Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 #include <asm/paravirt.h>
38
39 extern void ia64_tlb_init (void);
40
41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END = VMALLOC_END_INIT;
45 EXPORT_SYMBOL(VMALLOC_END);
46 struct page *vmem_map;
47 EXPORT_SYMBOL(vmem_map);
48 #endif
49
50 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr);
52
53 void
54 __ia64_sync_icache_dcache (pte_t pte)
55 {
56         unsigned long addr;
57         struct page *page;
58
59         page = pte_page(pte);
60         addr = (unsigned long) page_address(page);
61
62         if (test_bit(PG_arch_1, &page->flags))
63                 return;                         /* i-cache is already coherent with d-cache */
64
65         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
67 }
68
69 /*
70  * Since DMA is i-cache coherent, any (complete) pages that were written via
71  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72  * flush them when they get mapped into an executable vm-area.
73  */
74 void
75 dma_mark_clean(void *addr, size_t size)
76 {
77         unsigned long pg_addr, end;
78
79         pg_addr = PAGE_ALIGN((unsigned long) addr);
80         end = (unsigned long) addr + size;
81         while (pg_addr + PAGE_SIZE <= end) {
82                 struct page *page = virt_to_page(pg_addr);
83                 set_bit(PG_arch_1, &page->flags);
84                 pg_addr += PAGE_SIZE;
85         }
86 }
87
88 inline void
89 ia64_set_rbs_bot (void)
90 {
91         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92
93         if (stack_size > MAX_USER_STACK_SIZE)
94                 stack_size = MAX_USER_STACK_SIZE;
95         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96 }
97
98 /*
99  * This performs some platform-dependent address space initialization.
100  * On IA-64, we want to setup the VM area for the register backing
101  * store (which grows upwards) and install the gateway page which is
102  * used for signal trampolines, etc.
103  */
104 void
105 ia64_init_addr_space (void)
106 {
107         struct vm_area_struct *vma;
108
109         ia64_set_rbs_bot();
110
111         /*
112          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113          * the problem.  When the process attempts to write to the register backing store
114          * for the first time, it will get a SEGFAULT in this case.
115          */
116         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117         if (vma) {
118                 INIT_LIST_HEAD(&vma->anon_vma_chain);
119                 vma->vm_mm = current->mm;
120                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121                 vma->vm_end = vma->vm_start + PAGE_SIZE;
122                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124                 down_write(&current->mm->mmap_sem);
125                 if (insert_vm_struct(current->mm, vma)) {
126                         up_write(&current->mm->mmap_sem);
127                         kmem_cache_free(vm_area_cachep, vma);
128                         return;
129                 }
130                 up_write(&current->mm->mmap_sem);
131         }
132
133         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134         if (!(current->personality & MMAP_PAGE_ZERO)) {
135                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136                 if (vma) {
137                         INIT_LIST_HEAD(&vma->anon_vma_chain);
138                         vma->vm_mm = current->mm;
139                         vma->vm_end = PAGE_SIZE;
140                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142                                         VM_DONTEXPAND | VM_DONTDUMP;
143                         down_write(&current->mm->mmap_sem);
144                         if (insert_vm_struct(current->mm, vma)) {
145                                 up_write(&current->mm->mmap_sem);
146                                 kmem_cache_free(vm_area_cachep, vma);
147                                 return;
148                         }
149                         up_write(&current->mm->mmap_sem);
150                 }
151         }
152 }
153
154 void
155 free_initmem (void)
156 {
157         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
158                            -1, "unused kernel");
159 }
160
161 void __init
162 free_initrd_mem (unsigned long start, unsigned long end)
163 {
164         /*
165          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
166          * Thus EFI and the kernel may have different page sizes. It is
167          * therefore possible to have the initrd share the same page as
168          * the end of the kernel (given current setup).
169          *
170          * To avoid freeing/using the wrong page (kernel sized) we:
171          *      - align up the beginning of initrd
172          *      - align down the end of initrd
173          *
174          *  |             |
175          *  |=============| a000
176          *  |             |
177          *  |             |
178          *  |             | 9000
179          *  |/////////////|
180          *  |/////////////|
181          *  |=============| 8000
182          *  |///INITRD////|
183          *  |/////////////|
184          *  |/////////////| 7000
185          *  |             |
186          *  |KKKKKKKKKKKKK|
187          *  |=============| 6000
188          *  |KKKKKKKKKKKKK|
189          *  |KKKKKKKKKKKKK|
190          *  K=kernel using 8KB pages
191          *
192          * In this example, we must free page 8000 ONLY. So we must align up
193          * initrd_start and keep initrd_end as is.
194          */
195         start = PAGE_ALIGN(start);
196         end = end & PAGE_MASK;
197
198         if (start < end)
199                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
200
201         for (; start < end; start += PAGE_SIZE) {
202                 if (!virt_addr_valid(start))
203                         continue;
204                 free_reserved_page(virt_to_page(start));
205         }
206 }
207
208 /*
209  * This installs a clean page in the kernel's page table.
210  */
211 static struct page * __init
212 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
213 {
214         pgd_t *pgd;
215         pud_t *pud;
216         pmd_t *pmd;
217         pte_t *pte;
218
219         if (!PageReserved(page))
220                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
221                        page_address(page));
222
223         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
224
225         {
226                 pud = pud_alloc(&init_mm, pgd, address);
227                 if (!pud)
228                         goto out;
229                 pmd = pmd_alloc(&init_mm, pud, address);
230                 if (!pmd)
231                         goto out;
232                 pte = pte_alloc_kernel(pmd, address);
233                 if (!pte)
234                         goto out;
235                 if (!pte_none(*pte))
236                         goto out;
237                 set_pte(pte, mk_pte(page, pgprot));
238         }
239   out:
240         /* no need for flush_tlb */
241         return page;
242 }
243
244 static void __init
245 setup_gate (void)
246 {
247         void *gate_section;
248         struct page *page;
249
250         /*
251          * Map the gate page twice: once read-only to export the ELF
252          * headers etc. and once execute-only page to enable
253          * privilege-promotion via "epc":
254          */
255         gate_section = paravirt_get_gate_section();
256         page = virt_to_page(ia64_imva(gate_section));
257         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
258 #ifdef HAVE_BUGGY_SEGREL
259         page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
260         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
261 #else
262         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
263         /* Fill in the holes (if any) with read-only zero pages: */
264         {
265                 unsigned long addr;
266
267                 for (addr = GATE_ADDR + PAGE_SIZE;
268                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
269                      addr += PAGE_SIZE)
270                 {
271                         put_kernel_page(ZERO_PAGE(0), addr,
272                                         PAGE_READONLY);
273                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
274                                         PAGE_READONLY);
275                 }
276         }
277 #endif
278         ia64_patch_gate();
279 }
280
281 static struct vm_area_struct gate_vma;
282
283 static int __init gate_vma_init(void)
284 {
285         gate_vma.vm_mm = NULL;
286         gate_vma.vm_start = FIXADDR_USER_START;
287         gate_vma.vm_end = FIXADDR_USER_END;
288         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
289         gate_vma.vm_page_prot = __P101;
290
291         return 0;
292 }
293 __initcall(gate_vma_init);
294
295 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
296 {
297         return &gate_vma;
298 }
299
300 int in_gate_area_no_mm(unsigned long addr)
301 {
302         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
303                 return 1;
304         return 0;
305 }
306
307 int in_gate_area(struct mm_struct *mm, unsigned long addr)
308 {
309         return in_gate_area_no_mm(addr);
310 }
311
312 void ia64_mmu_init(void *my_cpu_data)
313 {
314         unsigned long pta, impl_va_bits;
315         extern void tlb_init(void);
316
317 #ifdef CONFIG_DISABLE_VHPT
318 #       define VHPT_ENABLE_BIT  0
319 #else
320 #       define VHPT_ENABLE_BIT  1
321 #endif
322
323         /*
324          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
325          * address space.  The IA-64 architecture guarantees that at least 50 bits of
326          * virtual address space are implemented but if we pick a large enough page size
327          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
328          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
329          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
330          * problem in practice.  Alternatively, we could truncate the top of the mapped
331          * address space to not permit mappings that would overlap with the VMLPT.
332          * --davidm 00/12/06
333          */
334 #       define pte_bits                 3
335 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
336         /*
337          * The virtual page table has to cover the entire implemented address space within
338          * a region even though not all of this space may be mappable.  The reason for
339          * this is that the Access bit and Dirty bit fault handlers perform
340          * non-speculative accesses to the virtual page table, so the address range of the
341          * virtual page table itself needs to be covered by virtual page table.
342          */
343 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
344 #       define POW2(n)                  (1ULL << (n))
345
346         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
347
348         if (impl_va_bits < 51 || impl_va_bits > 61)
349                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
350         /*
351          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
352          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
353          * the test makes sure that our mapped space doesn't overlap the
354          * unimplemented hole in the middle of the region.
355          */
356         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
357             (mapped_space_bits > impl_va_bits - 1))
358                 panic("Cannot build a big enough virtual-linear page table"
359                       " to cover mapped address space.\n"
360                       " Try using a smaller page size.\n");
361
362
363         /* place the VMLPT at the end of each page-table mapped region: */
364         pta = POW2(61) - POW2(vmlpt_bits);
365
366         /*
367          * Set the (virtually mapped linear) page table address.  Bit
368          * 8 selects between the short and long format, bits 2-7 the
369          * size of the table, and bit 0 whether the VHPT walker is
370          * enabled.
371          */
372         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
373
374         ia64_tlb_init();
375
376 #ifdef  CONFIG_HUGETLB_PAGE
377         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
378         ia64_srlz_d();
379 #endif
380 }
381
382 #ifdef CONFIG_VIRTUAL_MEM_MAP
383 int vmemmap_find_next_valid_pfn(int node, int i)
384 {
385         unsigned long end_address, hole_next_pfn;
386         unsigned long stop_address;
387         pg_data_t *pgdat = NODE_DATA(node);
388
389         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
390         end_address = PAGE_ALIGN(end_address);
391         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
392
393         do {
394                 pgd_t *pgd;
395                 pud_t *pud;
396                 pmd_t *pmd;
397                 pte_t *pte;
398
399                 pgd = pgd_offset_k(end_address);
400                 if (pgd_none(*pgd)) {
401                         end_address += PGDIR_SIZE;
402                         continue;
403                 }
404
405                 pud = pud_offset(pgd, end_address);
406                 if (pud_none(*pud)) {
407                         end_address += PUD_SIZE;
408                         continue;
409                 }
410
411                 pmd = pmd_offset(pud, end_address);
412                 if (pmd_none(*pmd)) {
413                         end_address += PMD_SIZE;
414                         continue;
415                 }
416
417                 pte = pte_offset_kernel(pmd, end_address);
418 retry_pte:
419                 if (pte_none(*pte)) {
420                         end_address += PAGE_SIZE;
421                         pte++;
422                         if ((end_address < stop_address) &&
423                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
424                                 goto retry_pte;
425                         continue;
426                 }
427                 /* Found next valid vmem_map page */
428                 break;
429         } while (end_address < stop_address);
430
431         end_address = min(end_address, stop_address);
432         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
433         hole_next_pfn = end_address / sizeof(struct page);
434         return hole_next_pfn - pgdat->node_start_pfn;
435 }
436
437 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
438 {
439         unsigned long address, start_page, end_page;
440         struct page *map_start, *map_end;
441         int node;
442         pgd_t *pgd;
443         pud_t *pud;
444         pmd_t *pmd;
445         pte_t *pte;
446
447         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
448         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
449
450         start_page = (unsigned long) map_start & PAGE_MASK;
451         end_page = PAGE_ALIGN((unsigned long) map_end);
452         node = paddr_to_nid(__pa(start));
453
454         for (address = start_page; address < end_page; address += PAGE_SIZE) {
455                 pgd = pgd_offset_k(address);
456                 if (pgd_none(*pgd))
457                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
458                 pud = pud_offset(pgd, address);
459
460                 if (pud_none(*pud))
461                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
462                 pmd = pmd_offset(pud, address);
463
464                 if (pmd_none(*pmd))
465                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
466                 pte = pte_offset_kernel(pmd, address);
467
468                 if (pte_none(*pte))
469                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
470                                              PAGE_KERNEL));
471         }
472         return 0;
473 }
474
475 struct memmap_init_callback_data {
476         struct page *start;
477         struct page *end;
478         int nid;
479         unsigned long zone;
480 };
481
482 static int __meminit
483 virtual_memmap_init(u64 start, u64 end, void *arg)
484 {
485         struct memmap_init_callback_data *args;
486         struct page *map_start, *map_end;
487
488         args = (struct memmap_init_callback_data *) arg;
489         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
490         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
491
492         if (map_start < args->start)
493                 map_start = args->start;
494         if (map_end > args->end)
495                 map_end = args->end;
496
497         /*
498          * We have to initialize "out of bounds" struct page elements that fit completely
499          * on the same pages that were allocated for the "in bounds" elements because they
500          * may be referenced later (and found to be "reserved").
501          */
502         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
503         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
504                     / sizeof(struct page));
505
506         if (map_start < map_end)
507                 memmap_init_zone((unsigned long)(map_end - map_start),
508                                  args->nid, args->zone, page_to_pfn(map_start),
509                                  MEMMAP_EARLY);
510         return 0;
511 }
512
513 void __meminit
514 memmap_init (unsigned long size, int nid, unsigned long zone,
515              unsigned long start_pfn)
516 {
517         if (!vmem_map)
518                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
519         else {
520                 struct page *start;
521                 struct memmap_init_callback_data args;
522
523                 start = pfn_to_page(start_pfn);
524                 args.start = start;
525                 args.end = start + size;
526                 args.nid = nid;
527                 args.zone = zone;
528
529                 efi_memmap_walk(virtual_memmap_init, &args);
530         }
531 }
532
533 int
534 ia64_pfn_valid (unsigned long pfn)
535 {
536         char byte;
537         struct page *pg = pfn_to_page(pfn);
538
539         return     (__get_user(byte, (char __user *) pg) == 0)
540                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
541                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
542 }
543 EXPORT_SYMBOL(ia64_pfn_valid);
544
545 int __init find_largest_hole(u64 start, u64 end, void *arg)
546 {
547         u64 *max_gap = arg;
548
549         static u64 last_end = PAGE_OFFSET;
550
551         /* NOTE: this algorithm assumes efi memmap table is ordered */
552
553         if (*max_gap < (start - last_end))
554                 *max_gap = start - last_end;
555         last_end = end;
556         return 0;
557 }
558
559 #endif /* CONFIG_VIRTUAL_MEM_MAP */
560
561 int __init register_active_ranges(u64 start, u64 len, int nid)
562 {
563         u64 end = start + len;
564
565 #ifdef CONFIG_KEXEC
566         if (start > crashk_res.start && start < crashk_res.end)
567                 start = crashk_res.end;
568         if (end > crashk_res.start && end < crashk_res.end)
569                 end = crashk_res.start;
570 #endif
571
572         if (start < end)
573                 memblock_add_node(__pa(start), end - start, nid);
574         return 0;
575 }
576
577 int
578 find_max_min_low_pfn (u64 start, u64 end, void *arg)
579 {
580         unsigned long pfn_start, pfn_end;
581 #ifdef CONFIG_FLATMEM
582         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
583         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
584 #else
585         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
586         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
587 #endif
588         min_low_pfn = min(min_low_pfn, pfn_start);
589         max_low_pfn = max(max_low_pfn, pfn_end);
590         return 0;
591 }
592
593 /*
594  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
595  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
596  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
597  * useful for performance testing, but conceivably could also come in handy for debugging
598  * purposes.
599  */
600
601 static int nolwsys __initdata;
602
603 static int __init
604 nolwsys_setup (char *s)
605 {
606         nolwsys = 1;
607         return 1;
608 }
609
610 __setup("nolwsys", nolwsys_setup);
611
612 void __init
613 mem_init (void)
614 {
615         int i;
616
617         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
618         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
619         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
620
621 #ifdef CONFIG_PCI
622         /*
623          * This needs to be called _after_ the command line has been parsed but _before_
624          * any drivers that may need the PCI DMA interface are initialized or bootmem has
625          * been freed.
626          */
627         platform_dma_init();
628 #endif
629
630 #ifdef CONFIG_FLATMEM
631         BUG_ON(!mem_map);
632 #endif
633
634         set_max_mapnr(max_low_pfn);
635         high_memory = __va(max_low_pfn * PAGE_SIZE);
636         free_all_bootmem();
637         mem_init_print_info(NULL);
638
639         /*
640          * For fsyscall entrpoints with no light-weight handler, use the ordinary
641          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
642          * code can tell them apart.
643          */
644         for (i = 0; i < NR_syscalls; ++i) {
645                 extern unsigned long sys_call_table[NR_syscalls];
646                 unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
647
648                 if (!fsyscall_table[i] || nolwsys)
649                         fsyscall_table[i] = sys_call_table[i] | 1;
650         }
651         setup_gate();
652 }
653
654 #ifdef CONFIG_MEMORY_HOTPLUG
655 int arch_add_memory(int nid, u64 start, u64 size)
656 {
657         pg_data_t *pgdat;
658         struct zone *zone;
659         unsigned long start_pfn = start >> PAGE_SHIFT;
660         unsigned long nr_pages = size >> PAGE_SHIFT;
661         int ret;
662
663         pgdat = NODE_DATA(nid);
664
665         zone = pgdat->node_zones +
666                 zone_for_memory(nid, start, size, ZONE_NORMAL);
667         ret = __add_pages(nid, zone, start_pfn, nr_pages);
668
669         if (ret)
670                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
671                        __func__,  ret);
672
673         return ret;
674 }
675
676 #ifdef CONFIG_MEMORY_HOTREMOVE
677 int arch_remove_memory(u64 start, u64 size)
678 {
679         unsigned long start_pfn = start >> PAGE_SHIFT;
680         unsigned long nr_pages = size >> PAGE_SHIFT;
681         struct zone *zone;
682         int ret;
683
684         zone = page_zone(pfn_to_page(start_pfn));
685         ret = __remove_pages(zone, start_pfn, nr_pages);
686         if (ret)
687                 pr_warn("%s: Problem encountered in __remove_pages() as"
688                         " ret=%d\n", __func__,  ret);
689
690         return ret;
691 }
692 #endif
693 #endif
694
695 /**
696  * show_mem - give short summary of memory stats
697  *
698  * Shows a simple page count of reserved and used pages in the system.
699  * For discontig machines, it does this on a per-pgdat basis.
700  */
701 void show_mem(unsigned int filter)
702 {
703         int total_reserved = 0;
704         unsigned long total_present = 0;
705         pg_data_t *pgdat;
706
707         printk(KERN_INFO "Mem-info:\n");
708         show_free_areas(filter);
709         printk(KERN_INFO "Node memory in pages:\n");
710         for_each_online_pgdat(pgdat) {
711                 unsigned long present;
712                 unsigned long flags;
713                 int reserved = 0;
714                 int nid = pgdat->node_id;
715                 int zoneid;
716
717                 if (skip_free_areas_node(filter, nid))
718                         continue;
719                 pgdat_resize_lock(pgdat, &flags);
720
721                 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
722                         struct zone *zone = &pgdat->node_zones[zoneid];
723                         if (!populated_zone(zone))
724                                 continue;
725
726                         reserved += zone->present_pages - zone->managed_pages;
727                 }
728                 present = pgdat->node_present_pages;
729
730                 pgdat_resize_unlock(pgdat, &flags);
731                 total_present += present;
732                 total_reserved += reserved;
733                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, ",
734                        nid, present, reserved);
735         }
736         printk(KERN_INFO "%ld pages of RAM\n", total_present);
737         printk(KERN_INFO "%d reserved pages\n", total_reserved);
738         printk(KERN_INFO "Total of %ld pages in page table cache\n",
739                quicklist_total_size());
740         printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
741 }