These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
36
37 #include <trace/events/kvm.h>
38
39 #include "sys_regs.h"
40
41 #include "trace.h"
42
43 /*
44  * All of this file is extremly similar to the ARM coproc.c, but the
45  * types are different. My gut feeling is that it should be pretty
46  * easy to merge, but that would be an ABI breakage -- again. VFP
47  * would also need to be abstracted.
48  *
49  * For AArch32, we only take care of what is being trapped. Anything
50  * that has to do with init and userspace access has to go via the
51  * 64bit interface.
52  */
53
54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55 static u32 cache_levels;
56
57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58 #define CSSELR_MAX 12
59
60 /* Which cache CCSIDR represents depends on CSSELR value. */
61 static u32 get_ccsidr(u32 csselr)
62 {
63         u32 ccsidr;
64
65         /* Make sure noone else changes CSSELR during this! */
66         local_irq_disable();
67         /* Put value into CSSELR */
68         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
69         isb();
70         /* Read result out of CCSIDR */
71         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
72         local_irq_enable();
73
74         return ccsidr;
75 }
76
77 /*
78  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
79  */
80 static bool access_dcsw(struct kvm_vcpu *vcpu,
81                         struct sys_reg_params *p,
82                         const struct sys_reg_desc *r)
83 {
84         if (!p->is_write)
85                 return read_from_write_only(vcpu, p);
86
87         kvm_set_way_flush(vcpu);
88         return true;
89 }
90
91 /*
92  * Generic accessor for VM registers. Only called as long as HCR_TVM
93  * is set. If the guest enables the MMU, we stop trapping the VM
94  * sys_regs and leave it in complete control of the caches.
95  */
96 static bool access_vm_reg(struct kvm_vcpu *vcpu,
97                           struct sys_reg_params *p,
98                           const struct sys_reg_desc *r)
99 {
100         bool was_enabled = vcpu_has_cache_enabled(vcpu);
101
102         BUG_ON(!p->is_write);
103
104         if (!p->is_aarch32) {
105                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
106         } else {
107                 if (!p->is_32bit)
108                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
109                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
110         }
111
112         kvm_toggle_cache(vcpu, was_enabled);
113         return true;
114 }
115
116 /*
117  * Trap handler for the GICv3 SGI generation system register.
118  * Forward the request to the VGIC emulation.
119  * The cp15_64 code makes sure this automatically works
120  * for both AArch64 and AArch32 accesses.
121  */
122 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
123                            struct sys_reg_params *p,
124                            const struct sys_reg_desc *r)
125 {
126         if (!p->is_write)
127                 return read_from_write_only(vcpu, p);
128
129         vgic_v3_dispatch_sgi(vcpu, p->regval);
130
131         return true;
132 }
133
134 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
135                         struct sys_reg_params *p,
136                         const struct sys_reg_desc *r)
137 {
138         if (p->is_write)
139                 return ignore_write(vcpu, p);
140         else
141                 return read_zero(vcpu, p);
142 }
143
144 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
145                            struct sys_reg_params *p,
146                            const struct sys_reg_desc *r)
147 {
148         if (p->is_write) {
149                 return ignore_write(vcpu, p);
150         } else {
151                 p->regval = (1 << 3);
152                 return true;
153         }
154 }
155
156 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
157                                    struct sys_reg_params *p,
158                                    const struct sys_reg_desc *r)
159 {
160         if (p->is_write) {
161                 return ignore_write(vcpu, p);
162         } else {
163                 u32 val;
164                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
165                 p->regval = val;
166                 return true;
167         }
168 }
169
170 /*
171  * We want to avoid world-switching all the DBG registers all the
172  * time:
173  * 
174  * - If we've touched any debug register, it is likely that we're
175  *   going to touch more of them. It then makes sense to disable the
176  *   traps and start doing the save/restore dance
177  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
178  *   then mandatory to save/restore the registers, as the guest
179  *   depends on them.
180  * 
181  * For this, we use a DIRTY bit, indicating the guest has modified the
182  * debug registers, used as follow:
183  *
184  * On guest entry:
185  * - If the dirty bit is set (because we're coming back from trapping),
186  *   disable the traps, save host registers, restore guest registers.
187  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
188  *   set the dirty bit, disable the traps, save host registers,
189  *   restore guest registers.
190  * - Otherwise, enable the traps
191  *
192  * On guest exit:
193  * - If the dirty bit is set, save guest registers, restore host
194  *   registers and clear the dirty bit. This ensure that the host can
195  *   now use the debug registers.
196  */
197 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
198                             struct sys_reg_params *p,
199                             const struct sys_reg_desc *r)
200 {
201         if (p->is_write) {
202                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
203                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
204         } else {
205                 p->regval = vcpu_sys_reg(vcpu, r->reg);
206         }
207
208         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
209
210         return true;
211 }
212
213 /*
214  * reg_to_dbg/dbg_to_reg
215  *
216  * A 32 bit write to a debug register leave top bits alone
217  * A 32 bit read from a debug register only returns the bottom bits
218  *
219  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
220  * hyp.S code switches between host and guest values in future.
221  */
222 static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
223                               struct sys_reg_params *p,
224                               u64 *dbg_reg)
225 {
226         u64 val = p->regval;
227
228         if (p->is_32bit) {
229                 val &= 0xffffffffUL;
230                 val |= ((*dbg_reg >> 32) << 32);
231         }
232
233         *dbg_reg = val;
234         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235 }
236
237 static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
238                               struct sys_reg_params *p,
239                               u64 *dbg_reg)
240 {
241         p->regval = *dbg_reg;
242         if (p->is_32bit)
243                 p->regval &= 0xffffffffUL;
244 }
245
246 static inline bool trap_bvr(struct kvm_vcpu *vcpu,
247                             struct sys_reg_params *p,
248                             const struct sys_reg_desc *rd)
249 {
250         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
251
252         if (p->is_write)
253                 reg_to_dbg(vcpu, p, dbg_reg);
254         else
255                 dbg_to_reg(vcpu, p, dbg_reg);
256
257         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
258
259         return true;
260 }
261
262 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
263                 const struct kvm_one_reg *reg, void __user *uaddr)
264 {
265         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
266
267         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
268                 return -EFAULT;
269         return 0;
270 }
271
272 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
273         const struct kvm_one_reg *reg, void __user *uaddr)
274 {
275         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
276
277         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
278                 return -EFAULT;
279         return 0;
280 }
281
282 static inline void reset_bvr(struct kvm_vcpu *vcpu,
283                              const struct sys_reg_desc *rd)
284 {
285         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
286 }
287
288 static inline bool trap_bcr(struct kvm_vcpu *vcpu,
289                             struct sys_reg_params *p,
290                             const struct sys_reg_desc *rd)
291 {
292         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
293
294         if (p->is_write)
295                 reg_to_dbg(vcpu, p, dbg_reg);
296         else
297                 dbg_to_reg(vcpu, p, dbg_reg);
298
299         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
300
301         return true;
302 }
303
304 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
305                 const struct kvm_one_reg *reg, void __user *uaddr)
306 {
307         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
308
309         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
310                 return -EFAULT;
311
312         return 0;
313 }
314
315 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316         const struct kvm_one_reg *reg, void __user *uaddr)
317 {
318         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
319
320         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
321                 return -EFAULT;
322         return 0;
323 }
324
325 static inline void reset_bcr(struct kvm_vcpu *vcpu,
326                              const struct sys_reg_desc *rd)
327 {
328         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
329 }
330
331 static inline bool trap_wvr(struct kvm_vcpu *vcpu,
332                             struct sys_reg_params *p,
333                             const struct sys_reg_desc *rd)
334 {
335         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
336
337         if (p->is_write)
338                 reg_to_dbg(vcpu, p, dbg_reg);
339         else
340                 dbg_to_reg(vcpu, p, dbg_reg);
341
342         trace_trap_reg(__func__, rd->reg, p->is_write,
343                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
344
345         return true;
346 }
347
348 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
349                 const struct kvm_one_reg *reg, void __user *uaddr)
350 {
351         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
352
353         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
354                 return -EFAULT;
355         return 0;
356 }
357
358 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
359         const struct kvm_one_reg *reg, void __user *uaddr)
360 {
361         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
362
363         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
364                 return -EFAULT;
365         return 0;
366 }
367
368 static inline void reset_wvr(struct kvm_vcpu *vcpu,
369                              const struct sys_reg_desc *rd)
370 {
371         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
372 }
373
374 static inline bool trap_wcr(struct kvm_vcpu *vcpu,
375                             struct sys_reg_params *p,
376                             const struct sys_reg_desc *rd)
377 {
378         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
379
380         if (p->is_write)
381                 reg_to_dbg(vcpu, p, dbg_reg);
382         else
383                 dbg_to_reg(vcpu, p, dbg_reg);
384
385         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
386
387         return true;
388 }
389
390 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
391                 const struct kvm_one_reg *reg, void __user *uaddr)
392 {
393         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
394
395         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
396                 return -EFAULT;
397         return 0;
398 }
399
400 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
401         const struct kvm_one_reg *reg, void __user *uaddr)
402 {
403         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
404
405         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
406                 return -EFAULT;
407         return 0;
408 }
409
410 static inline void reset_wcr(struct kvm_vcpu *vcpu,
411                              const struct sys_reg_desc *rd)
412 {
413         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
414 }
415
416 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
417 {
418         u64 amair;
419
420         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
421         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
422 }
423
424 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
425 {
426         u64 mpidr;
427
428         /*
429          * Map the vcpu_id into the first three affinity level fields of
430          * the MPIDR. We limit the number of VCPUs in level 0 due to a
431          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
432          * of the GICv3 to be able to address each CPU directly when
433          * sending IPIs.
434          */
435         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
436         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
437         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
438         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
439 }
440
441 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
442 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
443         /* DBGBVRn_EL1 */                                               \
444         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
445           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
446         /* DBGBCRn_EL1 */                                               \
447         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
448           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
449         /* DBGWVRn_EL1 */                                               \
450         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
451           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
452         /* DBGWCRn_EL1 */                                               \
453         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
454           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
455
456 /*
457  * Architected system registers.
458  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
459  *
460  * We could trap ID_DFR0 and tell the guest we don't support performance
461  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
462  * NAKed, so it will read the PMCR anyway.
463  *
464  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
465  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
466  * all PM registers, which doesn't crash the guest kernel at least.
467  *
468  * Debug handling: We do trap most, if not all debug related system
469  * registers. The implementation is good enough to ensure that a guest
470  * can use these with minimal performance degradation. The drawback is
471  * that we don't implement any of the external debug, none of the
472  * OSlock protocol. This should be revisited if we ever encounter a
473  * more demanding guest...
474  */
475 static const struct sys_reg_desc sys_reg_descs[] = {
476         /* DC ISW */
477         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
478           access_dcsw },
479         /* DC CSW */
480         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
481           access_dcsw },
482         /* DC CISW */
483         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
484           access_dcsw },
485
486         DBG_BCR_BVR_WCR_WVR_EL1(0),
487         DBG_BCR_BVR_WCR_WVR_EL1(1),
488         /* MDCCINT_EL1 */
489         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
490           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
491         /* MDSCR_EL1 */
492         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
493           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
494         DBG_BCR_BVR_WCR_WVR_EL1(2),
495         DBG_BCR_BVR_WCR_WVR_EL1(3),
496         DBG_BCR_BVR_WCR_WVR_EL1(4),
497         DBG_BCR_BVR_WCR_WVR_EL1(5),
498         DBG_BCR_BVR_WCR_WVR_EL1(6),
499         DBG_BCR_BVR_WCR_WVR_EL1(7),
500         DBG_BCR_BVR_WCR_WVR_EL1(8),
501         DBG_BCR_BVR_WCR_WVR_EL1(9),
502         DBG_BCR_BVR_WCR_WVR_EL1(10),
503         DBG_BCR_BVR_WCR_WVR_EL1(11),
504         DBG_BCR_BVR_WCR_WVR_EL1(12),
505         DBG_BCR_BVR_WCR_WVR_EL1(13),
506         DBG_BCR_BVR_WCR_WVR_EL1(14),
507         DBG_BCR_BVR_WCR_WVR_EL1(15),
508
509         /* MDRAR_EL1 */
510         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
511           trap_raz_wi },
512         /* OSLAR_EL1 */
513         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
514           trap_raz_wi },
515         /* OSLSR_EL1 */
516         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
517           trap_oslsr_el1 },
518         /* OSDLR_EL1 */
519         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
520           trap_raz_wi },
521         /* DBGPRCR_EL1 */
522         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
523           trap_raz_wi },
524         /* DBGCLAIMSET_EL1 */
525         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
526           trap_raz_wi },
527         /* DBGCLAIMCLR_EL1 */
528         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
529           trap_raz_wi },
530         /* DBGAUTHSTATUS_EL1 */
531         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
532           trap_dbgauthstatus_el1 },
533
534         /* MDCCSR_EL1 */
535         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
536           trap_raz_wi },
537         /* DBGDTR_EL0 */
538         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
539           trap_raz_wi },
540         /* DBGDTR[TR]X_EL0 */
541         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
542           trap_raz_wi },
543
544         /* DBGVCR32_EL2 */
545         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
546           NULL, reset_val, DBGVCR32_EL2, 0 },
547
548         /* MPIDR_EL1 */
549         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
550           NULL, reset_mpidr, MPIDR_EL1 },
551         /* SCTLR_EL1 */
552         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
553           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
554         /* CPACR_EL1 */
555         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
556           NULL, reset_val, CPACR_EL1, 0 },
557         /* TTBR0_EL1 */
558         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
559           access_vm_reg, reset_unknown, TTBR0_EL1 },
560         /* TTBR1_EL1 */
561         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
562           access_vm_reg, reset_unknown, TTBR1_EL1 },
563         /* TCR_EL1 */
564         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
565           access_vm_reg, reset_val, TCR_EL1, 0 },
566
567         /* AFSR0_EL1 */
568         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
569           access_vm_reg, reset_unknown, AFSR0_EL1 },
570         /* AFSR1_EL1 */
571         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
572           access_vm_reg, reset_unknown, AFSR1_EL1 },
573         /* ESR_EL1 */
574         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
575           access_vm_reg, reset_unknown, ESR_EL1 },
576         /* FAR_EL1 */
577         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
578           access_vm_reg, reset_unknown, FAR_EL1 },
579         /* PAR_EL1 */
580         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
581           NULL, reset_unknown, PAR_EL1 },
582
583         /* PMINTENSET_EL1 */
584         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
585           trap_raz_wi },
586         /* PMINTENCLR_EL1 */
587         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
588           trap_raz_wi },
589
590         /* MAIR_EL1 */
591         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
592           access_vm_reg, reset_unknown, MAIR_EL1 },
593         /* AMAIR_EL1 */
594         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
595           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
596
597         /* VBAR_EL1 */
598         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
599           NULL, reset_val, VBAR_EL1, 0 },
600
601         /* ICC_SGI1R_EL1 */
602         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
603           access_gic_sgi },
604         /* ICC_SRE_EL1 */
605         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
606           trap_raz_wi },
607
608         /* CONTEXTIDR_EL1 */
609         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
610           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
611         /* TPIDR_EL1 */
612         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
613           NULL, reset_unknown, TPIDR_EL1 },
614
615         /* CNTKCTL_EL1 */
616         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
617           NULL, reset_val, CNTKCTL_EL1, 0},
618
619         /* CSSELR_EL1 */
620         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
621           NULL, reset_unknown, CSSELR_EL1 },
622
623         /* PMCR_EL0 */
624         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
625           trap_raz_wi },
626         /* PMCNTENSET_EL0 */
627         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
628           trap_raz_wi },
629         /* PMCNTENCLR_EL0 */
630         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
631           trap_raz_wi },
632         /* PMOVSCLR_EL0 */
633         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
634           trap_raz_wi },
635         /* PMSWINC_EL0 */
636         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
637           trap_raz_wi },
638         /* PMSELR_EL0 */
639         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
640           trap_raz_wi },
641         /* PMCEID0_EL0 */
642         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
643           trap_raz_wi },
644         /* PMCEID1_EL0 */
645         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
646           trap_raz_wi },
647         /* PMCCNTR_EL0 */
648         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
649           trap_raz_wi },
650         /* PMXEVTYPER_EL0 */
651         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
652           trap_raz_wi },
653         /* PMXEVCNTR_EL0 */
654         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
655           trap_raz_wi },
656         /* PMUSERENR_EL0 */
657         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
658           trap_raz_wi },
659         /* PMOVSSET_EL0 */
660         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
661           trap_raz_wi },
662
663         /* TPIDR_EL0 */
664         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
665           NULL, reset_unknown, TPIDR_EL0 },
666         /* TPIDRRO_EL0 */
667         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
668           NULL, reset_unknown, TPIDRRO_EL0 },
669
670         /* DACR32_EL2 */
671         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
672           NULL, reset_unknown, DACR32_EL2 },
673         /* IFSR32_EL2 */
674         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
675           NULL, reset_unknown, IFSR32_EL2 },
676         /* FPEXC32_EL2 */
677         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
678           NULL, reset_val, FPEXC32_EL2, 0x70 },
679 };
680
681 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
682                         struct sys_reg_params *p,
683                         const struct sys_reg_desc *r)
684 {
685         if (p->is_write) {
686                 return ignore_write(vcpu, p);
687         } else {
688                 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
689                 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
690                 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
691
692                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
693                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
694                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
695                              | (6 << 16) | (el3 << 14) | (el3 << 12));
696                 return true;
697         }
698 }
699
700 static bool trap_debug32(struct kvm_vcpu *vcpu,
701                          struct sys_reg_params *p,
702                          const struct sys_reg_desc *r)
703 {
704         if (p->is_write) {
705                 vcpu_cp14(vcpu, r->reg) = p->regval;
706                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
707         } else {
708                 p->regval = vcpu_cp14(vcpu, r->reg);
709         }
710
711         return true;
712 }
713
714 /* AArch32 debug register mappings
715  *
716  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
717  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
718  *
719  * All control registers and watchpoint value registers are mapped to
720  * the lower 32 bits of their AArch64 equivalents. We share the trap
721  * handlers with the above AArch64 code which checks what mode the
722  * system is in.
723  */
724
725 static inline bool trap_xvr(struct kvm_vcpu *vcpu,
726                             struct sys_reg_params *p,
727                             const struct sys_reg_desc *rd)
728 {
729         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
730
731         if (p->is_write) {
732                 u64 val = *dbg_reg;
733
734                 val &= 0xffffffffUL;
735                 val |= p->regval << 32;
736                 *dbg_reg = val;
737
738                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
739         } else {
740                 p->regval = *dbg_reg >> 32;
741         }
742
743         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
744
745         return true;
746 }
747
748 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
749         /* DBGBVRn */                                                   \
750         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
751         /* DBGBCRn */                                                   \
752         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
753         /* DBGWVRn */                                                   \
754         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
755         /* DBGWCRn */                                                   \
756         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
757
758 #define DBGBXVR(n)                                                      \
759         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
760
761 /*
762  * Trapped cp14 registers. We generally ignore most of the external
763  * debug, on the principle that they don't really make sense to a
764  * guest. Revisit this one day, would this principle change.
765  */
766 static const struct sys_reg_desc cp14_regs[] = {
767         /* DBGIDR */
768         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
769         /* DBGDTRRXext */
770         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
771
772         DBG_BCR_BVR_WCR_WVR(0),
773         /* DBGDSCRint */
774         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
775         DBG_BCR_BVR_WCR_WVR(1),
776         /* DBGDCCINT */
777         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
778         /* DBGDSCRext */
779         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
780         DBG_BCR_BVR_WCR_WVR(2),
781         /* DBGDTR[RT]Xint */
782         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
783         /* DBGDTR[RT]Xext */
784         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
785         DBG_BCR_BVR_WCR_WVR(3),
786         DBG_BCR_BVR_WCR_WVR(4),
787         DBG_BCR_BVR_WCR_WVR(5),
788         /* DBGWFAR */
789         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
790         /* DBGOSECCR */
791         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
792         DBG_BCR_BVR_WCR_WVR(6),
793         /* DBGVCR */
794         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
795         DBG_BCR_BVR_WCR_WVR(7),
796         DBG_BCR_BVR_WCR_WVR(8),
797         DBG_BCR_BVR_WCR_WVR(9),
798         DBG_BCR_BVR_WCR_WVR(10),
799         DBG_BCR_BVR_WCR_WVR(11),
800         DBG_BCR_BVR_WCR_WVR(12),
801         DBG_BCR_BVR_WCR_WVR(13),
802         DBG_BCR_BVR_WCR_WVR(14),
803         DBG_BCR_BVR_WCR_WVR(15),
804
805         /* DBGDRAR (32bit) */
806         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
807
808         DBGBXVR(0),
809         /* DBGOSLAR */
810         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
811         DBGBXVR(1),
812         /* DBGOSLSR */
813         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
814         DBGBXVR(2),
815         DBGBXVR(3),
816         /* DBGOSDLR */
817         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
818         DBGBXVR(4),
819         /* DBGPRCR */
820         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
821         DBGBXVR(5),
822         DBGBXVR(6),
823         DBGBXVR(7),
824         DBGBXVR(8),
825         DBGBXVR(9),
826         DBGBXVR(10),
827         DBGBXVR(11),
828         DBGBXVR(12),
829         DBGBXVR(13),
830         DBGBXVR(14),
831         DBGBXVR(15),
832
833         /* DBGDSAR (32bit) */
834         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
835
836         /* DBGDEVID2 */
837         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
838         /* DBGDEVID1 */
839         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
840         /* DBGDEVID */
841         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
842         /* DBGCLAIMSET */
843         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
844         /* DBGCLAIMCLR */
845         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
846         /* DBGAUTHSTATUS */
847         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
848 };
849
850 /* Trapped cp14 64bit registers */
851 static const struct sys_reg_desc cp14_64_regs[] = {
852         /* DBGDRAR (64bit) */
853         { Op1( 0), CRm( 1), .access = trap_raz_wi },
854
855         /* DBGDSAR (64bit) */
856         { Op1( 0), CRm( 2), .access = trap_raz_wi },
857 };
858
859 /*
860  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
861  * depending on the way they are accessed (as a 32bit or a 64bit
862  * register).
863  */
864 static const struct sys_reg_desc cp15_regs[] = {
865         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
866
867         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
868         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
869         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
870         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
871         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
872         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
873         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
874         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
875         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
876         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
877         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
878
879         /*
880          * DC{C,I,CI}SW operations:
881          */
882         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
883         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
884         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
885
886         /* PMU */
887         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
888         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
889         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
890         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
891         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
892         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
893         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
894         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
895         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
896         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
897         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
898         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
899         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
900
901         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
902         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
903         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
904         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
905
906         /* ICC_SRE */
907         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
908
909         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
910 };
911
912 static const struct sys_reg_desc cp15_64_regs[] = {
913         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
914         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
915         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
916 };
917
918 /* Target specific emulation tables */
919 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
920
921 void kvm_register_target_sys_reg_table(unsigned int target,
922                                        struct kvm_sys_reg_target_table *table)
923 {
924         target_tables[target] = table;
925 }
926
927 /* Get specific register table for this target. */
928 static const struct sys_reg_desc *get_target_table(unsigned target,
929                                                    bool mode_is_64,
930                                                    size_t *num)
931 {
932         struct kvm_sys_reg_target_table *table;
933
934         table = target_tables[target];
935         if (mode_is_64) {
936                 *num = table->table64.num;
937                 return table->table64.table;
938         } else {
939                 *num = table->table32.num;
940                 return table->table32.table;
941         }
942 }
943
944 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
945                                          const struct sys_reg_desc table[],
946                                          unsigned int num)
947 {
948         unsigned int i;
949
950         for (i = 0; i < num; i++) {
951                 const struct sys_reg_desc *r = &table[i];
952
953                 if (params->Op0 != r->Op0)
954                         continue;
955                 if (params->Op1 != r->Op1)
956                         continue;
957                 if (params->CRn != r->CRn)
958                         continue;
959                 if (params->CRm != r->CRm)
960                         continue;
961                 if (params->Op2 != r->Op2)
962                         continue;
963
964                 return r;
965         }
966         return NULL;
967 }
968
969 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
970 {
971         kvm_inject_undefined(vcpu);
972         return 1;
973 }
974
975 /*
976  * emulate_cp --  tries to match a sys_reg access in a handling table, and
977  *                call the corresponding trap handler.
978  *
979  * @params: pointer to the descriptor of the access
980  * @table: array of trap descriptors
981  * @num: size of the trap descriptor array
982  *
983  * Return 0 if the access has been handled, and -1 if not.
984  */
985 static int emulate_cp(struct kvm_vcpu *vcpu,
986                       struct sys_reg_params *params,
987                       const struct sys_reg_desc *table,
988                       size_t num)
989 {
990         const struct sys_reg_desc *r;
991
992         if (!table)
993                 return -1;      /* Not handled */
994
995         r = find_reg(params, table, num);
996
997         if (r) {
998                 /*
999                  * Not having an accessor means that we have
1000                  * configured a trap that we don't know how to
1001                  * handle. This certainly qualifies as a gross bug
1002                  * that should be fixed right away.
1003                  */
1004                 BUG_ON(!r->access);
1005
1006                 if (likely(r->access(vcpu, params, r))) {
1007                         /* Skip instruction, since it was emulated */
1008                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1009                 }
1010
1011                 /* Handled */
1012                 return 0;
1013         }
1014
1015         /* Not handled */
1016         return -1;
1017 }
1018
1019 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1020                                 struct sys_reg_params *params)
1021 {
1022         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1023         int cp;
1024
1025         switch(hsr_ec) {
1026         case ESR_ELx_EC_CP15_32:
1027         case ESR_ELx_EC_CP15_64:
1028                 cp = 15;
1029                 break;
1030         case ESR_ELx_EC_CP14_MR:
1031         case ESR_ELx_EC_CP14_64:
1032                 cp = 14;
1033                 break;
1034         default:
1035                 WARN_ON((cp = -1));
1036         }
1037
1038         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1039                 cp, *vcpu_pc(vcpu));
1040         print_sys_reg_instr(params);
1041         kvm_inject_undefined(vcpu);
1042 }
1043
1044 /**
1045  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1046  * @vcpu: The VCPU pointer
1047  * @run:  The kvm_run struct
1048  */
1049 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1050                             const struct sys_reg_desc *global,
1051                             size_t nr_global,
1052                             const struct sys_reg_desc *target_specific,
1053                             size_t nr_specific)
1054 {
1055         struct sys_reg_params params;
1056         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1057         int Rt = (hsr >> 5) & 0xf;
1058         int Rt2 = (hsr >> 10) & 0xf;
1059
1060         params.is_aarch32 = true;
1061         params.is_32bit = false;
1062         params.CRm = (hsr >> 1) & 0xf;
1063         params.is_write = ((hsr & 1) == 0);
1064
1065         params.Op0 = 0;
1066         params.Op1 = (hsr >> 16) & 0xf;
1067         params.Op2 = 0;
1068         params.CRn = 0;
1069
1070         /*
1071          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1072          * backends between AArch32 and AArch64, we get away with it.
1073          */
1074         if (params.is_write) {
1075                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1076                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1077         }
1078
1079         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1080                 goto out;
1081         if (!emulate_cp(vcpu, &params, global, nr_global))
1082                 goto out;
1083
1084         unhandled_cp_access(vcpu, &params);
1085
1086 out:
1087         /* Split up the value between registers for the read side */
1088         if (!params.is_write) {
1089                 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1090                 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1091         }
1092
1093         return 1;
1094 }
1095
1096 /**
1097  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1098  * @vcpu: The VCPU pointer
1099  * @run:  The kvm_run struct
1100  */
1101 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1102                             const struct sys_reg_desc *global,
1103                             size_t nr_global,
1104                             const struct sys_reg_desc *target_specific,
1105                             size_t nr_specific)
1106 {
1107         struct sys_reg_params params;
1108         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1109         int Rt  = (hsr >> 5) & 0xf;
1110
1111         params.is_aarch32 = true;
1112         params.is_32bit = true;
1113         params.CRm = (hsr >> 1) & 0xf;
1114         params.regval = vcpu_get_reg(vcpu, Rt);
1115         params.is_write = ((hsr & 1) == 0);
1116         params.CRn = (hsr >> 10) & 0xf;
1117         params.Op0 = 0;
1118         params.Op1 = (hsr >> 14) & 0x7;
1119         params.Op2 = (hsr >> 17) & 0x7;
1120
1121         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1122             !emulate_cp(vcpu, &params, global, nr_global)) {
1123                 if (!params.is_write)
1124                         vcpu_set_reg(vcpu, Rt, params.regval);
1125                 return 1;
1126         }
1127
1128         unhandled_cp_access(vcpu, &params);
1129         return 1;
1130 }
1131
1132 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1133 {
1134         const struct sys_reg_desc *target_specific;
1135         size_t num;
1136
1137         target_specific = get_target_table(vcpu->arch.target, false, &num);
1138         return kvm_handle_cp_64(vcpu,
1139                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1140                                 target_specific, num);
1141 }
1142
1143 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1144 {
1145         const struct sys_reg_desc *target_specific;
1146         size_t num;
1147
1148         target_specific = get_target_table(vcpu->arch.target, false, &num);
1149         return kvm_handle_cp_32(vcpu,
1150                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1151                                 target_specific, num);
1152 }
1153
1154 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1155 {
1156         return kvm_handle_cp_64(vcpu,
1157                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1158                                 NULL, 0);
1159 }
1160
1161 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1162 {
1163         return kvm_handle_cp_32(vcpu,
1164                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1165                                 NULL, 0);
1166 }
1167
1168 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1169                            struct sys_reg_params *params)
1170 {
1171         size_t num;
1172         const struct sys_reg_desc *table, *r;
1173
1174         table = get_target_table(vcpu->arch.target, true, &num);
1175
1176         /* Search target-specific then generic table. */
1177         r = find_reg(params, table, num);
1178         if (!r)
1179                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1180
1181         if (likely(r)) {
1182                 /*
1183                  * Not having an accessor means that we have
1184                  * configured a trap that we don't know how to
1185                  * handle. This certainly qualifies as a gross bug
1186                  * that should be fixed right away.
1187                  */
1188                 BUG_ON(!r->access);
1189
1190                 if (likely(r->access(vcpu, params, r))) {
1191                         /* Skip instruction, since it was emulated */
1192                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1193                         return 1;
1194                 }
1195                 /* If access function fails, it should complain. */
1196         } else {
1197                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1198                         *vcpu_pc(vcpu));
1199                 print_sys_reg_instr(params);
1200         }
1201         kvm_inject_undefined(vcpu);
1202         return 1;
1203 }
1204
1205 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1206                               const struct sys_reg_desc *table, size_t num)
1207 {
1208         unsigned long i;
1209
1210         for (i = 0; i < num; i++)
1211                 if (table[i].reset)
1212                         table[i].reset(vcpu, &table[i]);
1213 }
1214
1215 /**
1216  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1217  * @vcpu: The VCPU pointer
1218  * @run:  The kvm_run struct
1219  */
1220 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1221 {
1222         struct sys_reg_params params;
1223         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1224         int Rt = (esr >> 5) & 0x1f;
1225         int ret;
1226
1227         trace_kvm_handle_sys_reg(esr);
1228
1229         params.is_aarch32 = false;
1230         params.is_32bit = false;
1231         params.Op0 = (esr >> 20) & 3;
1232         params.Op1 = (esr >> 14) & 0x7;
1233         params.CRn = (esr >> 10) & 0xf;
1234         params.CRm = (esr >> 1) & 0xf;
1235         params.Op2 = (esr >> 17) & 0x7;
1236         params.regval = vcpu_get_reg(vcpu, Rt);
1237         params.is_write = !(esr & 1);
1238
1239         ret = emulate_sys_reg(vcpu, &params);
1240
1241         if (!params.is_write)
1242                 vcpu_set_reg(vcpu, Rt, params.regval);
1243         return ret;
1244 }
1245
1246 /******************************************************************************
1247  * Userspace API
1248  *****************************************************************************/
1249
1250 static bool index_to_params(u64 id, struct sys_reg_params *params)
1251 {
1252         switch (id & KVM_REG_SIZE_MASK) {
1253         case KVM_REG_SIZE_U64:
1254                 /* Any unused index bits means it's not valid. */
1255                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1256                               | KVM_REG_ARM_COPROC_MASK
1257                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1258                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1259                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1260                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1261                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1262                         return false;
1263                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1264                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1265                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1266                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1267                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1268                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1269                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1270                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1271                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1272                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1273                 return true;
1274         default:
1275                 return false;
1276         }
1277 }
1278
1279 /* Decode an index value, and find the sys_reg_desc entry. */
1280 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1281                                                     u64 id)
1282 {
1283         size_t num;
1284         const struct sys_reg_desc *table, *r;
1285         struct sys_reg_params params;
1286
1287         /* We only do sys_reg for now. */
1288         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1289                 return NULL;
1290
1291         if (!index_to_params(id, &params))
1292                 return NULL;
1293
1294         table = get_target_table(vcpu->arch.target, true, &num);
1295         r = find_reg(&params, table, num);
1296         if (!r)
1297                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1298
1299         /* Not saved in the sys_reg array? */
1300         if (r && !r->reg)
1301                 r = NULL;
1302
1303         return r;
1304 }
1305
1306 /*
1307  * These are the invariant sys_reg registers: we let the guest see the
1308  * host versions of these, so they're part of the guest state.
1309  *
1310  * A future CPU may provide a mechanism to present different values to
1311  * the guest, or a future kvm may trap them.
1312  */
1313
1314 #define FUNCTION_INVARIANT(reg)                                         \
1315         static void get_##reg(struct kvm_vcpu *v,                       \
1316                               const struct sys_reg_desc *r)             \
1317         {                                                               \
1318                 u64 val;                                                \
1319                                                                         \
1320                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1321                              : "=r" (val));                             \
1322                 ((struct sys_reg_desc *)r)->val = val;                  \
1323         }
1324
1325 FUNCTION_INVARIANT(midr_el1)
1326 FUNCTION_INVARIANT(ctr_el0)
1327 FUNCTION_INVARIANT(revidr_el1)
1328 FUNCTION_INVARIANT(id_pfr0_el1)
1329 FUNCTION_INVARIANT(id_pfr1_el1)
1330 FUNCTION_INVARIANT(id_dfr0_el1)
1331 FUNCTION_INVARIANT(id_afr0_el1)
1332 FUNCTION_INVARIANT(id_mmfr0_el1)
1333 FUNCTION_INVARIANT(id_mmfr1_el1)
1334 FUNCTION_INVARIANT(id_mmfr2_el1)
1335 FUNCTION_INVARIANT(id_mmfr3_el1)
1336 FUNCTION_INVARIANT(id_isar0_el1)
1337 FUNCTION_INVARIANT(id_isar1_el1)
1338 FUNCTION_INVARIANT(id_isar2_el1)
1339 FUNCTION_INVARIANT(id_isar3_el1)
1340 FUNCTION_INVARIANT(id_isar4_el1)
1341 FUNCTION_INVARIANT(id_isar5_el1)
1342 FUNCTION_INVARIANT(clidr_el1)
1343 FUNCTION_INVARIANT(aidr_el1)
1344
1345 /* ->val is filled in by kvm_sys_reg_table_init() */
1346 static struct sys_reg_desc invariant_sys_regs[] = {
1347         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1348           NULL, get_midr_el1 },
1349         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1350           NULL, get_revidr_el1 },
1351         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1352           NULL, get_id_pfr0_el1 },
1353         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1354           NULL, get_id_pfr1_el1 },
1355         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1356           NULL, get_id_dfr0_el1 },
1357         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1358           NULL, get_id_afr0_el1 },
1359         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1360           NULL, get_id_mmfr0_el1 },
1361         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1362           NULL, get_id_mmfr1_el1 },
1363         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1364           NULL, get_id_mmfr2_el1 },
1365         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1366           NULL, get_id_mmfr3_el1 },
1367         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1368           NULL, get_id_isar0_el1 },
1369         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1370           NULL, get_id_isar1_el1 },
1371         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1372           NULL, get_id_isar2_el1 },
1373         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1374           NULL, get_id_isar3_el1 },
1375         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1376           NULL, get_id_isar4_el1 },
1377         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1378           NULL, get_id_isar5_el1 },
1379         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1380           NULL, get_clidr_el1 },
1381         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1382           NULL, get_aidr_el1 },
1383         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1384           NULL, get_ctr_el0 },
1385 };
1386
1387 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1388 {
1389         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1390                 return -EFAULT;
1391         return 0;
1392 }
1393
1394 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1395 {
1396         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1397                 return -EFAULT;
1398         return 0;
1399 }
1400
1401 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1402 {
1403         struct sys_reg_params params;
1404         const struct sys_reg_desc *r;
1405
1406         if (!index_to_params(id, &params))
1407                 return -ENOENT;
1408
1409         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1410         if (!r)
1411                 return -ENOENT;
1412
1413         return reg_to_user(uaddr, &r->val, id);
1414 }
1415
1416 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1417 {
1418         struct sys_reg_params params;
1419         const struct sys_reg_desc *r;
1420         int err;
1421         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1422
1423         if (!index_to_params(id, &params))
1424                 return -ENOENT;
1425         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1426         if (!r)
1427                 return -ENOENT;
1428
1429         err = reg_from_user(&val, uaddr, id);
1430         if (err)
1431                 return err;
1432
1433         /* This is what we mean by invariant: you can't change it. */
1434         if (r->val != val)
1435                 return -EINVAL;
1436
1437         return 0;
1438 }
1439
1440 static bool is_valid_cache(u32 val)
1441 {
1442         u32 level, ctype;
1443
1444         if (val >= CSSELR_MAX)
1445                 return false;
1446
1447         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1448         level = (val >> 1);
1449         ctype = (cache_levels >> (level * 3)) & 7;
1450
1451         switch (ctype) {
1452         case 0: /* No cache */
1453                 return false;
1454         case 1: /* Instruction cache only */
1455                 return (val & 1);
1456         case 2: /* Data cache only */
1457         case 4: /* Unified cache */
1458                 return !(val & 1);
1459         case 3: /* Separate instruction and data caches */
1460                 return true;
1461         default: /* Reserved: we can't know instruction or data. */
1462                 return false;
1463         }
1464 }
1465
1466 static int demux_c15_get(u64 id, void __user *uaddr)
1467 {
1468         u32 val;
1469         u32 __user *uval = uaddr;
1470
1471         /* Fail if we have unknown bits set. */
1472         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1473                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1474                 return -ENOENT;
1475
1476         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1477         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1478                 if (KVM_REG_SIZE(id) != 4)
1479                         return -ENOENT;
1480                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1481                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1482                 if (!is_valid_cache(val))
1483                         return -ENOENT;
1484
1485                 return put_user(get_ccsidr(val), uval);
1486         default:
1487                 return -ENOENT;
1488         }
1489 }
1490
1491 static int demux_c15_set(u64 id, void __user *uaddr)
1492 {
1493         u32 val, newval;
1494         u32 __user *uval = uaddr;
1495
1496         /* Fail if we have unknown bits set. */
1497         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1498                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1499                 return -ENOENT;
1500
1501         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1502         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1503                 if (KVM_REG_SIZE(id) != 4)
1504                         return -ENOENT;
1505                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1506                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1507                 if (!is_valid_cache(val))
1508                         return -ENOENT;
1509
1510                 if (get_user(newval, uval))
1511                         return -EFAULT;
1512
1513                 /* This is also invariant: you can't change it. */
1514                 if (newval != get_ccsidr(val))
1515                         return -EINVAL;
1516                 return 0;
1517         default:
1518                 return -ENOENT;
1519         }
1520 }
1521
1522 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1523 {
1524         const struct sys_reg_desc *r;
1525         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1526
1527         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1528                 return demux_c15_get(reg->id, uaddr);
1529
1530         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1531                 return -ENOENT;
1532
1533         r = index_to_sys_reg_desc(vcpu, reg->id);
1534         if (!r)
1535                 return get_invariant_sys_reg(reg->id, uaddr);
1536
1537         if (r->get_user)
1538                 return (r->get_user)(vcpu, r, reg, uaddr);
1539
1540         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1541 }
1542
1543 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1544 {
1545         const struct sys_reg_desc *r;
1546         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1547
1548         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1549                 return demux_c15_set(reg->id, uaddr);
1550
1551         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1552                 return -ENOENT;
1553
1554         r = index_to_sys_reg_desc(vcpu, reg->id);
1555         if (!r)
1556                 return set_invariant_sys_reg(reg->id, uaddr);
1557
1558         if (r->set_user)
1559                 return (r->set_user)(vcpu, r, reg, uaddr);
1560
1561         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1562 }
1563
1564 static unsigned int num_demux_regs(void)
1565 {
1566         unsigned int i, count = 0;
1567
1568         for (i = 0; i < CSSELR_MAX; i++)
1569                 if (is_valid_cache(i))
1570                         count++;
1571
1572         return count;
1573 }
1574
1575 static int write_demux_regids(u64 __user *uindices)
1576 {
1577         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1578         unsigned int i;
1579
1580         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1581         for (i = 0; i < CSSELR_MAX; i++) {
1582                 if (!is_valid_cache(i))
1583                         continue;
1584                 if (put_user(val | i, uindices))
1585                         return -EFAULT;
1586                 uindices++;
1587         }
1588         return 0;
1589 }
1590
1591 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1592 {
1593         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1594                 KVM_REG_ARM64_SYSREG |
1595                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1596                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1597                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1598                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1599                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1600 }
1601
1602 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1603 {
1604         if (!*uind)
1605                 return true;
1606
1607         if (put_user(sys_reg_to_index(reg), *uind))
1608                 return false;
1609
1610         (*uind)++;
1611         return true;
1612 }
1613
1614 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1615 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1616 {
1617         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1618         unsigned int total = 0;
1619         size_t num;
1620
1621         /* We check for duplicates here, to allow arch-specific overrides. */
1622         i1 = get_target_table(vcpu->arch.target, true, &num);
1623         end1 = i1 + num;
1624         i2 = sys_reg_descs;
1625         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1626
1627         BUG_ON(i1 == end1 || i2 == end2);
1628
1629         /* Walk carefully, as both tables may refer to the same register. */
1630         while (i1 || i2) {
1631                 int cmp = cmp_sys_reg(i1, i2);
1632                 /* target-specific overrides generic entry. */
1633                 if (cmp <= 0) {
1634                         /* Ignore registers we trap but don't save. */
1635                         if (i1->reg) {
1636                                 if (!copy_reg_to_user(i1, &uind))
1637                                         return -EFAULT;
1638                                 total++;
1639                         }
1640                 } else {
1641                         /* Ignore registers we trap but don't save. */
1642                         if (i2->reg) {
1643                                 if (!copy_reg_to_user(i2, &uind))
1644                                         return -EFAULT;
1645                                 total++;
1646                         }
1647                 }
1648
1649                 if (cmp <= 0 && ++i1 == end1)
1650                         i1 = NULL;
1651                 if (cmp >= 0 && ++i2 == end2)
1652                         i2 = NULL;
1653         }
1654         return total;
1655 }
1656
1657 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1658 {
1659         return ARRAY_SIZE(invariant_sys_regs)
1660                 + num_demux_regs()
1661                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1662 }
1663
1664 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1665 {
1666         unsigned int i;
1667         int err;
1668
1669         /* Then give them all the invariant registers' indices. */
1670         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1671                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1672                         return -EFAULT;
1673                 uindices++;
1674         }
1675
1676         err = walk_sys_regs(vcpu, uindices);
1677         if (err < 0)
1678                 return err;
1679         uindices += err;
1680
1681         return write_demux_regids(uindices);
1682 }
1683
1684 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1685 {
1686         unsigned int i;
1687
1688         for (i = 1; i < n; i++) {
1689                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1690                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1691                         return 1;
1692                 }
1693         }
1694
1695         return 0;
1696 }
1697
1698 void kvm_sys_reg_table_init(void)
1699 {
1700         unsigned int i;
1701         struct sys_reg_desc clidr;
1702
1703         /* Make sure tables are unique and in order. */
1704         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1705         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1706         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1707         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1708         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1709         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1710
1711         /* We abuse the reset function to overwrite the table itself. */
1712         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1713                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1714
1715         /*
1716          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1717          *
1718          *   If software reads the Cache Type fields from Ctype1
1719          *   upwards, once it has seen a value of 0b000, no caches
1720          *   exist at further-out levels of the hierarchy. So, for
1721          *   example, if Ctype3 is the first Cache Type field with a
1722          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1723          *   ignored.
1724          */
1725         get_clidr_el1(NULL, &clidr); /* Ugly... */
1726         cache_levels = clidr.val;
1727         for (i = 0; i < 7; i++)
1728                 if (((cache_levels >> (i*3)) & 7) == 0)
1729                         break;
1730         /* Clear all higher bits. */
1731         cache_levels &= (1 << (i*3))-1;
1732 }
1733
1734 /**
1735  * kvm_reset_sys_regs - sets system registers to reset value
1736  * @vcpu: The VCPU pointer
1737  *
1738  * This function finds the right table above and sets the registers on the
1739  * virtual CPU struct to their architecturally defined reset values.
1740  */
1741 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1742 {
1743         size_t num;
1744         const struct sys_reg_desc *table;
1745
1746         /* Catch someone adding a register without putting in reset entry. */
1747         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1748
1749         /* Generic chip reset first (so target could override). */
1750         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1751
1752         table = get_target_table(vcpu->arch.target, true, &num);
1753         reset_sys_reg_descs(vcpu, table, num);
1754
1755         for (num = 1; num < NR_SYS_REGS; num++)
1756                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1757                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1758 }