Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / blackfin / kernel / process.c
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
22 #include <asm/irq.h>
23
24 asmlinkage void ret_from_fork(void);
25
26 /* Points to the SDRAM backup memory for the stack that is currently in
27  * L1 scratchpad memory.
28  */
29 void *current_l1_stack_save;
30
31 /* The number of tasks currently using a L1 stack area.  The SRAM is
32  * allocated/deallocated whenever this changes from/to zero.
33  */
34 int nr_l1stack_tasks;
35
36 /* Start and length of the area in L1 scratchpad memory which we've allocated
37  * for process stacks.
38  */
39 void *l1_stack_base;
40 unsigned long l1_stack_len;
41
42 void (*pm_power_off)(void) = NULL;
43 EXPORT_SYMBOL(pm_power_off);
44
45 /*
46  * The idle loop on BFIN
47  */
48 #ifdef CONFIG_IDLE_L1
49 void arch_cpu_idle(void)__attribute__((l1_text));
50 #endif
51
52 /*
53  * This is our default idle handler.  We need to disable
54  * interrupts here to ensure we don't miss a wakeup call.
55  */
56 void arch_cpu_idle(void)
57 {
58 #ifdef CONFIG_IPIPE
59         ipipe_suspend_domain();
60 #endif
61         hard_local_irq_disable();
62         if (!need_resched())
63                 idle_with_irq_disabled();
64
65         hard_local_irq_enable();
66 }
67
68 #ifdef CONFIG_HOTPLUG_CPU
69 void arch_cpu_idle_dead(void)
70 {
71         cpu_die();
72 }
73 #endif
74
75 /*
76  * Do necessary setup to start up a newly executed thread.
77  *
78  * pass the data segment into user programs if it exists,
79  * it can't hurt anything as far as I can tell
80  */
81 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
82 {
83         regs->pc = new_ip;
84         if (current->mm)
85                 regs->p5 = current->mm->start_data;
86 #ifndef CONFIG_SMP
87         task_thread_info(current)->l1_task_info.stack_start =
88                 (void *)current->mm->context.stack_start;
89         task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
90         memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
91                sizeof(*L1_SCRATCH_TASK_INFO));
92 #endif
93         wrusp(new_sp);
94 }
95 EXPORT_SYMBOL_GPL(start_thread);
96
97 void flush_thread(void)
98 {
99 }
100
101 asmlinkage int bfin_clone(unsigned long clone_flags, unsigned long newsp)
102 {
103 #ifdef __ARCH_SYNC_CORE_DCACHE
104         if (current->nr_cpus_allowed == num_possible_cpus())
105                 set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
106 #endif
107         if (newsp)
108                 newsp -= 12;
109         return do_fork(clone_flags, newsp, 0, NULL, NULL);
110 }
111
112 int
113 copy_thread(unsigned long clone_flags,
114             unsigned long usp, unsigned long topstk,
115             struct task_struct *p)
116 {
117         struct pt_regs *childregs;
118         unsigned long *v;
119
120         childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
121         v = ((unsigned long *)childregs) - 2;
122         if (unlikely(p->flags & PF_KTHREAD)) {
123                 memset(childregs, 0, sizeof(struct pt_regs));
124                 v[0] = usp;
125                 v[1] = topstk;
126                 childregs->orig_p0 = -1;
127                 childregs->ipend = 0x8000;
128                 __asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
129                 p->thread.usp = 0;
130         } else {
131                 *childregs = *current_pt_regs();
132                 childregs->r0 = 0;
133                 p->thread.usp = usp ? : rdusp();
134                 v[0] = v[1] = 0;
135         }
136
137         p->thread.ksp = (unsigned long)v;
138         p->thread.pc = (unsigned long)ret_from_fork;
139
140         return 0;
141 }
142
143 unsigned long get_wchan(struct task_struct *p)
144 {
145         unsigned long fp, pc;
146         unsigned long stack_page;
147         int count = 0;
148         if (!p || p == current || p->state == TASK_RUNNING)
149                 return 0;
150
151         stack_page = (unsigned long)p;
152         fp = p->thread.usp;
153         do {
154                 if (fp < stack_page + sizeof(struct thread_info) ||
155                     fp >= 8184 + stack_page)
156                         return 0;
157                 pc = ((unsigned long *)fp)[1];
158                 if (!in_sched_functions(pc))
159                         return pc;
160                 fp = *(unsigned long *)fp;
161         }
162         while (count++ < 16);
163         return 0;
164 }
165
166 void finish_atomic_sections (struct pt_regs *regs)
167 {
168         int __user *up0 = (int __user *)regs->p0;
169
170         switch (regs->pc) {
171         default:
172                 /* not in middle of an atomic step, so resume like normal */
173                 return;
174
175         case ATOMIC_XCHG32 + 2:
176                 put_user(regs->r1, up0);
177                 break;
178
179         case ATOMIC_CAS32 + 2:
180         case ATOMIC_CAS32 + 4:
181                 if (regs->r0 == regs->r1)
182         case ATOMIC_CAS32 + 6:
183                         put_user(regs->r2, up0);
184                 break;
185
186         case ATOMIC_ADD32 + 2:
187                 regs->r0 = regs->r1 + regs->r0;
188                 /* fall through */
189         case ATOMIC_ADD32 + 4:
190                 put_user(regs->r0, up0);
191                 break;
192
193         case ATOMIC_SUB32 + 2:
194                 regs->r0 = regs->r1 - regs->r0;
195                 /* fall through */
196         case ATOMIC_SUB32 + 4:
197                 put_user(regs->r0, up0);
198                 break;
199
200         case ATOMIC_IOR32 + 2:
201                 regs->r0 = regs->r1 | regs->r0;
202                 /* fall through */
203         case ATOMIC_IOR32 + 4:
204                 put_user(regs->r0, up0);
205                 break;
206
207         case ATOMIC_AND32 + 2:
208                 regs->r0 = regs->r1 & regs->r0;
209                 /* fall through */
210         case ATOMIC_AND32 + 4:
211                 put_user(regs->r0, up0);
212                 break;
213
214         case ATOMIC_XOR32 + 2:
215                 regs->r0 = regs->r1 ^ regs->r0;
216                 /* fall through */
217         case ATOMIC_XOR32 + 4:
218                 put_user(regs->r0, up0);
219                 break;
220         }
221
222         /*
223          * We've finished the atomic section, and the only thing left for
224          * userspace is to do a RTS, so we might as well handle that too
225          * since we need to update the PC anyways.
226          */
227         regs->pc = regs->rets;
228 }
229
230 static inline
231 int in_mem(unsigned long addr, unsigned long size,
232            unsigned long start, unsigned long end)
233 {
234         return addr >= start && addr + size <= end;
235 }
236 static inline
237 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
238                      unsigned long const_addr, unsigned long const_size)
239 {
240         return const_size &&
241                in_mem(addr, size, const_addr + off, const_addr + const_size);
242 }
243 static inline
244 int in_mem_const(unsigned long addr, unsigned long size,
245                  unsigned long const_addr, unsigned long const_size)
246 {
247         return in_mem_const_off(addr, size, 0, const_addr, const_size);
248 }
249 #ifdef CONFIG_BF60x
250 #define ASYNC_ENABLED(bnum, bctlnum)    1
251 #else
252 #define ASYNC_ENABLED(bnum, bctlnum) \
253 ({ \
254         (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
255         bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
256         1; \
257 })
258 #endif
259 /*
260  * We can't read EBIU banks that aren't enabled or we end up hanging
261  * on the access to the async space.  Make sure we validate accesses
262  * that cross async banks too.
263  *      0 - found, but unusable
264  *      1 - found & usable
265  *      2 - not found
266  */
267 static
268 int in_async(unsigned long addr, unsigned long size)
269 {
270         if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
271                 if (!ASYNC_ENABLED(0, 0))
272                         return 0;
273                 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
274                         return 1;
275                 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
276                 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
277         }
278         if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
279                 if (!ASYNC_ENABLED(1, 0))
280                         return 0;
281                 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
282                         return 1;
283                 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
284                 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
285         }
286         if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
287                 if (!ASYNC_ENABLED(2, 1))
288                         return 0;
289                 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
290                         return 1;
291                 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
292                 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
293         }
294         if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
295                 if (ASYNC_ENABLED(3, 1))
296                         return 0;
297                 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
298                         return 1;
299                 return 0;
300         }
301
302         /* not within async bounds */
303         return 2;
304 }
305
306 int bfin_mem_access_type(unsigned long addr, unsigned long size)
307 {
308         int cpu = raw_smp_processor_id();
309
310         /* Check that things do not wrap around */
311         if (addr > ULONG_MAX - size)
312                 return -EFAULT;
313
314         if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
315                 return BFIN_MEM_ACCESS_CORE;
316
317         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
318                 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
319         if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
320                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
321         if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
322                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
323         if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
324                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
325 #ifdef COREB_L1_CODE_START
326         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
327                 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
328         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
329                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
330         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
331                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
332         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
333                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
334 #endif
335         if (in_mem_const(addr, size, L2_START, L2_LENGTH))
336                 return BFIN_MEM_ACCESS_CORE;
337
338         if (addr >= SYSMMR_BASE)
339                 return BFIN_MEM_ACCESS_CORE_ONLY;
340
341         switch (in_async(addr, size)) {
342         case 0: return -EFAULT;
343         case 1: return BFIN_MEM_ACCESS_CORE;
344         case 2: /* fall through */;
345         }
346
347         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
348                 return BFIN_MEM_ACCESS_CORE;
349         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
350                 return BFIN_MEM_ACCESS_DMA;
351
352         return -EFAULT;
353 }
354
355 #if defined(CONFIG_ACCESS_CHECK)
356 #ifdef CONFIG_ACCESS_OK_L1
357 __attribute__((l1_text))
358 #endif
359 /* Return 1 if access to memory range is OK, 0 otherwise */
360 int _access_ok(unsigned long addr, unsigned long size)
361 {
362         int aret;
363
364         if (size == 0)
365                 return 1;
366         /* Check that things do not wrap around */
367         if (addr > ULONG_MAX - size)
368                 return 0;
369         if (segment_eq(get_fs(), KERNEL_DS))
370                 return 1;
371 #ifdef CONFIG_MTD_UCLINUX
372         if (1)
373 #else
374         if (0)
375 #endif
376         {
377                 if (in_mem(addr, size, memory_start, memory_end))
378                         return 1;
379                 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
380                         return 1;
381 # ifndef CONFIG_ROMFS_ON_MTD
382                 if (0)
383 # endif
384                         /* For XIP, allow user space to use pointers within the ROMFS.  */
385                         if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
386                                 return 1;
387         } else {
388                 if (in_mem(addr, size, memory_start, physical_mem_end))
389                         return 1;
390         }
391
392         if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
393                 return 1;
394
395         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
396                 return 1;
397         if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
398                 return 1;
399         if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
400                 return 1;
401         if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
402                 return 1;
403 #ifdef COREB_L1_CODE_START
404         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
405                 return 1;
406         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
407                 return 1;
408         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
409                 return 1;
410         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
411                 return 1;
412 #endif
413
414 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
415         if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
416                 return 1;
417 #endif
418
419         aret = in_async(addr, size);
420         if (aret < 2)
421                 return aret;
422
423         if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
424                 return 1;
425
426         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
427                 return 1;
428         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
429                 return 1;
430
431         return 0;
432 }
433 EXPORT_SYMBOL(_access_ok);
434 #endif /* CONFIG_ACCESS_CHECK */