         /* 3b */
153         clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154         switch (clock_rate) {
155         default:
156                 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157                         clock_rate);
158                 /* Fall through */
159         case 12000000:
160                 clk_rst_ctl.s.p_refclk_div = 0;
161                 break;
162         case 24000000:
163                 clk_rst_ctl.s.p_refclk_div = 1;
164                 break;
165         case 48000000:
166                 clk_rst_ctl.s.p_refclk_div = 2;
167                 break;
168         }
169         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
170
171         /* 3c */
172         div = octeon_get_io_clock_rate() / 130000000ull;
173
174         switch (div) {
175         case 0:
176                 div = 1;
177                 break;
178         case 1:
179         case 2:
180         case 3:
181         case 4:
182                 break;
183         case 5:
184                 div = 4;
185                 break;
186         case 6:
187         case 7:
188                 div = 6;
189                 break;
190         case 8:
191         case 9:
192         case 10:
193         case 11:
194                 div = 8;
195                 break;
196         default:
197                 div = 12;
198                 break;
199         }
200         clk_rst_ctl.s.h_div = div;
201         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202         /* Read it back, */
203         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204         clk_rst_ctl.s.h_clkdiv_en = 1;
205         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206         /* 3d */
207         clk_rst_ctl.s.h_clkdiv_rst = 1;
208         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
209
210         /* 3e: delay 64 io clocks */
211         ndelay(io_clk_64_to_ns);
212
213         /*
214          * Step 4: Program the power-on reset field in the UCTL
215          * clock-reset-control register.
216          */
217         clk_rst_ctl.s.p_por = 0;
218         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219
220         /* Step 5:    Wait 1 ms for the PHY clock to start. */
221         mdelay(1);
222
223         /*
224          * Step 6: Program the reset input from automatic test
225          * equipment field in the UPHY CSR
226          */
227         uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228         uphy_ctl_status.s.ate_reset = 1;
229         cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
230
231         /* Step 7: Wait for at least 10ns. */
232         ndelay(10);
233
234         /* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235         uphy_ctl_status.s.ate_reset = 0;
236         cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
237
238         /*
239          * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240          * signals and OHCI_CLK48
241          */
242         ndelay(20);
243
244         /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245         /* 10a */
246         clk_rst_ctl.s.o_clkdiv_rst = 1;
247         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
248
249         /* 10b */
250         clk_rst_ctl.s.o_clkdiv_en = 1;
251         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
252
253         /* 10c */
254         ndelay(io_clk_64_to_ns);
255
256         /*
257          * Step 11: Program the PHY reset field:
258          * UCTL0_CLK_RST_CTL[P_PRST] = 1
259          */
260         clk_rst_ctl.s.p_prst = 1;
261         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
262
263         /* Step 12: Wait 1 uS. */
264         udelay(1);
265
266         /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267         clk_rst_ctl.s.hrst = 1;
268         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
269
270 end_clock:
271         /* Now we can set some other registers.  */
272
273         for (i = 0; i <= 1; i++) {
274                 port_ctl_status.u64 =
275                         cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276                 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277                 port_ctl_status.s.txvreftune = 15;
278                 port_ctl_status.s.txrisetune = 1;
279                 port_ctl_status.s.txpreemphasistune = 1;
280                 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281                                port_ctl_status.u64);
282         }
283
284         /* Set uSOF cycle period to 60,000 bits. */
285         cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
286 exit:
287         mutex_unlock(&octeon2_usb_clocks_mutex);
288 }
289
290 static void octeon2_usb_clocks_stop(void)
291 {
292         mutex_lock(&octeon2_usb_clocks_mutex);
293         octeon2_usb_clock_start_cnt--;
294         mutex_unlock(&octeon2_usb_clocks_mutex);
295 }
296
297 static int octeon_ehci_power_on(struct platform_device *pdev)
298 {
299         octeon2_usb_clocks_start(&pdev->dev);
300         return 0;
301 }
302
303 static void octeon_ehci_power_off(struct platform_device *pdev)
304 {
305         octeon2_usb_clocks_stop();
306 }
307
308 static struct usb_ehci_pdata octeon_ehci_pdata = {
309         /* Octeon EHCI matches CPU endianness. */
310 #ifdef __BIG_ENDIAN
311         .big_endian_mmio        = 1,
312 #endif
313         .dma_mask_64    = 1,
314         .power_on       = octeon_ehci_power_on,
315         .power_off      = octeon_ehci_power_off,
316 };
317
318 static void __init octeon_ehci_hw_start(struct device *dev)
319 {
320         union cvmx_uctlx_ehci_ctl ehci_ctl;
321
322         octeon2_usb_clocks_start(dev);
323
324         ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325         /* Use 64-bit addressing. */
326         ehci_ctl.s.ehci_64b_addr_en = 1;
327         ehci_ctl.s.l2c_addr_msb = 0;
328 #ifdef __BIG_ENDIAN
329         ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
330         ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
331 #else
332         ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
333         ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
334         ehci_ctl.s.inv_reg_a2 = 1;
335 #endif
336         cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
337
338         octeon2_usb_clocks_stop();
339 }
340
341 static int __init octeon_ehci_device_init(void)
342 {
343         struct platform_device *pd;
344         struct device_node *ehci_node;
345         int ret = 0;
346
347         ehci_node = of_find_node_by_name(NULL, "ehci");
348         if (!ehci_node)
349                 return 0;
350
351         pd = of_find_device_by_node(ehci_node);
352         if (!pd)
353                 return 0;
354
355         pd->dev.platform_data = &octeon_ehci_pdata;
356         octeon_ehci_hw_start(&pd->dev);
357
358         return ret;
359 }
360 device_initcall(octeon_ehci_device_init);
361
362 static int octeon_ohci_power_on(struct platform_device *pdev)
363 {
364         octeon2_usb_clocks_start(&pdev->dev);
365         return 0;
366 }
367
368 static void octeon_ohci_power_off(struct platform_device *pdev)
369 {
370         octeon2_usb_clocks_stop();
371 }
372
373 static struct usb_ohci_pdata octeon_ohci_pdata = {
374         /* Octeon OHCI matches CPU endianness. */
375 #ifdef __BIG_ENDIAN
376         .big_endian_mmio        = 1,
377 #endif
378         .power_on       = octeon_ohci_power_on,
379         .power_off      = octeon_ohci_power_off,
380 };
381
382 static void __init octeon_ohci_hw_start(struct device *dev)
383 {
384         union cvmx_uctlx_ohci_ctl ohci_ctl;
385
386         octeon2_usb_clocks_start(dev);
387
388         ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
389         ohci_ctl.s.l2c_addr_msb = 0;
390 #ifdef __BIG_ENDIAN
391         ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
392         ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
393 #else
394         ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
395         ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
396         ohci_ctl.s.inv_reg_a2 = 1;
397 #endif
398         cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
399
400         octeon2_usb_clocks_stop();
401 }
402
403 static int __init octeon_ohci_device_init(void)
404 {
405         struct platform_device *pd;
406         struct device_node *ohci_node;
407         int ret = 0;
408
409         ohci_node = of_find_node_by_name(NULL, "ohci");
410         if (!ohci_node)
411                 return 0;
412
413         pd = of_find_device_by_node(ohci_node);
414         if (!pd)
415                 return 0;
416
417         pd->dev.platform_data = &octeon_ohci_pdata;
418         octeon_ohci_hw_start(&pd->dev);
419
420         return ret;
421 }
422 device_initcall(octeon_ohci_device_init);
423
424 #endif /* CONFIG_USB */
425
426
427 static struct of_device_id __initdata octeon_ids[] = {
428         { .compatible = "simple-bus", },
429         { .compatible = "cavium,octeon-6335-uctl", },
430         { .compatible = "cavium,octeon-5750-usbn", },
431         { .compatible = "cavium,octeon-3860-bootbus", },
432         { .compatible = "cavium,mdio-mux", },
433         { .compatible = "gpio-leds", },
434         {},
435 };
436
437 static bool __init octeon_has_88e1145(void)
438 {
439         return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
440                !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
441                !OCTEON_IS_MODEL(OCTEON_CN56XX);
442 }
443
444 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
445 {
446         const __be32 *phy_handle;
447         const __be32 *alt_phy_handle;
448         const __be32 *reg;
449         u32 phandle;
450         int phy;
451         int alt_phy;
452         const char *p;
453         int current_len;
454         char new_name[20];
455
456         phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
457         if (!phy_handle)
458                 return;
459
460         phandle = be32_to_cpup(phy_handle);
461         phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
462
463         alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
464         if (alt_phy_handle) {
465                 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
466                 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
467         } else {
468                 alt_phy = -1;
469         }
470
471         if (phy_addr < 0 || phy < 0) {
472                 /* Delete the PHY things */
473                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
474                 /* This one may fail */
475                 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
476                 if (phy >= 0)
477                         fdt_nop_node(initial_boot_params, phy);
478                 if (alt_phy >= 0)
479                         fdt_nop_node(initial_boot_params, alt_phy);
480                 return;
481         }
482
483         if (phy_addr >= 256 && alt_phy > 0) {
484                 const struct fdt_property *phy_prop;
485                 struct fdt_property *alt_prop;
486                 u32 phy_handle_name;
487
488                 /* Use the alt phy node instead.*/
489                 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
490                 phy_handle_name = phy_prop->nameoff;
491                 fdt_nop_node(initial_boot_params, phy);
492                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
493                 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
494                 alt_prop->nameoff = phy_handle_name;
495                 phy = alt_phy;
496         }
497
498         phy_addr &= 0xff;
499
500         if (octeon_has_88e1145()) {
501                 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
502                 memset(new_name, 0, sizeof(new_name));
503                 strcpy(new_name, "marvell,88e1145");
504                 p = fdt_getprop(initial_boot_params, phy, "compatible",
505                                 &current_len);
506                 if (p && current_len >= strlen(new_name))
507                         fdt_setprop_inplace(initial_boot_params, phy,
508                                         "compatible", new_name, current_len);
509         }
510
511         reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
512         if (phy_addr == be32_to_cpup(reg))
513                 return;
514
515         fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
516
517         snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
518
519         p = fdt_get_name(initial_boot_params, phy, &current_len);
520         if (p && current_len == strlen(new_name))
521                 fdt_set_name(initial_boot_params, phy, new_name);
522         else
523                 pr_err("Error: could not rename ethernet phy: <%s>", p);
524 }
525
526 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
527 {
528         u8 new_mac[6];
529         u64 mac = *pmac;
530         int r;
531
532         new_mac[0] = (mac >> 40) & 0xff;
533         new_mac[1] = (mac >> 32) & 0xff;
534         new_mac[2] = (mac >> 24) & 0xff;
535         new_mac[3] = (mac >> 16) & 0xff;
536         new_mac[4] = (mac >> 8) & 0xff;
537         new_mac[5] = mac & 0xff;
538
539         r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
540                                 new_mac, sizeof(new_mac));
541
542         if (r) {
543                 pr_err("Setting \"local-mac-address\" failed %d", r);
544                 return;
545         }
546         *pmac = mac + 1;
547 }
548
549 static void __init octeon_fdt_rm_ethernet(int node)
550 {
551         const __be32 *phy_handle;
552
553         phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
554         if (phy_handle) {
555                 u32 ph = be32_to_cpup(phy_handle);
556                 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
557                 if (p >= 0)
558                         fdt_nop_node(initial_boot_params, p);
559         }
560         fdt_nop_node(initial_boot_params, node);
561 }
562
563 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
564 {
565         char name_buffer[20];
566         int eth;
567         int phy_addr;
568         int ipd_port;
569
570         snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
571         eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
572         if (eth < 0)
573                 return;
574         if (p > max) {
575                 pr_debug("Deleting port %x:%x\n", i, p);
576                 octeon_fdt_rm_ethernet(eth);
577                 return;
578         }
579         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
580                 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
581         else
582                 ipd_port = 16 * i + p;
583
584         phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
585         octeon_fdt_set_phy(eth, phy_addr);
586         octeon_fdt_set_mac_addr(eth, pmac);
587 }
588
589 static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
590 {
591         char name_buffer[20];
592         int iface;
593         int p;
594         int count = 0;
595
596         snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
597         iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
598         if (iface < 0)
599                 return;
600
601         if (cvmx_helper_interface_enumerate(idx) == 0)
602                 count = cvmx_helper_ports_on_interface(idx);
603
604         for (p = 0; p < 16; p++)
605                 octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
606 }
607
608 int __init octeon_prune_device_tree(void)
609 {
610         int i, max_port, uart_mask;
611         const char *pip_path;
612         const char *alias_prop;
613         char name_buffer[20];
614         int aliases;
615         u64 mac_addr_base;
616
617         if (fdt_check_header(initial_boot_params))
618                 panic("Corrupt Device Tree.");
619
620         aliases = fdt_path_offset(initial_boot_params, "/aliases");
621         if (aliases < 0) {
622                 pr_err("Error: No /aliases node in device tree.");
623                 return -EINVAL;
624         }
625
626
627         mac_addr_base =
628                 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
629                 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
630                 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
631                 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
632                 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
633                 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
634
635         if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
636                 max_port = 2;
637         else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
638                 max_port = 1;
639         else
640                 max_port = 0;
641
642         if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
643                 max_port = 0;
644
645         for (i = 0; i < 2; i++) {
646                 int mgmt;
647                 snprintf(name_buffer, sizeof(name_buffer),
648                          "mix%d", i);
649                 alias_prop = fdt_getprop(initial_boot_params, aliases,
650                                         name_buffer, NULL);
651                 if (alias_prop) {
652                         mgmt = fdt_path_offset(initial_boot_params, alias_prop);
653                         if (mgmt < 0)
654                                 continue;
655                         if (i >= max_port) {
656                                 pr_debug("Deleting mix%d\n", i);
657                                 octeon_fdt_rm_ethernet(mgmt);
658                                 fdt_nop_property(initial_boot_params, aliases,
659                                                  name_buffer);
660                         } else {
661                                 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
662                                 octeon_fdt_set_phy(mgmt, phy_addr);
663                                 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
664                         }
665                 }
666         }
667
668         pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
669         if (pip_path) {
670                 int pip = fdt_path_offset(initial_boot_params, pip_path);
671                 if (pip  >= 0)
672                         for (i = 0; i <= 4; i++)
673                                 octeon_fdt_pip_iface(pip, i, &mac_addr_base);
674         }
675
676         /* I2C */
677         if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
678             OCTEON_IS_MODEL(OCTEON_CN63XX) ||
679             OCTEON_IS_MODEL(OCTEON_CN68XX) ||
680             OCTEON_IS_MODEL(OCTEON_CN56XX))
681                 max_port = 2;
682         else
683                 max_port = 1;
684
685         for (i = 0; i < 2; i++) {
686                 int i2c;
687                 snprintf(name_buffer, sizeof(name_buffer),
688                          "twsi%d", i);
689                 alias_prop = fdt_getprop(initial_boot_params, aliases,
690                                         name_buffer, NULL);
691
692                 if (alias_prop) {
693                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
694                         if (i2c < 0)
695                                 continue;
696                         if (i >= max_port) {
697                                 pr_debug("Deleting twsi%d\n", i);
698                                 fdt_nop_node(initial_boot_params, i2c);
699                                 fdt_nop_property(initial_boot_params, aliases,
700                                                  name_buffer);
701                         }
702                 }
703         }
704
705         /* SMI/MDIO */
706         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
707                 max_port = 4;
708         else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
709                  OCTEON_IS_MODEL(OCTEON_CN63XX) ||
710                  OCTEON_IS_MODEL(OCTEON_CN56XX))
711                 max_port = 2;
712         else
713                 max_port = 1;
714
715         for (i = 0; i < 2; i++) {
716                 int i2c;
717                 snprintf(name_buffer, sizeof(name_buffer),
718                          "smi%d", i);
719                 alias_prop = fdt_getprop(initial_boot_params, aliases,
720                                         name_buffer, NULL);
721
722                 if (alias_prop) {
723                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
724                         if (i2c < 0)
725                                 continue;
726                         if (i >= max_port) {
727                                 pr_debug("Deleting smi%d\n", i);
728                                 fdt_nop_node(initial_boot_params, i2c);
729                                 fdt_nop_property(initial_boot_params, aliases,
730                                                  name_buffer);
731                         }
732                 }
733         }
734
735         /* Serial */
736         uart_mask = 3;
737
738         /* Right now CN52XX is the only chip with a third uart */
739         if (OCTEON_IS_MODEL(OCTEON_CN52XX))
740                 uart_mask |= 4; /* uart2 */
741
742         for (i = 0; i < 3; i++) {
743                 int uart;
744                 snprintf(name_buffer, sizeof(name_buffer),
745                          "uart%d", i);
746                 alias_prop = fdt_getprop(initial_boot_params, aliases,
747                                         name_buffer, NULL);
748
749                 if (alias_prop) {
750                         uart = fdt_path_offset(initial_boot_params, alias_prop);
751                         if (uart_mask & (1 << i)) {
752                                 __be32 f;
753
754                                 f = cpu_to_be32(octeon_get_io_clock_rate());
755                                 fdt_setprop_inplace(initial_boot_params,
756                                                     uart, "clock-frequency",
757                                                     &f, sizeof(f));
758                                 continue;
759                         }
760                         pr_debug("Deleting uart%d\n", i);
761                         fdt_nop_node(initial_boot_params, uart);
762                         fdt_nop_property(initial_boot_params, aliases,
763                                          name_buffer);
764                 }
765         }
766
767         /* Compact Flash */
768         alias_prop = fdt_getprop(initial_boot_params, aliases,
769                                  "cf0", NULL);
770         if (alias_prop) {
771                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
772                 unsigned long base_ptr, region_base, region_size;
773                 unsigned long region1_base = 0;
774                 unsigned long region1_size = 0;
775                 int cs, bootbus;
776                 bool is_16bit = false;
777                 bool is_true_ide = false;
778                 __be32 new_reg[6];
779                 __be32 *ranges;
780                 int len;
781
782                 int cf = fdt_path_offset(initial_boot_params, alias_prop);
783                 base_ptr = 0;
784                 if (octeon_bootinfo->major_version == 1
785                         && octeon_bootinfo->minor_version >= 1) {
786                         if (octeon_bootinfo->compact_flash_common_base_addr)
787                                 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
788                 } else {
789                         base_ptr = 0x1d000800;
790                 }
791
792                 if (!base_ptr)
793                         goto no_cf;
794
795                 /* Find CS0 region. */
796                 for (cs = 0; cs < 8; cs++) {
797                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
798                         region_base = mio_boot_reg_cfg.s.base << 16;
799                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
800                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
801                                 && base_ptr < region_base + region_size) {
802                                 is_16bit = mio_boot_reg_cfg.s.width;
803                                 break;
804                         }
805                 }
806                 if (cs >= 7) {
807                         /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
808                         goto no_cf;
809                 }
810
811                 if (!(base_ptr & 0xfffful)) {
812                         /*
813                          * Boot loader signals availability of DMA (true_ide
814                          * mode) by setting low order bits of base_ptr to
815                          * zero.
816                          */
817
818                         /* Asume that CS1 immediately follows. */
819                         mio_boot_reg_cfg.u64 =
820                                 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
821                         region1_base = mio_boot_reg_cfg.s.base << 16;
822                         region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
823                         if (!mio_boot_reg_cfg.s.en)
824                                 goto no_cf;
825                         is_true_ide = true;
826
827                 } else {
828                         fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
829                         fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
830                         if (!is_16bit) {
831                                 __be32 width = cpu_to_be32(8);
832                                 fdt_setprop_inplace(initial_boot_params, cf,
833                                                 "cavium,bus-width", &width, sizeof(width));
834                         }
835                 }
836                 new_reg[0] = cpu_to_be32(cs);
837                 new_reg[1] = cpu_to_be32(0);
838                 new_reg[2] = cpu_to_be32(0x10000);
839                 new_reg[3] = cpu_to_be32(cs + 1);
840                 new_reg[4] = cpu_to_be32(0);
841                 new_reg[5] = cpu_to_be32(0x10000);
842                 fdt_setprop_inplace(initial_boot_params, cf,
843                                     "reg",  new_reg, sizeof(new_reg));
844
845                 bootbus = fdt_parent_offset(initial_boot_params, cf);
846                 if (bootbus < 0)
847                         goto no_cf;
848                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
849                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
850                         goto no_cf;
851
852                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
853                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
854                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
855                 if (is_true_ide) {
856                         cs++;
857                         ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
858                         ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
859                         ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
860                 }
861                 goto end_cf;
862 no_cf:
863                 fdt_nop_node(initial_boot_params, cf);
864
865 end_cf:
866                 ;
867         }
868
869         /* 8 char LED */
870         alias_prop = fdt_getprop(initial_boot_params, aliases,
871                                  "led0", NULL);
872         if (alias_prop) {
873                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
874                 unsigned long base_ptr, region_base, region_size;
875                 int cs, bootbus;
876                 __be32 new_reg[6];
877                 __be32 *ranges;
878                 int len;
879                 int led = fdt_path_offset(initial_boot_params, alias_prop);
880
881                 base_ptr = octeon_bootinfo->led_display_base_addr;
882                 if (base_ptr == 0)
883                         goto no_led;
884                 /* Find CS0 region. */
885                 for (cs = 0; cs < 8; cs++) {
886                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
887                         region_base = mio_boot_reg_cfg.s.base << 16;
888                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
889                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
890                                 && base_ptr < region_base + region_size)
891                                 break;
892                 }
893
894                 if (cs > 7)
895                         goto no_led;
896
897                 new_reg[0] = cpu_to_be32(cs);
898                 new_reg[1] = cpu_to_be32(0x20);
899                 new_reg[2] = cpu_to_be32(0x20);
900                 new_reg[3] = cpu_to_be32(cs);
901                 new_reg[4] = cpu_to_be32(0);
902                 new_reg[5] = cpu_to_be32(0x20);
903                 fdt_setprop_inplace(initial_boot_params, led,
904                                     "reg",  new_reg, sizeof(new_reg));
905
906                 bootbus = fdt_parent_offset(initial_boot_params, led);
907                 if (bootbus < 0)
908                         goto no_led;
909                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
910                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
911                         goto no_led;
912
913                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
914                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
915                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
916                 goto end_led;
917
918 no_led:
919                 fdt_nop_node(initial_boot_params, led);
920 end_led:
921                 ;
922         }
923
924         /* OHCI/UHCI USB */
925         alias_prop = fdt_getprop(initial_boot_params, aliases,
926                                  "uctl", NULL);
927         if (alias_prop) {
928                 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
929
930                 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
931                                   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
932                         pr_debug("Deleting uctl\n");
933                         fdt_nop_node(initial_boot_params, uctl);
934                         fdt_nop_property(initial_boot_params, aliases, "uctl");
935                 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
936                            octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
937                         /* Missing "refclk-type" defaults to crystal. */
938                         fdt_nop_property(initial_boot_params, uctl, "refclk-type");
939                 }
940         }
941
942         /* DWC2 USB */
943         alias_prop = fdt_getprop(initial_boot_params, aliases,
944                                  "usbn", NULL);
945         if (alias_prop) {
946                 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
947
948                 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
949                                   !octeon_has_feature(OCTEON_FEATURE_USB))) {
950                         pr_debug("Deleting usbn\n");
951                         fdt_nop_node(initial_boot_params, usbn);
952                         fdt_nop_property(initial_boot_params, aliases, "usbn");
953                 } else  {
954                         __be32 new_f[1];
955                         enum cvmx_helper_board_usb_clock_types c;
956                         c = __cvmx_helper_board_usb_get_clock_type();
957                         switch (c) {
958                         case USB_CLOCK_TYPE_REF_48:
959                                 new_f[0] = cpu_to_be32(48000000);
960                                 fdt_setprop_inplace(initial_boot_params, usbn,
961                                                     "refclk-frequency",  new_f, sizeof(new_f));
962                                 /* Fall through ...*/
963                         case USB_CLOCK_TYPE_REF_12:
964                                 /* Missing "refclk-type" defaults to external. */
965                                 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
966                                 break;
967                         default:
968                                 break;
969                         }
970                 }
971         }
972
973         if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
974                 int dsr1000n_leds = fdt_path_offset(initial_boot_params,
975                                                     "/dsr1000n-leds");
976                 if (dsr1000n_leds >= 0)
977                         fdt_nop_node(initial_boot_params, dsr1000n_leds);
978         }
979
980         return 0;
981 }
982
983 static int __init octeon_publish_devices(void)
984 {
985         return of_platform_bus_probe(NULL, octeon_ids, NULL);
986 }
987 device_initcall(octeon_publish_devices);
988
989 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
990 MODULE_LICENSE("GPL");
991 MODULE_DESCRIPTION("Platform driver for Octeon SOC");