Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / blackfin / kernel / ipipe.c
1 /* -*- linux-c -*-
2  * linux/arch/blackfin/kernel/ipipe.c
3  *
4  * Copyright (C) 2005-2007 Philippe Gerum.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
9  * USA; either version 2 of the License, or (at your option) any later
10  * version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  *
21  * Architecture-dependent I-pipe support for the Blackfin.
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/module.h>
27 #include <linux/interrupt.h>
28 #include <linux/percpu.h>
29 #include <linux/bitops.h>
30 #include <linux/errno.h>
31 #include <linux/kthread.h>
32 #include <linux/unistd.h>
33 #include <linux/io.h>
34 #include <linux/atomic.h>
35 #include <asm/irq_handler.h>
36
37 DEFINE_PER_CPU(struct pt_regs, __ipipe_tick_regs);
38
39 asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs);
40
41 static void __ipipe_no_irqtail(void);
42
43 unsigned long __ipipe_irq_tail_hook = (unsigned long)&__ipipe_no_irqtail;
44 EXPORT_SYMBOL(__ipipe_irq_tail_hook);
45
46 unsigned long __ipipe_core_clock;
47 EXPORT_SYMBOL(__ipipe_core_clock);
48
49 unsigned long __ipipe_freq_scale;
50 EXPORT_SYMBOL(__ipipe_freq_scale);
51
52 atomic_t __ipipe_irq_lvdepth[IVG15 + 1];
53
54 unsigned long __ipipe_irq_lvmask = bfin_no_irqs;
55 EXPORT_SYMBOL(__ipipe_irq_lvmask);
56
57 static void __ipipe_ack_irq(unsigned irq, struct irq_desc *desc)
58 {
59         desc->ipipe_ack(irq, desc);
60 }
61
62 /*
63  * __ipipe_enable_pipeline() -- We are running on the boot CPU, hw
64  * interrupts are off, and secondary CPUs are still lost in space.
65  */
66 void __ipipe_enable_pipeline(void)
67 {
68         unsigned irq;
69
70         __ipipe_core_clock = get_cclk(); /* Fetch this once. */
71         __ipipe_freq_scale = 1000000000UL / __ipipe_core_clock;
72
73         for (irq = 0; irq < NR_IRQS; ++irq)
74                 ipipe_virtualize_irq(ipipe_root_domain,
75                                      irq,
76                                      (ipipe_irq_handler_t)&asm_do_IRQ,
77                                      NULL,
78                                      &__ipipe_ack_irq,
79                                      IPIPE_HANDLE_MASK | IPIPE_PASS_MASK);
80 }
81
82 /*
83  * __ipipe_handle_irq() -- IPIPE's generic IRQ handler. An optimistic
84  * interrupt protection log is maintained here for each domain. Hw
85  * interrupts are masked on entry.
86  */
87 void __ipipe_handle_irq(unsigned irq, struct pt_regs *regs)
88 {
89         struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
90         struct ipipe_domain *this_domain, *next_domain;
91         struct list_head *head, *pos;
92         struct ipipe_irqdesc *idesc;
93         int m_ack, s = -1;
94
95         /*
96          * Software-triggered IRQs do not need any ack.  The contents
97          * of the register frame should only be used when processing
98          * the timer interrupt, but not for handling any other
99          * interrupt.
100          */
101         m_ack = (regs == NULL || irq == IRQ_SYSTMR || irq == IRQ_CORETMR);
102         this_domain = __ipipe_current_domain;
103         idesc = &this_domain->irqs[irq];
104
105         if (unlikely(test_bit(IPIPE_STICKY_FLAG, &idesc->control)))
106                 head = &this_domain->p_link;
107         else {
108                 head = __ipipe_pipeline.next;
109                 next_domain = list_entry(head, struct ipipe_domain, p_link);
110                 idesc = &next_domain->irqs[irq];
111                 if (likely(test_bit(IPIPE_WIRED_FLAG, &idesc->control))) {
112                         if (!m_ack && idesc->acknowledge != NULL)
113                                 idesc->acknowledge(irq, irq_to_desc(irq));
114                         if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status))
115                                 s = __test_and_set_bit(IPIPE_STALL_FLAG,
116                                                        &p->status);
117                         __ipipe_dispatch_wired(next_domain, irq);
118                         goto out;
119                 }
120         }
121
122         /* Ack the interrupt. */
123
124         pos = head;
125         while (pos != &__ipipe_pipeline) {
126                 next_domain = list_entry(pos, struct ipipe_domain, p_link);
127                 idesc = &next_domain->irqs[irq];
128                 if (test_bit(IPIPE_HANDLE_FLAG, &idesc->control)) {
129                         __ipipe_set_irq_pending(next_domain, irq);
130                         if (!m_ack && idesc->acknowledge != NULL) {
131                                 idesc->acknowledge(irq, irq_to_desc(irq));
132                                 m_ack = 1;
133                         }
134                 }
135                 if (!test_bit(IPIPE_PASS_FLAG, &idesc->control))
136                         break;
137                 pos = next_domain->p_link.next;
138         }
139
140         /*
141          * Now walk the pipeline, yielding control to the highest
142          * priority domain that has pending interrupt(s) or
143          * immediately to the current domain if the interrupt has been
144          * marked as 'sticky'. This search does not go beyond the
145          * current domain in the pipeline. We also enforce the
146          * additional root stage lock (blackfin-specific).
147          */
148         if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status))
149                 s = __test_and_set_bit(IPIPE_STALL_FLAG, &p->status);
150
151         /*
152          * If the interrupt preempted the head domain, then do not
153          * even try to walk the pipeline, unless an interrupt is
154          * pending for it.
155          */
156         if (test_bit(IPIPE_AHEAD_FLAG, &this_domain->flags) &&
157             !__ipipe_ipending_p(ipipe_head_cpudom_ptr()))
158                 goto out;
159
160         __ipipe_walk_pipeline(head);
161 out:
162         if (!s)
163                 __clear_bit(IPIPE_STALL_FLAG, &p->status);
164 }
165
166 void __ipipe_enable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
167 {
168         struct irq_desc *desc = irq_to_desc(irq);
169         int prio = __ipipe_get_irq_priority(irq);
170
171         desc->depth = 0;
172         if (ipd != &ipipe_root &&
173             atomic_inc_return(&__ipipe_irq_lvdepth[prio]) == 1)
174                 __set_bit(prio, &__ipipe_irq_lvmask);
175 }
176 EXPORT_SYMBOL(__ipipe_enable_irqdesc);
177
178 void __ipipe_disable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
179 {
180         int prio = __ipipe_get_irq_priority(irq);
181
182         if (ipd != &ipipe_root &&
183             atomic_dec_and_test(&__ipipe_irq_lvdepth[prio]))
184                 __clear_bit(prio, &__ipipe_irq_lvmask);
185 }
186 EXPORT_SYMBOL(__ipipe_disable_irqdesc);
187
188 asmlinkage int __ipipe_syscall_root(struct pt_regs *regs)
189 {
190         struct ipipe_percpu_domain_data *p;
191         void (*hook)(void);
192         int ret;
193
194         WARN_ON_ONCE(irqs_disabled_hw());
195
196         /*
197          * We need to run the IRQ tail hook each time we intercept a
198          * syscall, because we know that important operations might be
199          * pending there (e.g. Xenomai deferred rescheduling).
200          */
201         hook = (__typeof__(hook))__ipipe_irq_tail_hook;
202         hook();
203
204         /*
205          * This routine either returns:
206          * 0 -- if the syscall is to be passed to Linux;
207          * >0 -- if the syscall should not be passed to Linux, and no
208          * tail work should be performed;
209          * <0 -- if the syscall should not be passed to Linux but the
210          * tail work has to be performed (for handling signals etc).
211          */
212
213         if (!__ipipe_syscall_watched_p(current, regs->orig_p0) ||
214             !__ipipe_event_monitored_p(IPIPE_EVENT_SYSCALL))
215                 return 0;
216
217         ret = __ipipe_dispatch_event(IPIPE_EVENT_SYSCALL, regs);
218
219         hard_local_irq_disable();
220
221         /*
222          * This is the end of the syscall path, so we may
223          * safely assume a valid Linux task stack here.
224          */
225         if (current->ipipe_flags & PF_EVTRET) {
226                 current->ipipe_flags &= ~PF_EVTRET;
227                 __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
228         }
229
230         if (!__ipipe_root_domain_p)
231                 ret = -1;
232         else {
233                 p = ipipe_root_cpudom_ptr();
234                 if (__ipipe_ipending_p(p))
235                         __ipipe_sync_pipeline();
236         }
237
238         hard_local_irq_enable();
239
240         return -ret;
241 }
242
243 static void __ipipe_no_irqtail(void)
244 {
245 }
246
247 int ipipe_get_sysinfo(struct ipipe_sysinfo *info)
248 {
249         info->sys_nr_cpus = num_online_cpus();
250         info->sys_cpu_freq = ipipe_cpu_freq();
251         info->sys_hrtimer_irq = IPIPE_TIMER_IRQ;
252         info->sys_hrtimer_freq = __ipipe_core_clock;
253         info->sys_hrclock_freq = __ipipe_core_clock;
254
255         return 0;
256 }
257
258 /*
259  * ipipe_trigger_irq() -- Push the interrupt at front of the pipeline
260  * just like if it has been actually received from a hw source. Also
261  * works for virtual interrupts.
262  */
263 int ipipe_trigger_irq(unsigned irq)
264 {
265         unsigned long flags;
266
267 #ifdef CONFIG_IPIPE_DEBUG
268         if (irq >= IPIPE_NR_IRQS ||
269             (ipipe_virtual_irq_p(irq)
270              && !test_bit(irq - IPIPE_VIRQ_BASE, &__ipipe_virtual_irq_map)))
271                 return -EINVAL;
272 #endif
273
274         flags = hard_local_irq_save();
275         __ipipe_handle_irq(irq, NULL);
276         hard_local_irq_restore(flags);
277
278         return 1;
279 }
280
281 asmlinkage void __ipipe_sync_root(void)
282 {
283         void (*irq_tail_hook)(void) = (void (*)(void))__ipipe_irq_tail_hook;
284         struct ipipe_percpu_domain_data *p;
285         unsigned long flags;
286
287         BUG_ON(irqs_disabled());
288
289         flags = hard_local_irq_save();
290
291         if (irq_tail_hook)
292                 irq_tail_hook();
293
294         clear_thread_flag(TIF_IRQ_SYNC);
295
296         p = ipipe_root_cpudom_ptr();
297         if (__ipipe_ipending_p(p))
298                 __ipipe_sync_pipeline();
299
300         hard_local_irq_restore(flags);
301 }
302
303 void ___ipipe_sync_pipeline(void)
304 {
305         if (__ipipe_root_domain_p &&
306             test_bit(IPIPE_SYNCDEFER_FLAG, &ipipe_root_cpudom_var(status)))
307                 return;
308
309         __ipipe_sync_stage();
310 }
311
312 void __ipipe_disable_root_irqs_hw(void)
313 {
314         /*
315          * This code is called by the ins{bwl} routines (see
316          * arch/blackfin/lib/ins.S), which are heavily used by the
317          * network stack. It masks all interrupts but those handled by
318          * non-root domains, so that we keep decent network transfer
319          * rates for Linux without inducing pathological jitter for
320          * the real-time domain.
321          */
322         bfin_sti(__ipipe_irq_lvmask);
323         __set_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status));
324 }
325
326 void __ipipe_enable_root_irqs_hw(void)
327 {
328         __clear_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status));
329         bfin_sti(bfin_irq_flags);
330 }
331
332 /*
333  * We could use standard atomic bitops in the following root status
334  * manipulation routines, but let's prepare for SMP support in the
335  * same move, preventing CPU migration as required.
336  */
337 void __ipipe_stall_root(void)
338 {
339         unsigned long *p, flags;
340
341         flags = hard_local_irq_save();
342         p = &__ipipe_root_status;
343         __set_bit(IPIPE_STALL_FLAG, p);
344         hard_local_irq_restore(flags);
345 }
346 EXPORT_SYMBOL(__ipipe_stall_root);
347
348 unsigned long __ipipe_test_and_stall_root(void)
349 {
350         unsigned long *p, flags;
351         int x;
352
353         flags = hard_local_irq_save();
354         p = &__ipipe_root_status;
355         x = __test_and_set_bit(IPIPE_STALL_FLAG, p);
356         hard_local_irq_restore(flags);
357
358         return x;
359 }
360 EXPORT_SYMBOL(__ipipe_test_and_stall_root);
361
362 unsigned long __ipipe_test_root(void)
363 {
364         const unsigned long *p;
365         unsigned long flags;
366         int x;
367
368         flags = hard_local_irq_save_smp();
369         p = &__ipipe_root_status;
370         x = test_bit(IPIPE_STALL_FLAG, p);
371         hard_local_irq_restore_smp(flags);
372
373         return x;
374 }
375 EXPORT_SYMBOL(__ipipe_test_root);
376
377 void __ipipe_lock_root(void)
378 {
379         unsigned long *p, flags;
380
381         flags = hard_local_irq_save();
382         p = &__ipipe_root_status;
383         __set_bit(IPIPE_SYNCDEFER_FLAG, p);
384         hard_local_irq_restore(flags);
385 }
386 EXPORT_SYMBOL(__ipipe_lock_root);
387
388 void __ipipe_unlock_root(void)
389 {
390         unsigned long *p, flags;
391
392         flags = hard_local_irq_save();
393         p = &__ipipe_root_status;
394         __clear_bit(IPIPE_SYNCDEFER_FLAG, p);
395         hard_local_irq_restore(flags);
396 }
397 EXPORT_SYMBOL(__ipipe_unlock_root);