Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / metag / include / asm / pgtable.h
1 /*
2  * Macros and functions to manipulate Meta page tables.
3  */
4
5 #ifndef _METAG_PGTABLE_H
6 #define _METAG_PGTABLE_H
7
8 #include <asm/pgtable-bits.h>
9 #include <asm-generic/pgtable-nopmd.h>
10
11 /* Invalid regions on Meta: 0x00000000-0x001FFFFF and 0xFFFF0000-0xFFFFFFFF */
12 #if PAGE_OFFSET >= LINGLOBAL_BASE
13 #define CONSISTENT_START        0xF7000000
14 #define CONSISTENT_END          0xF73FFFFF
15 #define VMALLOC_START           0xF8000000
16 #define VMALLOC_END             0xFFFEFFFF
17 #else
18 #define CONSISTENT_START        0x77000000
19 #define CONSISTENT_END          0x773FFFFF
20 #define VMALLOC_START           0x78000000
21 #define VMALLOC_END             0x7FFFFFFF
22 #endif
23
24 /*
25  * The Linux memory management assumes a three-level page table setup. On
26  * Meta, we use that, but "fold" the mid level into the top-level page
27  * table.
28  */
29
30 /* PGDIR_SHIFT determines the size of the area a second-level page table can
31  * map. This is always 4MB.
32  */
33
34 #define PGDIR_SHIFT     22
35 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
36 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
37
38 /*
39  * Entries per page directory level: we use a two-level, so
40  * we don't really have any PMD directory physically. First level tables
41  * always map 2Gb (local or global) at a granularity of 4MB, second-level
42  * tables map 4MB with a granularity between 4MB and 4kB (between 1 and
43  * 1024 entries).
44  */
45 #define PTRS_PER_PTE    (PGDIR_SIZE/PAGE_SIZE)
46 #define HPTRS_PER_PTE   (PGDIR_SIZE/HPAGE_SIZE)
47 #define PTRS_PER_PGD    512
48
49 #define USER_PTRS_PER_PGD       256
50 #define FIRST_USER_ADDRESS      META_MEMORY_BASE
51 #define FIRST_USER_PGD_NR       pgd_index(FIRST_USER_ADDRESS)
52
53 #define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
54                                  _PAGE_CACHEABLE)
55
56 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_WRITE | \
57                                  _PAGE_ACCESSED | _PAGE_CACHEABLE)
58 #define PAGE_SHARED_C   PAGE_SHARED
59 #define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
60                                  _PAGE_CACHEABLE)
61 #define PAGE_COPY_C     PAGE_COPY
62
63 #define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
64                                  _PAGE_CACHEABLE)
65 #define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | \
66                                  _PAGE_ACCESSED | _PAGE_WRITE | \
67                                  _PAGE_CACHEABLE | _PAGE_KERNEL)
68
69 #define __P000  PAGE_NONE
70 #define __P001  PAGE_READONLY
71 #define __P010  PAGE_COPY
72 #define __P011  PAGE_COPY
73 #define __P100  PAGE_READONLY
74 #define __P101  PAGE_READONLY
75 #define __P110  PAGE_COPY_C
76 #define __P111  PAGE_COPY_C
77
78 #define __S000  PAGE_NONE
79 #define __S001  PAGE_READONLY
80 #define __S010  PAGE_SHARED
81 #define __S011  PAGE_SHARED
82 #define __S100  PAGE_READONLY
83 #define __S101  PAGE_READONLY
84 #define __S110  PAGE_SHARED_C
85 #define __S111  PAGE_SHARED_C
86
87 #ifndef __ASSEMBLY__
88
89 #include <asm/page.h>
90
91 /* zero page used for uninitialized stuff */
92 extern unsigned long empty_zero_page;
93 #define ZERO_PAGE(vaddr)        (virt_to_page(empty_zero_page))
94
95 /* Certain architectures need to do special things when pte's
96  * within a page table are directly modified.  Thus, the following
97  * hook is made available.
98  */
99 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
100 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
101
102 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
103
104 #define pte_pfn(pte)            (pte_val(pte) >> PAGE_SHIFT)
105
106 #define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
107
108 #define pte_none(x)             (!pte_val(x))
109 #define pte_present(x)          (pte_val(x) & _PAGE_PRESENT)
110 #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
111
112 #define pmd_none(x)             (!pmd_val(x))
113 #define pmd_bad(x)              ((pmd_val(x) & ~(PAGE_MASK | _PAGE_SZ_MASK)) \
114                                         != (_PAGE_TABLE & ~_PAGE_SZ_MASK))
115 #define pmd_present(x)          (pmd_val(x) & _PAGE_PRESENT)
116 #define pmd_clear(xp)           do { pmd_val(*(xp)) = 0; } while (0)
117
118 #define pte_page(x)             pfn_to_page(pte_pfn(x))
119
120 /*
121  * The following only work if pte_present() is true.
122  * Undefined behaviour if not..
123  */
124
125 static inline int pte_write(pte_t pte)   { return pte_val(pte) & _PAGE_WRITE; }
126 static inline int pte_dirty(pte_t pte)   { return pte_val(pte) & _PAGE_DIRTY; }
127 static inline int pte_young(pte_t pte)   { return pte_val(pte) & _PAGE_ACCESSED; }
128 static inline int pte_special(pte_t pte) { return 0; }
129
130 static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= (~_PAGE_WRITE); return pte; }
131 static inline pte_t pte_mkclean(pte_t pte)   { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
132 static inline pte_t pte_mkold(pte_t pte)     { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
133 static inline pte_t pte_mkwrite(pte_t pte)   { pte_val(pte) |= _PAGE_WRITE; return pte; }
134 static inline pte_t pte_mkdirty(pte_t pte)   { pte_val(pte) |= _PAGE_DIRTY; return pte; }
135 static inline pte_t pte_mkyoung(pte_t pte)   { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
136 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
137 static inline pte_t pte_mkhuge(pte_t pte)    { return pte; }
138
139 /*
140  * Macro and implementation to make a page protection as uncacheable.
141  */
142 #define pgprot_writecombine(prot)                                       \
143         __pgprot(pgprot_val(prot) & ~(_PAGE_CACHE_CTRL1 | _PAGE_CACHE_CTRL0))
144
145 #define pgprot_noncached(prot)                                          \
146         __pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE)
147
148
149 /*
150  * Conversion functions: convert a page and protection to a page entry,
151  * and a page entry and page directory to the page they refer to.
152  */
153
154 #define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
155
156 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
157 {
158         pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
159         return pte;
160 }
161
162 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
163 {
164         unsigned long paddr = pmd_val(pmd) & PAGE_MASK;
165         if (!paddr)
166                 return 0;
167         return (unsigned long)__va(paddr);
168 }
169
170 #define pmd_page(pmd)           (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
171 #define pmd_page_shift(pmd)     (12 + ((pmd_val(pmd) & _PAGE_SZ_MASK) \
172                                         >> _PAGE_SZ_SHIFT))
173 #define pmd_num_ptrs(pmd)       (PGDIR_SIZE >> pmd_page_shift(pmd))
174
175 /*
176  * Each pgd is only 2k, mapping 2Gb (local or global). If we're in global
177  * space drop the top bit before indexing the pgd.
178  */
179 #if PAGE_OFFSET >= LINGLOBAL_BASE
180 #define pgd_index(address)      ((((address) & ~0x80000000) >> PGDIR_SHIFT) \
181                                                         & (PTRS_PER_PGD-1))
182 #else
183 #define pgd_index(address)      (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
184 #endif
185
186 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
187
188 #define pgd_offset_k(address)   pgd_offset(&init_mm, address)
189
190 #define pmd_index(address)      (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
191
192 /* Find an entry in the second-level page table.. */
193 #if !defined(CONFIG_HUGETLB_PAGE)
194   /* all pages are of size (1 << PAGE_SHIFT), so no need to read 1st level pt */
195 # define pte_index(pmd, address) \
196         (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
197 #else
198   /* some pages are huge, so read 1st level pt to find out */
199 # define pte_index(pmd, address) \
200         (((address) >> pmd_page_shift(pmd)) & (pmd_num_ptrs(pmd) - 1))
201 #endif
202 #define pte_offset_kernel(dir, address) \
203         ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(*(dir), address))
204 #define pte_offset_map(dir, address)            pte_offset_kernel(dir, address)
205 #define pte_offset_map_nested(dir, address)     pte_offset_kernel(dir, address)
206
207 #define pte_unmap(pte)          do { } while (0)
208 #define pte_unmap_nested(pte)   do { } while (0)
209
210 #define pte_ERROR(e) \
211         pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
212 #define pgd_ERROR(e) \
213         pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
214
215 /*
216  * Meta doesn't have any external MMU info: the kernel page
217  * tables contain all the necessary information.
218  */
219 static inline void update_mmu_cache(struct vm_area_struct *vma,
220                                     unsigned long address, pte_t *pte)
221 {
222 }
223
224 /*
225  * Encode and decode a swap entry (must be !pte_none(e) && !pte_present(e))
226  * Since PAGE_PRESENT is bit 1, we can use the bits above that.
227  */
228 #define __swp_type(x)                   (((x).val >> 1) & 0xff)
229 #define __swp_offset(x)                 ((x).val >> 10)
230 #define __swp_entry(type, offset)       ((swp_entry_t) { ((type) << 1) | \
231                                          ((offset) << 10) })
232 #define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
233 #define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
234
235 #define kern_addr_valid(addr)   (1)
236
237 /*
238  * No page table caches to initialise
239  */
240 #define pgtable_cache_init()    do { } while (0)
241
242 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
243 void paging_init(unsigned long mem_end);
244
245 #ifdef CONFIG_METAG_META12
246 /* This is a workaround for an issue in Meta 1 cores. These cores cache
247  * invalid entries in the TLB so we always need to flush whenever we add
248  * a new pte. Unfortunately we can only flush the whole TLB not shoot down
249  * single entries so this is sub-optimal. This implementation ensures that
250  * we will get a flush at the second attempt, so we may still get repeated
251  * faults, we just don't overflow the kernel stack handling them.
252  */
253 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
254 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
255 ({                                                                        \
256         int __changed = !pte_same(*(__ptep), __entry);                    \
257         if (__changed) {                                                  \
258                 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
259         }                                                                 \
260         flush_tlb_page(__vma, __address);                                 \
261         __changed;                                                        \
262 })
263 #endif
264
265 #include <asm-generic/pgtable.h>
266
267 #endif /* __ASSEMBLY__ */
268 #endif /* _METAG_PGTABLE_H */