Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / c6x / kernel / setup.c
1 /*
2  *  Port on Texas Instruments TMS320C6x architecture
3  *
4  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29 #include <linux/console.h>
30 #include <linux/screen_info.h>
31
32 #include <asm/sections.h>
33 #include <asm/div64.h>
34 #include <asm/setup.h>
35 #include <asm/dscr.h>
36 #include <asm/clock.h>
37 #include <asm/soc.h>
38 #include <asm/special_insns.h>
39
40 static const char *c6x_soc_name;
41
42 struct screen_info screen_info;
43
44 int c6x_num_cores;
45 EXPORT_SYMBOL_GPL(c6x_num_cores);
46
47 unsigned int c6x_silicon_rev;
48 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
49
50 /*
51  * Device status register. This holds information
52  * about device configuration needed by some drivers.
53  */
54 unsigned int c6x_devstat;
55 EXPORT_SYMBOL_GPL(c6x_devstat);
56
57 /*
58  * Some SoCs have fuse registers holding a unique MAC
59  * address. This is parsed out of the device tree with
60  * the resulting MAC being held here.
61  */
62 unsigned char c6x_fuse_mac[6];
63
64 unsigned long memory_start;
65 unsigned long memory_end;
66 EXPORT_SYMBOL(memory_end);
67
68 unsigned long ram_start;
69 unsigned long ram_end;
70
71 /* Uncached memory for DMA consistent use (memdma=) */
72 static unsigned long dma_start __initdata;
73 static unsigned long dma_size __initdata;
74
75 struct cpuinfo_c6x {
76         const char *cpu_name;
77         const char *cpu_voltage;
78         const char *mmu;
79         const char *fpu;
80         char *cpu_rev;
81         unsigned int core_id;
82         char __cpu_rev[5];
83 };
84
85 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
86
87 unsigned int ticks_per_ns_scaled;
88 EXPORT_SYMBOL(ticks_per_ns_scaled);
89
90 unsigned int c6x_core_freq;
91
92 static void __init get_cpuinfo(void)
93 {
94         unsigned cpu_id, rev_id, csr;
95         struct clk *coreclk = clk_get_sys(NULL, "core");
96         unsigned long core_khz;
97         u64 tmp;
98         struct cpuinfo_c6x *p;
99         struct device_node *node, *np;
100
101         p = &per_cpu(cpu_data, smp_processor_id());
102
103         if (!IS_ERR(coreclk))
104                 c6x_core_freq = clk_get_rate(coreclk);
105         else {
106                 printk(KERN_WARNING
107                        "Cannot find core clock frequency. Using 700MHz\n");
108                 c6x_core_freq = 700000000;
109         }
110
111         core_khz = c6x_core_freq / 1000;
112
113         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
114         do_div(tmp, 1000000);
115         ticks_per_ns_scaled = tmp;
116
117         csr = get_creg(CSR);
118         cpu_id = csr >> 24;
119         rev_id = (csr >> 16) & 0xff;
120
121         p->mmu = "none";
122         p->fpu = "none";
123         p->cpu_voltage = "unknown";
124
125         switch (cpu_id) {
126         case 0:
127                 p->cpu_name = "C67x";
128                 p->fpu = "yes";
129                 break;
130         case 2:
131                 p->cpu_name = "C62x";
132                 break;
133         case 8:
134                 p->cpu_name = "C64x";
135                 break;
136         case 12:
137                 p->cpu_name = "C64x";
138                 break;
139         case 16:
140                 p->cpu_name = "C64x+";
141                 p->cpu_voltage = "1.2";
142                 break;
143         case 21:
144                 p->cpu_name = "C66X";
145                 p->cpu_voltage = "1.2";
146                 break;
147         default:
148                 p->cpu_name = "unknown";
149                 break;
150         }
151
152         if (cpu_id < 16) {
153                 switch (rev_id) {
154                 case 0x1:
155                         if (cpu_id > 8) {
156                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
157                                 p->cpu_voltage = "1.2 - 1.4";
158                         } else {
159                                 p->cpu_rev = "C6201";
160                                 p->cpu_voltage = "2.5";
161                         }
162                         break;
163                 case 0x2:
164                         p->cpu_rev = "C6201B/C6202/C6211";
165                         p->cpu_voltage = "1.8";
166                         break;
167                 case 0x3:
168                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
169                         p->cpu_voltage = "1.5";
170                         break;
171                 case 0x201:
172                         p->cpu_rev = "C6701 revision 0 (early CPU)";
173                         p->cpu_voltage = "1.8";
174                         break;
175                 case 0x202:
176                         p->cpu_rev = "C6701/C6711/C6712";
177                         p->cpu_voltage = "1.8";
178                         break;
179                 case 0x801:
180                         p->cpu_rev = "C64x";
181                         p->cpu_voltage = "1.5";
182                         break;
183                 default:
184                         p->cpu_rev = "unknown";
185                 }
186         } else {
187                 p->cpu_rev = p->__cpu_rev;
188                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
189         }
190
191         p->core_id = get_coreid();
192
193         node = of_find_node_by_name(NULL, "cpus");
194         if (node) {
195                 for_each_child_of_node(node, np)
196                         if (!strcmp("cpu", np->name))
197                                 ++c6x_num_cores;
198                 of_node_put(node);
199         }
200
201         node = of_find_node_by_name(NULL, "soc");
202         if (node) {
203                 if (of_property_read_string(node, "model", &c6x_soc_name))
204                         c6x_soc_name = "unknown";
205                 of_node_put(node);
206         } else
207                 c6x_soc_name = "unknown";
208
209         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
210                p->core_id, p->cpu_name, p->cpu_rev,
211                p->cpu_voltage, c6x_core_freq / 1000000);
212 }
213
214 /*
215  * Early parsing of the command line
216  */
217 static u32 mem_size __initdata;
218
219 /* "mem=" parsing. */
220 static int __init early_mem(char *p)
221 {
222         if (!p)
223                 return -EINVAL;
224
225         mem_size = memparse(p, &p);
226         /* don't remove all of memory when handling "mem={invalid}" */
227         if (mem_size == 0)
228                 return -EINVAL;
229
230         return 0;
231 }
232 early_param("mem", early_mem);
233
234 /* "memdma=<size>[@<address>]" parsing. */
235 static int __init early_memdma(char *p)
236 {
237         if (!p)
238                 return -EINVAL;
239
240         dma_size = memparse(p, &p);
241         if (*p == '@')
242                 dma_start = memparse(p, &p);
243
244         return 0;
245 }
246 early_param("memdma", early_memdma);
247
248 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
249 {
250         static int ram_found __initdata;
251
252         /* We only handle one bank (the one with PAGE_OFFSET) for now */
253         if (ram_found)
254                 return -EINVAL;
255
256         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
257                 return 0;
258
259         ram_start = start;
260         ram_end = start + size;
261
262         ram_found = 1;
263         return 0;
264 }
265
266 /*
267  * Do early machine setup and device tree parsing. This is called very
268  * early on the boot process.
269  */
270 notrace void __init machine_init(unsigned long dt_ptr)
271 {
272         void *dtb = __va(dt_ptr);
273         void *fdt = _fdt_start;
274
275         /* interrupts must be masked */
276         set_creg(IER, 2);
277
278         /*
279          * Set the Interrupt Service Table (IST) to the beginning of the
280          * vector table.
281          */
282         set_ist(_vectors_start);
283
284         lockdep_init();
285
286         /*
287          * dtb is passed in from bootloader.
288          * fdt is linked in blob.
289          */
290         if (dtb && dtb != fdt)
291                 fdt = dtb;
292
293         /* Do some early initialization based on the flat device tree */
294         early_init_dt_scan(fdt);
295
296         parse_early_param();
297 }
298
299 void __init setup_arch(char **cmdline_p)
300 {
301         int bootmap_size;
302         struct memblock_region *reg;
303
304         printk(KERN_INFO "Initializing kernel\n");
305
306         /* Initialize command line */
307         *cmdline_p = boot_command_line;
308
309         memory_end = ram_end;
310         memory_end &= ~(PAGE_SIZE - 1);
311
312         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
313                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
314
315         /* add block that this kernel can use */
316         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
317
318         /* reserve kernel text/data/bss */
319         memblock_reserve(PAGE_OFFSET,
320                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
321
322         if (dma_size) {
323                 /* align to cacheability granularity */
324                 dma_size = CACHE_REGION_END(dma_size);
325
326                 if (!dma_start)
327                         dma_start = memory_end - dma_size;
328
329                 /* align to cacheability granularity */
330                 dma_start = CACHE_REGION_START(dma_start);
331
332                 /* reserve DMA memory taken from kernel memory */
333                 if (memblock_is_region_memory(dma_start, dma_size))
334                         memblock_reserve(dma_start, dma_size);
335         }
336
337         memory_start = PAGE_ALIGN((unsigned int) &_end);
338
339         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
340                memory_start, memory_end);
341
342 #ifdef CONFIG_BLK_DEV_INITRD
343         /*
344          * Reserve initrd memory if in kernel memory.
345          */
346         if (initrd_start < initrd_end)
347                 if (memblock_is_region_memory(initrd_start,
348                                               initrd_end - initrd_start))
349                         memblock_reserve(initrd_start,
350                                          initrd_end - initrd_start);
351 #endif
352
353         init_mm.start_code = (unsigned long) &_stext;
354         init_mm.end_code   = (unsigned long) &_etext;
355         init_mm.end_data   = memory_start;
356         init_mm.brk        = memory_start;
357
358         /*
359          * Give all the memory to the bootmap allocator,  tell it to put the
360          * boot mem_map at the start of memory
361          */
362         bootmap_size = init_bootmem_node(NODE_DATA(0),
363                                          memory_start >> PAGE_SHIFT,
364                                          PAGE_OFFSET >> PAGE_SHIFT,
365                                          memory_end >> PAGE_SHIFT);
366         memblock_reserve(memory_start, bootmap_size);
367
368         unflatten_device_tree();
369
370         c6x_cache_init();
371
372         /* Set the whole external memory as non-cacheable */
373         disable_caching(ram_start, ram_end - 1);
374
375         /* Set caching of external RAM used by Linux */
376         for_each_memblock(memory, reg)
377                 enable_caching(CACHE_REGION_START(reg->base),
378                                CACHE_REGION_START(reg->base + reg->size - 1));
379
380 #ifdef CONFIG_BLK_DEV_INITRD
381         /*
382          * Enable caching for initrd which falls outside kernel memory.
383          */
384         if (initrd_start < initrd_end) {
385                 if (!memblock_is_region_memory(initrd_start,
386                                                initrd_end - initrd_start))
387                         enable_caching(CACHE_REGION_START(initrd_start),
388                                        CACHE_REGION_START(initrd_end - 1));
389         }
390 #endif
391
392         /*
393          * Disable caching for dma coherent memory taken from kernel memory.
394          */
395         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
396                 disable_caching(dma_start,
397                                 CACHE_REGION_START(dma_start + dma_size - 1));
398
399         /* Initialize the coherent memory allocator */
400         coherent_mem_init(dma_start, dma_size);
401
402         /*
403          * Free all memory as a starting point.
404          */
405         free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
406
407         /*
408          * Then reserve memory which is already being used.
409          */
410         for_each_memblock(reserved, reg) {
411                 pr_debug("reserved - 0x%08x-0x%08x\n",
412                          (u32) reg->base, (u32) reg->size);
413                 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
414         }
415
416         max_low_pfn = PFN_DOWN(memory_end);
417         min_low_pfn = PFN_UP(memory_start);
418         max_mapnr = max_low_pfn - min_low_pfn;
419
420         /* Get kmalloc into gear */
421         paging_init();
422
423         /*
424          * Probe for Device State Configuration Registers.
425          * We have to do this early in case timer needs to be enabled
426          * through DSCR.
427          */
428         dscr_probe();
429
430         /* We do this early for timer and core clock frequency */
431         c64x_setup_clocks();
432
433         /* Get CPU info */
434         get_cpuinfo();
435
436 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
437         conswitchp = &dummy_con;
438 #endif
439 }
440
441 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
442 #define ptr_to_cpu(p) ((long)(p) - 1)
443
444 static int show_cpuinfo(struct seq_file *m, void *v)
445 {
446         int n = ptr_to_cpu(v);
447         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
448
449         if (n == 0) {
450                 seq_printf(m,
451                            "soc\t\t: %s\n"
452                            "soc revision\t: 0x%x\n"
453                            "soc cores\t: %d\n",
454                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
455         }
456
457         seq_printf(m,
458                    "\n"
459                    "processor\t: %d\n"
460                    "cpu\t\t: %s\n"
461                    "core revision\t: %s\n"
462                    "core voltage\t: %s\n"
463                    "core id\t\t: %d\n"
464                    "mmu\t\t: %s\n"
465                    "fpu\t\t: %s\n"
466                    "cpu MHz\t\t: %u\n"
467                    "bogomips\t: %lu.%02lu\n\n",
468                    n,
469                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
470                    p->core_id, p->mmu, p->fpu,
471                    (c6x_core_freq + 500000) / 1000000,
472                    (loops_per_jiffy/(500000/HZ)),
473                    (loops_per_jiffy/(5000/HZ))%100);
474
475         return 0;
476 }
477
478 static void *c_start(struct seq_file *m, loff_t *pos)
479 {
480         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
481 }
482 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
483 {
484         ++*pos;
485         return NULL;
486 }
487 static void c_stop(struct seq_file *m, void *v)
488 {
489 }
490
491 const struct seq_operations cpuinfo_op = {
492         c_start,
493         c_stop,
494         c_next,
495         show_cpuinfo
496 };
497
498 static struct cpu cpu_devices[NR_CPUS];
499
500 static int __init topology_init(void)
501 {
502         int i;
503
504         for_each_present_cpu(i)
505                 register_cpu(&cpu_devices[i], i);
506
507         return 0;
508 }
509
510 subsys_initcall(topology_init);