These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / ia64 / kernel / smpboot.c
1 /*
2  * SMP boot-related support
3  *
4  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2001, 2004-2005 Intel Corp
7  *      Rohit Seth <rohit.seth@intel.com>
8  *      Suresh Siddha <suresh.b.siddha@intel.com>
9  *      Gordon Jin <gordon.jin@intel.com>
10  *      Ashok Raj  <ashok.raj@intel.com>
11  *
12  * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
13  * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14  * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15  *                                              smp_boot_cpus()/smp_commence() is replaced by
16  *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17  * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
18  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20  *                                              Add multi-threading and multi-core detection
21  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22  *                                              Setup cpu_sibling_map and cpu_core_map
23  */
24
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
42
43 #include <linux/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/pgalloc.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55 #include <asm/ptrace.h>
56 #include <asm/sal.h>
57 #include <asm/tlbflush.h>
58 #include <asm/unistd.h>
59 #include <asm/sn/arch.h>
60
61 #define SMP_DEBUG 0
62
63 #if SMP_DEBUG
64 #define Dprintk(x...)  printk(x)
65 #else
66 #define Dprintk(x...)
67 #endif
68
69 #ifdef CONFIG_HOTPLUG_CPU
70 #ifdef CONFIG_PERMIT_BSP_REMOVE
71 #define bsp_remove_ok   1
72 #else
73 #define bsp_remove_ok   0
74 #endif
75
76 /*
77  * Global array allocated for NR_CPUS at boot time
78  */
79 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
80
81 /*
82  * start_ap in head.S uses this to store current booting cpu
83  * info.
84  */
85 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
86
87 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
88
89 #else
90 #define set_brendez_area(x)
91 #endif
92
93
94 /*
95  * ITC synchronization related stuff:
96  */
97 #define MASTER  (0)
98 #define SLAVE   (SMP_CACHE_BYTES/8)
99
100 #define NUM_ROUNDS      64      /* magic value */
101 #define NUM_ITERS       5       /* likewise */
102
103 static DEFINE_SPINLOCK(itc_sync_lock);
104 static volatile unsigned long go[SLAVE + 1];
105
106 #define DEBUG_ITC_SYNC  0
107
108 extern void start_ap (void);
109 extern unsigned long ia64_iobase;
110
111 struct task_struct *task_for_booting_cpu;
112
113 /*
114  * State for each CPU
115  */
116 DEFINE_PER_CPU(int, cpu_state);
117
118 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
119 EXPORT_SYMBOL(cpu_core_map);
120 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
121 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
122
123 int smp_num_siblings = 1;
124
125 /* which logical CPU number maps to which CPU (physical APIC ID) */
126 volatile int ia64_cpu_to_sapicid[NR_CPUS];
127 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
128
129 static cpumask_t cpu_callin_map;
130
131 struct smp_boot_data smp_boot_data __initdata;
132
133 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
134
135 char __initdata no_int_routing;
136
137 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
138
139 #ifdef CONFIG_FORCE_CPEI_RETARGET
140 #define CPEI_OVERRIDE_DEFAULT   (1)
141 #else
142 #define CPEI_OVERRIDE_DEFAULT   (0)
143 #endif
144
145 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
146
147 static int __init
148 cmdl_force_cpei(char *str)
149 {
150         int value=0;
151
152         get_option (&str, &value);
153         force_cpei_retarget = value;
154
155         return 1;
156 }
157
158 __setup("force_cpei=", cmdl_force_cpei);
159
160 static int __init
161 nointroute (char *str)
162 {
163         no_int_routing = 1;
164         printk ("no_int_routing on\n");
165         return 1;
166 }
167
168 __setup("nointroute", nointroute);
169
170 static void fix_b0_for_bsp(void)
171 {
172 #ifdef CONFIG_HOTPLUG_CPU
173         int cpuid;
174         static int fix_bsp_b0 = 1;
175
176         cpuid = smp_processor_id();
177
178         /*
179          * Cache the b0 value on the first AP that comes up
180          */
181         if (!(fix_bsp_b0 && cpuid))
182                 return;
183
184         sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
185         printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
186
187         fix_bsp_b0 = 0;
188 #endif
189 }
190
191 void
192 sync_master (void *arg)
193 {
194         unsigned long flags, i;
195
196         go[MASTER] = 0;
197
198         local_irq_save(flags);
199         {
200                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
201                         while (!go[MASTER])
202                                 cpu_relax();
203                         go[MASTER] = 0;
204                         go[SLAVE] = ia64_get_itc();
205                 }
206         }
207         local_irq_restore(flags);
208 }
209
210 /*
211  * Return the number of cycles by which our itc differs from the itc on the master
212  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
213  * negative that it is behind.
214  */
215 static inline long
216 get_delta (long *rt, long *master)
217 {
218         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
219         unsigned long tcenter, t0, t1, tm;
220         long i;
221
222         for (i = 0; i < NUM_ITERS; ++i) {
223                 t0 = ia64_get_itc();
224                 go[MASTER] = 1;
225                 while (!(tm = go[SLAVE]))
226                         cpu_relax();
227                 go[SLAVE] = 0;
228                 t1 = ia64_get_itc();
229
230                 if (t1 - t0 < best_t1 - best_t0)
231                         best_t0 = t0, best_t1 = t1, best_tm = tm;
232         }
233
234         *rt = best_t1 - best_t0;
235         *master = best_tm - best_t0;
236
237         /* average best_t0 and best_t1 without overflow: */
238         tcenter = (best_t0/2 + best_t1/2);
239         if (best_t0 % 2 + best_t1 % 2 == 2)
240                 ++tcenter;
241         return tcenter - best_tm;
242 }
243
244 /*
245  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
246  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
247  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
248  * step).  The basic idea is for the slave to ask the master what itc value it has and to
249  * read its own itc before and after the master responds.  Each iteration gives us three
250  * timestamps:
251  *
252  *      slave           master
253  *
254  *      t0 ---\
255  *             ---\
256  *                 --->
257  *                      tm
258  *                 /---
259  *             /---
260  *      t1 <---
261  *
262  *
263  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
264  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
265  * between the slave and the master is symmetric.  Even if the interconnect were
266  * asymmetric, we would still know that the synchronization error is smaller than the
267  * roundtrip latency (t0 - t1).
268  *
269  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
270  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
271  * accurate to within a round-trip time, which is typically in the range of several
272  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
273  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
274  * than half a micro second or so.
275  */
276 void
277 ia64_sync_itc (unsigned int master)
278 {
279         long i, delta, adj, adjust_latency = 0, done = 0;
280         unsigned long flags, rt, master_time_stamp, bound;
281 #if DEBUG_ITC_SYNC
282         struct {
283                 long rt;        /* roundtrip time */
284                 long master;    /* master's timestamp */
285                 long diff;      /* difference between midpoint and master's timestamp */
286                 long lat;       /* estimate of itc adjustment latency */
287         } t[NUM_ROUNDS];
288 #endif
289
290         /*
291          * Make sure local timer ticks are disabled while we sync.  If
292          * they were enabled, we'd have to worry about nasty issues
293          * like setting the ITC ahead of (or a long time before) the
294          * next scheduled tick.
295          */
296         BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
297
298         go[MASTER] = 1;
299
300         if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
301                 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
302                 return;
303         }
304
305         while (go[MASTER])
306                 cpu_relax();    /* wait for master to be ready */
307
308         spin_lock_irqsave(&itc_sync_lock, flags);
309         {
310                 for (i = 0; i < NUM_ROUNDS; ++i) {
311                         delta = get_delta(&rt, &master_time_stamp);
312                         if (delta == 0) {
313                                 done = 1;       /* let's lock on to this... */
314                                 bound = rt;
315                         }
316
317                         if (!done) {
318                                 if (i > 0) {
319                                         adjust_latency += -delta;
320                                         adj = -delta + adjust_latency/4;
321                                 } else
322                                         adj = -delta;
323
324                                 ia64_set_itc(ia64_get_itc() + adj);
325                         }
326 #if DEBUG_ITC_SYNC
327                         t[i].rt = rt;
328                         t[i].master = master_time_stamp;
329                         t[i].diff = delta;
330                         t[i].lat = adjust_latency/4;
331 #endif
332                 }
333         }
334         spin_unlock_irqrestore(&itc_sync_lock, flags);
335
336 #if DEBUG_ITC_SYNC
337         for (i = 0; i < NUM_ROUNDS; ++i)
338                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
339                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
340 #endif
341
342         printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
343                "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
344 }
345
346 /*
347  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
348  */
349 static inline void smp_setup_percpu_timer(void)
350 {
351 }
352
353 static void
354 smp_callin (void)
355 {
356         int cpuid, phys_id, itc_master;
357         struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
358         extern void ia64_init_itm(void);
359         extern volatile int time_keeper_id;
360
361 #ifdef CONFIG_PERFMON
362         extern void pfm_init_percpu(void);
363 #endif
364
365         cpuid = smp_processor_id();
366         phys_id = hard_smp_processor_id();
367         itc_master = time_keeper_id;
368
369         if (cpu_online(cpuid)) {
370                 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
371                        phys_id, cpuid);
372                 BUG();
373         }
374
375         fix_b0_for_bsp();
376
377         /*
378          * numa_node_id() works after this.
379          */
380         set_numa_node(cpu_to_node_map[cpuid]);
381         set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
382
383         spin_lock(&vector_lock);
384         /* Setup the per cpu irq handling data structures */
385         __setup_vector_irq(cpuid);
386         notify_cpu_starting(cpuid);
387         set_cpu_online(cpuid, true);
388         per_cpu(cpu_state, cpuid) = CPU_ONLINE;
389         spin_unlock(&vector_lock);
390
391         smp_setup_percpu_timer();
392
393         ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
394
395 #ifdef CONFIG_PERFMON
396         pfm_init_percpu();
397 #endif
398
399         local_irq_enable();
400
401         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
402                 /*
403                  * Synchronize the ITC with the BP.  Need to do this after irqs are
404                  * enabled because ia64_sync_itc() calls smp_call_function_single(), which
405                  * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
406                  * local_bh_enable(), which bugs out if irqs are not enabled...
407                  */
408                 Dprintk("Going to syncup ITC with ITC Master.\n");
409                 ia64_sync_itc(itc_master);
410         }
411
412         /*
413          * Get our bogomips.
414          */
415         ia64_init_itm();
416
417         /*
418          * Delay calibration can be skipped if new processor is identical to the
419          * previous processor.
420          */
421         last_cpuinfo = cpu_data(cpuid - 1);
422         this_cpuinfo = local_cpu_data;
423         if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
424             last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
425             last_cpuinfo->features != this_cpuinfo->features ||
426             last_cpuinfo->revision != this_cpuinfo->revision ||
427             last_cpuinfo->family != this_cpuinfo->family ||
428             last_cpuinfo->archrev != this_cpuinfo->archrev ||
429             last_cpuinfo->model != this_cpuinfo->model)
430                 calibrate_delay();
431         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
432
433         /*
434          * Allow the master to continue.
435          */
436         cpumask_set_cpu(cpuid, &cpu_callin_map);
437         Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
438 }
439
440
441 /*
442  * Activate a secondary processor.  head.S calls this.
443  */
444 int
445 start_secondary (void *unused)
446 {
447         /* Early console may use I/O ports */
448         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449 #ifndef CONFIG_PRINTK_TIME
450         Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
451 #endif
452         efi_map_pal_code();
453         cpu_init();
454         preempt_disable();
455         smp_callin();
456
457         cpu_startup_entry(CPUHP_ONLINE);
458         return 0;
459 }
460
461 static int
462 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
463 {
464         int timeout;
465
466         task_for_booting_cpu = idle;
467         Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
468
469         set_brendez_area(cpu);
470         platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
471
472         /*
473          * Wait 10s total for the AP to start
474          */
475         Dprintk("Waiting on callin_map ...");
476         for (timeout = 0; timeout < 100000; timeout++) {
477                 if (cpumask_test_cpu(cpu, &cpu_callin_map))
478                         break;  /* It has booted */
479                 barrier(); /* Make sure we re-read cpu_callin_map */
480                 udelay(100);
481         }
482         Dprintk("\n");
483
484         if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
485                 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
486                 ia64_cpu_to_sapicid[cpu] = -1;
487                 set_cpu_online(cpu, false);  /* was set in smp_callin() */
488                 return -EINVAL;
489         }
490         return 0;
491 }
492
493 static int __init
494 decay (char *str)
495 {
496         int ticks;
497         get_option (&str, &ticks);
498         return 1;
499 }
500
501 __setup("decay=", decay);
502
503 /*
504  * Initialize the logical CPU number to SAPICID mapping
505  */
506 void __init
507 smp_build_cpu_map (void)
508 {
509         int sapicid, cpu, i;
510         int boot_cpu_id = hard_smp_processor_id();
511
512         for (cpu = 0; cpu < NR_CPUS; cpu++) {
513                 ia64_cpu_to_sapicid[cpu] = -1;
514         }
515
516         ia64_cpu_to_sapicid[0] = boot_cpu_id;
517         init_cpu_present(cpumask_of(0));
518         set_cpu_possible(0, true);
519         for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
520                 sapicid = smp_boot_data.cpu_phys_id[i];
521                 if (sapicid == boot_cpu_id)
522                         continue;
523                 set_cpu_present(cpu, true);
524                 set_cpu_possible(cpu, true);
525                 ia64_cpu_to_sapicid[cpu] = sapicid;
526                 cpu++;
527         }
528 }
529
530 /*
531  * Cycle through the APs sending Wakeup IPIs to boot each.
532  */
533 void __init
534 smp_prepare_cpus (unsigned int max_cpus)
535 {
536         int boot_cpu_id = hard_smp_processor_id();
537
538         /*
539          * Initialize the per-CPU profiling counter/multiplier
540          */
541
542         smp_setup_percpu_timer();
543
544         cpumask_set_cpu(0, &cpu_callin_map);
545
546         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
547         ia64_cpu_to_sapicid[0] = boot_cpu_id;
548
549         printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
550
551         current_thread_info()->cpu = 0;
552
553         /*
554          * If SMP should be disabled, then really disable it!
555          */
556         if (!max_cpus) {
557                 printk(KERN_INFO "SMP mode deactivated.\n");
558                 init_cpu_online(cpumask_of(0));
559                 init_cpu_present(cpumask_of(0));
560                 init_cpu_possible(cpumask_of(0));
561                 return;
562         }
563 }
564
565 void smp_prepare_boot_cpu(void)
566 {
567         set_cpu_online(smp_processor_id(), true);
568         cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
569         set_numa_node(cpu_to_node_map[smp_processor_id()]);
570         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
571 }
572
573 #ifdef CONFIG_HOTPLUG_CPU
574 static inline void
575 clear_cpu_sibling_map(int cpu)
576 {
577         int i;
578
579         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
580                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
581         for_each_cpu(i, &cpu_core_map[cpu])
582                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
583
584         per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
585 }
586
587 static void
588 remove_siblinginfo(int cpu)
589 {
590         int last = 0;
591
592         if (cpu_data(cpu)->threads_per_core == 1 &&
593             cpu_data(cpu)->cores_per_socket == 1) {
594                 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
595                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
596                 return;
597         }
598
599         last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
600
601         /* remove it from all sibling map's */
602         clear_cpu_sibling_map(cpu);
603 }
604
605 extern void fixup_irqs(void);
606
607 int migrate_platform_irqs(unsigned int cpu)
608 {
609         int new_cpei_cpu;
610         struct irq_data *data = NULL;
611         const struct cpumask *mask;
612         int             retval = 0;
613
614         /*
615          * dont permit CPEI target to removed.
616          */
617         if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
618                 printk ("CPU (%d) is CPEI Target\n", cpu);
619                 if (can_cpei_retarget()) {
620                         /*
621                          * Now re-target the CPEI to a different processor
622                          */
623                         new_cpei_cpu = cpumask_any(cpu_online_mask);
624                         mask = cpumask_of(new_cpei_cpu);
625                         set_cpei_target_cpu(new_cpei_cpu);
626                         data = irq_get_irq_data(ia64_cpe_irq);
627                         /*
628                          * Switch for now, immediately, we need to do fake intr
629                          * as other interrupts, but need to study CPEI behaviour with
630                          * polling before making changes.
631                          */
632                         if (data && data->chip) {
633                                 data->chip->irq_disable(data);
634                                 data->chip->irq_set_affinity(data, mask, false);
635                                 data->chip->irq_enable(data);
636                                 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
637                         }
638                 }
639                 if (!data) {
640                         printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
641                         retval = -EBUSY;
642                 }
643         }
644         return retval;
645 }
646
647 /* must be called with cpucontrol mutex held */
648 int __cpu_disable(void)
649 {
650         int cpu = smp_processor_id();
651
652         /*
653          * dont permit boot processor for now
654          */
655         if (cpu == 0 && !bsp_remove_ok) {
656                 printk ("Your platform does not support removal of BSP\n");
657                 return (-EBUSY);
658         }
659
660         if (ia64_platform_is("sn2")) {
661                 if (!sn_cpu_disable_allowed(cpu))
662                         return -EBUSY;
663         }
664
665         set_cpu_online(cpu, false);
666
667         if (migrate_platform_irqs(cpu)) {
668                 set_cpu_online(cpu, true);
669                 return -EBUSY;
670         }
671
672         remove_siblinginfo(cpu);
673         fixup_irqs();
674         local_flush_tlb_all();
675         cpumask_clear_cpu(cpu, &cpu_callin_map);
676         return 0;
677 }
678
679 void __cpu_die(unsigned int cpu)
680 {
681         unsigned int i;
682
683         for (i = 0; i < 100; i++) {
684                 /* They ack this in play_dead by setting CPU_DEAD */
685                 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
686                 {
687                         printk ("CPU %d is now offline\n", cpu);
688                         return;
689                 }
690                 msleep(100);
691         }
692         printk(KERN_ERR "CPU %u didn't die...\n", cpu);
693 }
694 #endif /* CONFIG_HOTPLUG_CPU */
695
696 void
697 smp_cpus_done (unsigned int dummy)
698 {
699         int cpu;
700         unsigned long bogosum = 0;
701
702         /*
703          * Allow the user to impress friends.
704          */
705
706         for_each_online_cpu(cpu) {
707                 bogosum += cpu_data(cpu)->loops_per_jiffy;
708         }
709
710         printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
711                (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
712 }
713
714 static inline void set_cpu_sibling_map(int cpu)
715 {
716         int i;
717
718         for_each_online_cpu(i) {
719                 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
720                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
721                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
722                         if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
723                                 cpumask_set_cpu(i,
724                                                 &per_cpu(cpu_sibling_map, cpu));
725                                 cpumask_set_cpu(cpu,
726                                                 &per_cpu(cpu_sibling_map, i));
727                         }
728                 }
729         }
730 }
731
732 int
733 __cpu_up(unsigned int cpu, struct task_struct *tidle)
734 {
735         int ret;
736         int sapicid;
737
738         sapicid = ia64_cpu_to_sapicid[cpu];
739         if (sapicid == -1)
740                 return -EINVAL;
741
742         /*
743          * Already booted cpu? not valid anymore since we dont
744          * do idle loop tightspin anymore.
745          */
746         if (cpumask_test_cpu(cpu, &cpu_callin_map))
747                 return -EINVAL;
748
749         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
750         /* Processor goes to start_secondary(), sets online flag */
751         ret = do_boot_cpu(sapicid, cpu, tidle);
752         if (ret < 0)
753                 return ret;
754
755         if (cpu_data(cpu)->threads_per_core == 1 &&
756             cpu_data(cpu)->cores_per_socket == 1) {
757                 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
758                 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
759                 return 0;
760         }
761
762         set_cpu_sibling_map(cpu);
763
764         return 0;
765 }
766
767 /*
768  * Assume that CPUs have been discovered by some platform-dependent interface.  For
769  * SoftSDV/Lion, that would be ACPI.
770  *
771  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
772  */
773 void __init
774 init_smp_config(void)
775 {
776         struct fptr {
777                 unsigned long fp;
778                 unsigned long gp;
779         } *ap_startup;
780         long sal_ret;
781
782         /* Tell SAL where to drop the APs.  */
783         ap_startup = (struct fptr *) start_ap;
784         sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
785                                        ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
786         if (sal_ret < 0)
787                 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
788                        ia64_sal_strerror(sal_ret));
789 }
790
791 /*
792  * identify_siblings(cpu) gets called from identify_cpu. This populates the 
793  * information related to logical execution units in per_cpu_data structure.
794  */
795 void identify_siblings(struct cpuinfo_ia64 *c)
796 {
797         long status;
798         u16 pltid;
799         pal_logical_to_physical_t info;
800
801         status = ia64_pal_logical_to_phys(-1, &info);
802         if (status != PAL_STATUS_SUCCESS) {
803                 if (status != PAL_STATUS_UNIMPLEMENTED) {
804                         printk(KERN_ERR
805                                 "ia64_pal_logical_to_phys failed with %ld\n",
806                                 status);
807                         return;
808                 }
809
810                 info.overview_ppid = 0;
811                 info.overview_cpp  = 1;
812                 info.overview_tpc  = 1;
813         }
814
815         status = ia64_sal_physical_id_info(&pltid);
816         if (status != PAL_STATUS_SUCCESS) {
817                 if (status != PAL_STATUS_UNIMPLEMENTED)
818                         printk(KERN_ERR
819                                 "ia64_sal_pltid failed with %ld\n",
820                                 status);
821                 return;
822         }
823
824         c->socket_id =  (pltid << 8) | info.overview_ppid;
825
826         if (info.overview_cpp == 1 && info.overview_tpc == 1)
827                 return;
828
829         c->cores_per_socket = info.overview_cpp;
830         c->threads_per_core = info.overview_tpc;
831         c->num_log = info.overview_num_log;
832
833         c->core_id = info.log1_cid;
834         c->thread_id = info.log1_tid;
835 }
836
837 /*
838  * returns non zero, if multi-threading is enabled
839  * on at least one physical package. Due to hotplug cpu
840  * and (maxcpus=), all threads may not necessarily be enabled
841  * even though the processor supports multi-threading.
842  */
843 int is_multithreading_enabled(void)
844 {
845         int i, j;
846
847         for_each_present_cpu(i) {
848                 for_each_present_cpu(j) {
849                         if (j == i)
850                                 continue;
851                         if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
852                                 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
853                                         return 1;
854                         }
855                 }
856         }
857         return 0;
858 }
859 EXPORT_SYMBOL_GPL(is_multithreading_enabled);