Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / arch / arm64 / kernel / perf_event.c
1 /*
2  * PMU support
3  *
4  * Copyright (C) 2012 ARM Limited
5  * Author: Will Deacon <will.deacon@arm.com>
6  *
7  * This code is based heavily on the ARMv7 perf event code.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/uaccess.h>
34
35 #include <asm/cputype.h>
36 #include <asm/irq.h>
37 #include <asm/irq_regs.h>
38 #include <asm/pmu.h>
39 #include <asm/stacktrace.h>
40
41 /*
42  * ARMv8 supports a maximum of 32 events.
43  * The cycle counter is included in this total.
44  */
45 #define ARMPMU_MAX_HWEVENTS             32
46
47 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
48 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
49 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
50
51 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
52
53 /* Set at runtime when we know what CPU type we are. */
54 static struct arm_pmu *cpu_pmu;
55
56 int
57 armpmu_get_max_events(void)
58 {
59         int max_events = 0;
60
61         if (cpu_pmu != NULL)
62                 max_events = cpu_pmu->num_events;
63
64         return max_events;
65 }
66 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
67
68 int perf_num_counters(void)
69 {
70         return armpmu_get_max_events();
71 }
72 EXPORT_SYMBOL_GPL(perf_num_counters);
73
74 #define HW_OP_UNSUPPORTED               0xFFFF
75
76 #define C(_x) \
77         PERF_COUNT_HW_CACHE_##_x
78
79 #define CACHE_OP_UNSUPPORTED            0xFFFF
80
81 static int
82 armpmu_map_cache_event(const unsigned (*cache_map)
83                                       [PERF_COUNT_HW_CACHE_MAX]
84                                       [PERF_COUNT_HW_CACHE_OP_MAX]
85                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
86                        u64 config)
87 {
88         unsigned int cache_type, cache_op, cache_result, ret;
89
90         cache_type = (config >>  0) & 0xff;
91         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
92                 return -EINVAL;
93
94         cache_op = (config >>  8) & 0xff;
95         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
96                 return -EINVAL;
97
98         cache_result = (config >> 16) & 0xff;
99         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
100                 return -EINVAL;
101
102         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
103
104         if (ret == CACHE_OP_UNSUPPORTED)
105                 return -ENOENT;
106
107         return ret;
108 }
109
110 static int
111 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
112 {
113         int mapping;
114
115         if (config >= PERF_COUNT_HW_MAX)
116                 return -EINVAL;
117
118         mapping = (*event_map)[config];
119         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
120 }
121
122 static int
123 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
124 {
125         return (int)(config & raw_event_mask);
126 }
127
128 static int map_cpu_event(struct perf_event *event,
129                          const unsigned (*event_map)[PERF_COUNT_HW_MAX],
130                          const unsigned (*cache_map)
131                                         [PERF_COUNT_HW_CACHE_MAX]
132                                         [PERF_COUNT_HW_CACHE_OP_MAX]
133                                         [PERF_COUNT_HW_CACHE_RESULT_MAX],
134                          u32 raw_event_mask)
135 {
136         u64 config = event->attr.config;
137
138         switch (event->attr.type) {
139         case PERF_TYPE_HARDWARE:
140                 return armpmu_map_event(event_map, config);
141         case PERF_TYPE_HW_CACHE:
142                 return armpmu_map_cache_event(cache_map, config);
143         case PERF_TYPE_RAW:
144                 return armpmu_map_raw_event(raw_event_mask, config);
145         }
146
147         return -ENOENT;
148 }
149
150 int
151 armpmu_event_set_period(struct perf_event *event,
152                         struct hw_perf_event *hwc,
153                         int idx)
154 {
155         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
156         s64 left = local64_read(&hwc->period_left);
157         s64 period = hwc->sample_period;
158         int ret = 0;
159
160         if (unlikely(left <= -period)) {
161                 left = period;
162                 local64_set(&hwc->period_left, left);
163                 hwc->last_period = period;
164                 ret = 1;
165         }
166
167         if (unlikely(left <= 0)) {
168                 left += period;
169                 local64_set(&hwc->period_left, left);
170                 hwc->last_period = period;
171                 ret = 1;
172         }
173
174         /*
175          * Limit the maximum period to prevent the counter value
176          * from overtaking the one we are about to program. In
177          * effect we are reducing max_period to account for
178          * interrupt latency (and we are being very conservative).
179          */
180         if (left > (armpmu->max_period >> 1))
181                 left = armpmu->max_period >> 1;
182
183         local64_set(&hwc->prev_count, (u64)-left);
184
185         armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
186
187         perf_event_update_userpage(event);
188
189         return ret;
190 }
191
192 u64
193 armpmu_event_update(struct perf_event *event,
194                     struct hw_perf_event *hwc,
195                     int idx)
196 {
197         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
198         u64 delta, prev_raw_count, new_raw_count;
199
200 again:
201         prev_raw_count = local64_read(&hwc->prev_count);
202         new_raw_count = armpmu->read_counter(idx);
203
204         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
205                              new_raw_count) != prev_raw_count)
206                 goto again;
207
208         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
209
210         local64_add(delta, &event->count);
211         local64_sub(delta, &hwc->period_left);
212
213         return new_raw_count;
214 }
215
216 static void
217 armpmu_read(struct perf_event *event)
218 {
219         struct hw_perf_event *hwc = &event->hw;
220
221         /* Don't read disabled counters! */
222         if (hwc->idx < 0)
223                 return;
224
225         armpmu_event_update(event, hwc, hwc->idx);
226 }
227
228 static void
229 armpmu_stop(struct perf_event *event, int flags)
230 {
231         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
232         struct hw_perf_event *hwc = &event->hw;
233
234         /*
235          * ARM pmu always has to update the counter, so ignore
236          * PERF_EF_UPDATE, see comments in armpmu_start().
237          */
238         if (!(hwc->state & PERF_HES_STOPPED)) {
239                 armpmu->disable(hwc, hwc->idx);
240                 barrier(); /* why? */
241                 armpmu_event_update(event, hwc, hwc->idx);
242                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
243         }
244 }
245
246 static void
247 armpmu_start(struct perf_event *event, int flags)
248 {
249         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
250         struct hw_perf_event *hwc = &event->hw;
251
252         /*
253          * ARM pmu always has to reprogram the period, so ignore
254          * PERF_EF_RELOAD, see the comment below.
255          */
256         if (flags & PERF_EF_RELOAD)
257                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
258
259         hwc->state = 0;
260         /*
261          * Set the period again. Some counters can't be stopped, so when we
262          * were stopped we simply disabled the IRQ source and the counter
263          * may have been left counting. If we don't do this step then we may
264          * get an interrupt too soon or *way* too late if the overflow has
265          * happened since disabling.
266          */
267         armpmu_event_set_period(event, hwc, hwc->idx);
268         armpmu->enable(hwc, hwc->idx);
269 }
270
271 static void
272 armpmu_del(struct perf_event *event, int flags)
273 {
274         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
276         struct hw_perf_event *hwc = &event->hw;
277         int idx = hwc->idx;
278
279         WARN_ON(idx < 0);
280
281         armpmu_stop(event, PERF_EF_UPDATE);
282         hw_events->events[idx] = NULL;
283         clear_bit(idx, hw_events->used_mask);
284
285         perf_event_update_userpage(event);
286 }
287
288 static int
289 armpmu_add(struct perf_event *event, int flags)
290 {
291         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
292         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
293         struct hw_perf_event *hwc = &event->hw;
294         int idx;
295         int err = 0;
296
297         perf_pmu_disable(event->pmu);
298
299         /* If we don't have a space for the counter then finish early. */
300         idx = armpmu->get_event_idx(hw_events, hwc);
301         if (idx < 0) {
302                 err = idx;
303                 goto out;
304         }
305
306         /*
307          * If there is an event in the counter we are going to use then make
308          * sure it is disabled.
309          */
310         event->hw.idx = idx;
311         armpmu->disable(hwc, idx);
312         hw_events->events[idx] = event;
313
314         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
315         if (flags & PERF_EF_START)
316                 armpmu_start(event, PERF_EF_RELOAD);
317
318         /* Propagate our changes to the userspace mapping. */
319         perf_event_update_userpage(event);
320
321 out:
322         perf_pmu_enable(event->pmu);
323         return err;
324 }
325
326 static int
327 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
328                                 struct perf_event *event)
329 {
330         struct arm_pmu *armpmu;
331         struct hw_perf_event fake_event = event->hw;
332         struct pmu *leader_pmu = event->group_leader->pmu;
333
334         if (is_software_event(event))
335                 return 1;
336
337         /*
338          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
339          * core perf code won't check that the pmu->ctx == leader->ctx
340          * until after pmu->event_init(event).
341          */
342         if (event->pmu != pmu)
343                 return 0;
344
345         if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
346                 return 1;
347
348         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
349                 return 1;
350
351         armpmu = to_arm_pmu(event->pmu);
352         return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
353 }
354
355 static int
356 validate_group(struct perf_event *event)
357 {
358         struct perf_event *sibling, *leader = event->group_leader;
359         struct pmu_hw_events fake_pmu;
360         DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
361
362         /*
363          * Initialise the fake PMU. We only need to populate the
364          * used_mask for the purposes of validation.
365          */
366         memset(fake_used_mask, 0, sizeof(fake_used_mask));
367         fake_pmu.used_mask = fake_used_mask;
368
369         if (!validate_event(event->pmu, &fake_pmu, leader))
370                 return -EINVAL;
371
372         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
373                 if (!validate_event(event->pmu, &fake_pmu, sibling))
374                         return -EINVAL;
375         }
376
377         if (!validate_event(event->pmu, &fake_pmu, event))
378                 return -EINVAL;
379
380         return 0;
381 }
382
383 static void
384 armpmu_disable_percpu_irq(void *data)
385 {
386         unsigned int irq = *(unsigned int *)data;
387         disable_percpu_irq(irq);
388 }
389
390 static void
391 armpmu_release_hardware(struct arm_pmu *armpmu)
392 {
393         int irq;
394         unsigned int i, irqs;
395         struct platform_device *pmu_device = armpmu->plat_device;
396
397         irqs = min(pmu_device->num_resources, num_possible_cpus());
398         if (!irqs)
399                 return;
400
401         irq = platform_get_irq(pmu_device, 0);
402         if (irq <= 0)
403                 return;
404
405         if (irq_is_percpu(irq)) {
406                 on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
407                 free_percpu_irq(irq, &cpu_hw_events);
408         } else {
409                 for (i = 0; i < irqs; ++i) {
410                         int cpu = i;
411
412                         if (armpmu->irq_affinity)
413                                 cpu = armpmu->irq_affinity[i];
414
415                         if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
416                                 continue;
417                         irq = platform_get_irq(pmu_device, i);
418                         if (irq > 0)
419                                 free_irq(irq, armpmu);
420                 }
421         }
422 }
423
424 static void
425 armpmu_enable_percpu_irq(void *data)
426 {
427         unsigned int irq = *(unsigned int *)data;
428         enable_percpu_irq(irq, IRQ_TYPE_NONE);
429 }
430
431 static int
432 armpmu_reserve_hardware(struct arm_pmu *armpmu)
433 {
434         int err, irq;
435         unsigned int i, irqs;
436         struct platform_device *pmu_device = armpmu->plat_device;
437
438         if (!pmu_device) {
439                 pr_err("no PMU device registered\n");
440                 return -ENODEV;
441         }
442
443         irqs = min(pmu_device->num_resources, num_possible_cpus());
444         if (!irqs) {
445                 pr_err("no irqs for PMUs defined\n");
446                 return -ENODEV;
447         }
448
449         irq = platform_get_irq(pmu_device, 0);
450         if (irq <= 0) {
451                 pr_err("failed to get valid irq for PMU device\n");
452                 return -ENODEV;
453         }
454
455         if (irq_is_percpu(irq)) {
456                 err = request_percpu_irq(irq, armpmu->handle_irq,
457                                 "arm-pmu", &cpu_hw_events);
458
459                 if (err) {
460                         pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
461                                         irq);
462                         armpmu_release_hardware(armpmu);
463                         return err;
464                 }
465
466                 on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
467         } else {
468                 for (i = 0; i < irqs; ++i) {
469                         int cpu = i;
470
471                         err = 0;
472                         irq = platform_get_irq(pmu_device, i);
473                         if (irq <= 0)
474                                 continue;
475
476                         if (armpmu->irq_affinity)
477                                 cpu = armpmu->irq_affinity[i];
478
479                         /*
480                          * If we have a single PMU interrupt that we can't shift,
481                          * assume that we're running on a uniprocessor machine and
482                          * continue. Otherwise, continue without this interrupt.
483                          */
484                         if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
485                                 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
486                                                 irq, cpu);
487                                 continue;
488                         }
489
490                         err = request_irq(irq, armpmu->handle_irq,
491                                         IRQF_NOBALANCING | IRQF_NO_THREAD,
492                                         "arm-pmu", armpmu);
493                         if (err) {
494                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
495                                                 irq);
496                                 armpmu_release_hardware(armpmu);
497                                 return err;
498                         }
499
500                         cpumask_set_cpu(cpu, &armpmu->active_irqs);
501                 }
502         }
503
504         return 0;
505 }
506
507 static void
508 hw_perf_event_destroy(struct perf_event *event)
509 {
510         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
511         atomic_t *active_events  = &armpmu->active_events;
512         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
513
514         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
515                 armpmu_release_hardware(armpmu);
516                 mutex_unlock(pmu_reserve_mutex);
517         }
518 }
519
520 static int
521 event_requires_mode_exclusion(struct perf_event_attr *attr)
522 {
523         return attr->exclude_idle || attr->exclude_user ||
524                attr->exclude_kernel || attr->exclude_hv;
525 }
526
527 static int
528 __hw_perf_event_init(struct perf_event *event)
529 {
530         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
531         struct hw_perf_event *hwc = &event->hw;
532         int mapping, err;
533
534         mapping = armpmu->map_event(event);
535
536         if (mapping < 0) {
537                 pr_debug("event %x:%llx not supported\n", event->attr.type,
538                          event->attr.config);
539                 return mapping;
540         }
541
542         /*
543          * We don't assign an index until we actually place the event onto
544          * hardware. Use -1 to signify that we haven't decided where to put it
545          * yet. For SMP systems, each core has it's own PMU so we can't do any
546          * clever allocation or constraints checking at this point.
547          */
548         hwc->idx                = -1;
549         hwc->config_base        = 0;
550         hwc->config             = 0;
551         hwc->event_base         = 0;
552
553         /*
554          * Check whether we need to exclude the counter from certain modes.
555          */
556         if ((!armpmu->set_event_filter ||
557              armpmu->set_event_filter(hwc, &event->attr)) &&
558              event_requires_mode_exclusion(&event->attr)) {
559                 pr_debug("ARM performance counters do not support mode exclusion\n");
560                 return -EPERM;
561         }
562
563         /*
564          * Store the event encoding into the config_base field.
565          */
566         hwc->config_base            |= (unsigned long)mapping;
567
568         if (!hwc->sample_period) {
569                 /*
570                  * For non-sampling runs, limit the sample_period to half
571                  * of the counter width. That way, the new counter value
572                  * is far less likely to overtake the previous one unless
573                  * you have some serious IRQ latency issues.
574                  */
575                 hwc->sample_period  = armpmu->max_period >> 1;
576                 hwc->last_period    = hwc->sample_period;
577                 local64_set(&hwc->period_left, hwc->sample_period);
578         }
579
580         err = 0;
581         if (event->group_leader != event) {
582                 err = validate_group(event);
583                 if (err)
584                         return -EINVAL;
585         }
586
587         return err;
588 }
589
590 static int armpmu_event_init(struct perf_event *event)
591 {
592         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
593         int err = 0;
594         atomic_t *active_events = &armpmu->active_events;
595
596         if (armpmu->map_event(event) == -ENOENT)
597                 return -ENOENT;
598
599         event->destroy = hw_perf_event_destroy;
600
601         if (!atomic_inc_not_zero(active_events)) {
602                 mutex_lock(&armpmu->reserve_mutex);
603                 if (atomic_read(active_events) == 0)
604                         err = armpmu_reserve_hardware(armpmu);
605
606                 if (!err)
607                         atomic_inc(active_events);
608                 mutex_unlock(&armpmu->reserve_mutex);
609         }
610
611         if (err)
612                 return err;
613
614         err = __hw_perf_event_init(event);
615         if (err)
616                 hw_perf_event_destroy(event);
617
618         return err;
619 }
620
621 static void armpmu_enable(struct pmu *pmu)
622 {
623         struct arm_pmu *armpmu = to_arm_pmu(pmu);
624         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
625         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
626
627         if (enabled)
628                 armpmu->start();
629 }
630
631 static void armpmu_disable(struct pmu *pmu)
632 {
633         struct arm_pmu *armpmu = to_arm_pmu(pmu);
634         armpmu->stop();
635 }
636
637 static void __init armpmu_init(struct arm_pmu *armpmu)
638 {
639         atomic_set(&armpmu->active_events, 0);
640         mutex_init(&armpmu->reserve_mutex);
641
642         armpmu->pmu = (struct pmu) {
643                 .pmu_enable     = armpmu_enable,
644                 .pmu_disable    = armpmu_disable,
645                 .event_init     = armpmu_event_init,
646                 .add            = armpmu_add,
647                 .del            = armpmu_del,
648                 .start          = armpmu_start,
649                 .stop           = armpmu_stop,
650                 .read           = armpmu_read,
651         };
652 }
653
654 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
655 {
656         armpmu_init(armpmu);
657         return perf_pmu_register(&armpmu->pmu, name, type);
658 }
659
660 /*
661  * ARMv8 PMUv3 Performance Events handling code.
662  * Common event types.
663  */
664 enum armv8_pmuv3_perf_types {
665         /* Required events. */
666         ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR                        = 0x00,
667         ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL                    = 0x03,
668         ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS                    = 0x04,
669         ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED                  = 0x10,
670         ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES                        = 0x11,
671         ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED                      = 0x12,
672
673         /* At least one of the following is required. */
674         ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED                      = 0x08,
675         ARMV8_PMUV3_PERFCTR_OP_SPEC                             = 0x1B,
676
677         /* Common architectural events. */
678         ARMV8_PMUV3_PERFCTR_MEM_READ                            = 0x06,
679         ARMV8_PMUV3_PERFCTR_MEM_WRITE                           = 0x07,
680         ARMV8_PMUV3_PERFCTR_EXC_TAKEN                           = 0x09,
681         ARMV8_PMUV3_PERFCTR_EXC_EXECUTED                        = 0x0A,
682         ARMV8_PMUV3_PERFCTR_CID_WRITE                           = 0x0B,
683         ARMV8_PMUV3_PERFCTR_PC_WRITE                            = 0x0C,
684         ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH                       = 0x0D,
685         ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN                      = 0x0E,
686         ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS                = 0x0F,
687         ARMV8_PMUV3_PERFCTR_TTBR_WRITE                          = 0x1C,
688
689         /* Common microarchitectural events. */
690         ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL                    = 0x01,
691         ARMV8_PMUV3_PERFCTR_ITLB_REFILL                         = 0x02,
692         ARMV8_PMUV3_PERFCTR_DTLB_REFILL                         = 0x05,
693         ARMV8_PMUV3_PERFCTR_MEM_ACCESS                          = 0x13,
694         ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS                    = 0x14,
695         ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB                        = 0x15,
696         ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS                     = 0x16,
697         ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL                     = 0x17,
698         ARMV8_PMUV3_PERFCTR_L2_CACHE_WB                         = 0x18,
699         ARMV8_PMUV3_PERFCTR_BUS_ACCESS                          = 0x19,
700         ARMV8_PMUV3_PERFCTR_MEM_ERROR                           = 0x1A,
701         ARMV8_PMUV3_PERFCTR_BUS_CYCLES                          = 0x1D,
702 };
703
704 /* PMUv3 HW events mapping. */
705 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
706         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
707         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
708         [PERF_COUNT_HW_CACHE_REFERENCES]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
709         [PERF_COUNT_HW_CACHE_MISSES]            = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
710         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = HW_OP_UNSUPPORTED,
711         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
712         [PERF_COUNT_HW_BUS_CYCLES]              = HW_OP_UNSUPPORTED,
713         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
714         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = HW_OP_UNSUPPORTED,
715 };
716
717 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
718                                                 [PERF_COUNT_HW_CACHE_OP_MAX]
719                                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
720         [C(L1D)] = {
721                 [C(OP_READ)] = {
722                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
723                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
724                 },
725                 [C(OP_WRITE)] = {
726                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
727                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
728                 },
729                 [C(OP_PREFETCH)] = {
730                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
731                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
732                 },
733         },
734         [C(L1I)] = {
735                 [C(OP_READ)] = {
736                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
737                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
738                 },
739                 [C(OP_WRITE)] = {
740                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
741                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
742                 },
743                 [C(OP_PREFETCH)] = {
744                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
745                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
746                 },
747         },
748         [C(LL)] = {
749                 [C(OP_READ)] = {
750                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
751                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
752                 },
753                 [C(OP_WRITE)] = {
754                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
755                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
756                 },
757                 [C(OP_PREFETCH)] = {
758                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
759                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
760                 },
761         },
762         [C(DTLB)] = {
763                 [C(OP_READ)] = {
764                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
765                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
766                 },
767                 [C(OP_WRITE)] = {
768                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
769                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
770                 },
771                 [C(OP_PREFETCH)] = {
772                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
773                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
774                 },
775         },
776         [C(ITLB)] = {
777                 [C(OP_READ)] = {
778                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
779                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
780                 },
781                 [C(OP_WRITE)] = {
782                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
783                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
784                 },
785                 [C(OP_PREFETCH)] = {
786                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
787                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
788                 },
789         },
790         [C(BPU)] = {
791                 [C(OP_READ)] = {
792                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
793                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
794                 },
795                 [C(OP_WRITE)] = {
796                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
797                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
798                 },
799                 [C(OP_PREFETCH)] = {
800                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
801                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
802                 },
803         },
804         [C(NODE)] = {
805                 [C(OP_READ)] = {
806                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
807                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
808                 },
809                 [C(OP_WRITE)] = {
810                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
811                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
812                 },
813                 [C(OP_PREFETCH)] = {
814                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
815                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
816                 },
817         },
818 };
819
820 /*
821  * Perf Events' indices
822  */
823 #define ARMV8_IDX_CYCLE_COUNTER 0
824 #define ARMV8_IDX_COUNTER0      1
825 #define ARMV8_IDX_COUNTER_LAST  (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
826
827 #define ARMV8_MAX_COUNTERS      32
828 #define ARMV8_COUNTER_MASK      (ARMV8_MAX_COUNTERS - 1)
829
830 /*
831  * ARMv8 low level PMU access
832  */
833
834 /*
835  * Perf Event to low level counters mapping
836  */
837 #define ARMV8_IDX_TO_COUNTER(x) \
838         (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
839
840 /*
841  * Per-CPU PMCR: config reg
842  */
843 #define ARMV8_PMCR_E            (1 << 0) /* Enable all counters */
844 #define ARMV8_PMCR_P            (1 << 1) /* Reset all counters */
845 #define ARMV8_PMCR_C            (1 << 2) /* Cycle counter reset */
846 #define ARMV8_PMCR_D            (1 << 3) /* CCNT counts every 64th cpu cycle */
847 #define ARMV8_PMCR_X            (1 << 4) /* Export to ETM */
848 #define ARMV8_PMCR_DP           (1 << 5) /* Disable CCNT if non-invasive debug*/
849 #define ARMV8_PMCR_N_SHIFT      11       /* Number of counters supported */
850 #define ARMV8_PMCR_N_MASK       0x1f
851 #define ARMV8_PMCR_MASK         0x3f     /* Mask for writable bits */
852
853 /*
854  * PMOVSR: counters overflow flag status reg
855  */
856 #define ARMV8_OVSR_MASK         0xffffffff      /* Mask for writable bits */
857 #define ARMV8_OVERFLOWED_MASK   ARMV8_OVSR_MASK
858
859 /*
860  * PMXEVTYPER: Event selection reg
861  */
862 #define ARMV8_EVTYPE_MASK       0xc80003ff      /* Mask for writable bits */
863 #define ARMV8_EVTYPE_EVENT      0x3ff           /* Mask for EVENT bits */
864
865 /*
866  * Event filters for PMUv3
867  */
868 #define ARMV8_EXCLUDE_EL1       (1 << 31)
869 #define ARMV8_EXCLUDE_EL0       (1 << 30)
870 #define ARMV8_INCLUDE_EL2       (1 << 27)
871
872 static inline u32 armv8pmu_pmcr_read(void)
873 {
874         u32 val;
875         asm volatile("mrs %0, pmcr_el0" : "=r" (val));
876         return val;
877 }
878
879 static inline void armv8pmu_pmcr_write(u32 val)
880 {
881         val &= ARMV8_PMCR_MASK;
882         isb();
883         asm volatile("msr pmcr_el0, %0" :: "r" (val));
884 }
885
886 static inline int armv8pmu_has_overflowed(u32 pmovsr)
887 {
888         return pmovsr & ARMV8_OVERFLOWED_MASK;
889 }
890
891 static inline int armv8pmu_counter_valid(int idx)
892 {
893         return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
894 }
895
896 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
897 {
898         int ret = 0;
899         u32 counter;
900
901         if (!armv8pmu_counter_valid(idx)) {
902                 pr_err("CPU%u checking wrong counter %d overflow status\n",
903                         smp_processor_id(), idx);
904         } else {
905                 counter = ARMV8_IDX_TO_COUNTER(idx);
906                 ret = pmnc & BIT(counter);
907         }
908
909         return ret;
910 }
911
912 static inline int armv8pmu_select_counter(int idx)
913 {
914         u32 counter;
915
916         if (!armv8pmu_counter_valid(idx)) {
917                 pr_err("CPU%u selecting wrong PMNC counter %d\n",
918                         smp_processor_id(), idx);
919                 return -EINVAL;
920         }
921
922         counter = ARMV8_IDX_TO_COUNTER(idx);
923         asm volatile("msr pmselr_el0, %0" :: "r" (counter));
924         isb();
925
926         return idx;
927 }
928
929 static inline u32 armv8pmu_read_counter(int idx)
930 {
931         u32 value = 0;
932
933         if (!armv8pmu_counter_valid(idx))
934                 pr_err("CPU%u reading wrong counter %d\n",
935                         smp_processor_id(), idx);
936         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
937                 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
938         else if (armv8pmu_select_counter(idx) == idx)
939                 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
940
941         return value;
942 }
943
944 static inline void armv8pmu_write_counter(int idx, u32 value)
945 {
946         if (!armv8pmu_counter_valid(idx))
947                 pr_err("CPU%u writing wrong counter %d\n",
948                         smp_processor_id(), idx);
949         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
950                 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
951         else if (armv8pmu_select_counter(idx) == idx)
952                 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
953 }
954
955 static inline void armv8pmu_write_evtype(int idx, u32 val)
956 {
957         if (armv8pmu_select_counter(idx) == idx) {
958                 val &= ARMV8_EVTYPE_MASK;
959                 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
960         }
961 }
962
963 static inline int armv8pmu_enable_counter(int idx)
964 {
965         u32 counter;
966
967         if (!armv8pmu_counter_valid(idx)) {
968                 pr_err("CPU%u enabling wrong PMNC counter %d\n",
969                         smp_processor_id(), idx);
970                 return -EINVAL;
971         }
972
973         counter = ARMV8_IDX_TO_COUNTER(idx);
974         asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
975         return idx;
976 }
977
978 static inline int armv8pmu_disable_counter(int idx)
979 {
980         u32 counter;
981
982         if (!armv8pmu_counter_valid(idx)) {
983                 pr_err("CPU%u disabling wrong PMNC counter %d\n",
984                         smp_processor_id(), idx);
985                 return -EINVAL;
986         }
987
988         counter = ARMV8_IDX_TO_COUNTER(idx);
989         asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
990         return idx;
991 }
992
993 static inline int armv8pmu_enable_intens(int idx)
994 {
995         u32 counter;
996
997         if (!armv8pmu_counter_valid(idx)) {
998                 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
999                         smp_processor_id(), idx);
1000                 return -EINVAL;
1001         }
1002
1003         counter = ARMV8_IDX_TO_COUNTER(idx);
1004         asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
1005         return idx;
1006 }
1007
1008 static inline int armv8pmu_disable_intens(int idx)
1009 {
1010         u32 counter;
1011
1012         if (!armv8pmu_counter_valid(idx)) {
1013                 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
1014                         smp_processor_id(), idx);
1015                 return -EINVAL;
1016         }
1017
1018         counter = ARMV8_IDX_TO_COUNTER(idx);
1019         asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
1020         isb();
1021         /* Clear the overflow flag in case an interrupt is pending. */
1022         asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
1023         isb();
1024         return idx;
1025 }
1026
1027 static inline u32 armv8pmu_getreset_flags(void)
1028 {
1029         u32 value;
1030
1031         /* Read */
1032         asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
1033
1034         /* Write to clear flags */
1035         value &= ARMV8_OVSR_MASK;
1036         asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
1037
1038         return value;
1039 }
1040
1041 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
1042 {
1043         unsigned long flags;
1044         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1045
1046         /*
1047          * Enable counter and interrupt, and set the counter to count
1048          * the event that we're interested in.
1049          */
1050         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1051
1052         /*
1053          * Disable counter
1054          */
1055         armv8pmu_disable_counter(idx);
1056
1057         /*
1058          * Set event (if destined for PMNx counters).
1059          */
1060         armv8pmu_write_evtype(idx, hwc->config_base);
1061
1062         /*
1063          * Enable interrupt for this counter
1064          */
1065         armv8pmu_enable_intens(idx);
1066
1067         /*
1068          * Enable counter
1069          */
1070         armv8pmu_enable_counter(idx);
1071
1072         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1073 }
1074
1075 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
1076 {
1077         unsigned long flags;
1078         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1079
1080         /*
1081          * Disable counter and interrupt
1082          */
1083         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1084
1085         /*
1086          * Disable counter
1087          */
1088         armv8pmu_disable_counter(idx);
1089
1090         /*
1091          * Disable interrupt for this counter
1092          */
1093         armv8pmu_disable_intens(idx);
1094
1095         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1096 }
1097
1098 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1099 {
1100         u32 pmovsr;
1101         struct perf_sample_data data;
1102         struct pmu_hw_events *cpuc;
1103         struct pt_regs *regs;
1104         int idx;
1105
1106         /*
1107          * Get and reset the IRQ flags
1108          */
1109         pmovsr = armv8pmu_getreset_flags();
1110
1111         /*
1112          * Did an overflow occur?
1113          */
1114         if (!armv8pmu_has_overflowed(pmovsr))
1115                 return IRQ_NONE;
1116
1117         /*
1118          * Handle the counter(s) overflow(s)
1119          */
1120         regs = get_irq_regs();
1121
1122         cpuc = this_cpu_ptr(&cpu_hw_events);
1123         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1124                 struct perf_event *event = cpuc->events[idx];
1125                 struct hw_perf_event *hwc;
1126
1127                 /* Ignore if we don't have an event. */
1128                 if (!event)
1129                         continue;
1130
1131                 /*
1132                  * We have a single interrupt for all counters. Check that
1133                  * each counter has overflowed before we process it.
1134                  */
1135                 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1136                         continue;
1137
1138                 hwc = &event->hw;
1139                 armpmu_event_update(event, hwc, idx);
1140                 perf_sample_data_init(&data, 0, hwc->last_period);
1141                 if (!armpmu_event_set_period(event, hwc, idx))
1142                         continue;
1143
1144                 if (perf_event_overflow(event, &data, regs))
1145                         cpu_pmu->disable(hwc, idx);
1146         }
1147
1148         /*
1149          * Handle the pending perf events.
1150          *
1151          * Note: this call *must* be run with interrupts disabled. For
1152          * platforms that can have the PMU interrupts raised as an NMI, this
1153          * will not work.
1154          */
1155         irq_work_run();
1156
1157         return IRQ_HANDLED;
1158 }
1159
1160 static void armv8pmu_start(void)
1161 {
1162         unsigned long flags;
1163         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1164
1165         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1166         /* Enable all counters */
1167         armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1168         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1169 }
1170
1171 static void armv8pmu_stop(void)
1172 {
1173         unsigned long flags;
1174         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1175
1176         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1177         /* Disable all counters */
1178         armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1179         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1180 }
1181
1182 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1183                                   struct hw_perf_event *event)
1184 {
1185         int idx;
1186         unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1187
1188         /* Always place a cycle counter into the cycle counter. */
1189         if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1190                 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1191                         return -EAGAIN;
1192
1193                 return ARMV8_IDX_CYCLE_COUNTER;
1194         }
1195
1196         /*
1197          * For anything other than a cycle counter, try and use
1198          * the events counters
1199          */
1200         for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1201                 if (!test_and_set_bit(idx, cpuc->used_mask))
1202                         return idx;
1203         }
1204
1205         /* The counters are all in use. */
1206         return -EAGAIN;
1207 }
1208
1209 /*
1210  * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1211  */
1212 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1213                                      struct perf_event_attr *attr)
1214 {
1215         unsigned long config_base = 0;
1216
1217         if (attr->exclude_idle)
1218                 return -EPERM;
1219         if (attr->exclude_user)
1220                 config_base |= ARMV8_EXCLUDE_EL0;
1221         if (attr->exclude_kernel)
1222                 config_base |= ARMV8_EXCLUDE_EL1;
1223         if (!attr->exclude_hv)
1224                 config_base |= ARMV8_INCLUDE_EL2;
1225
1226         /*
1227          * Install the filter into config_base as this is used to
1228          * construct the event type.
1229          */
1230         event->config_base = config_base;
1231
1232         return 0;
1233 }
1234
1235 static void armv8pmu_reset(void *info)
1236 {
1237         u32 idx, nb_cnt = cpu_pmu->num_events;
1238
1239         /* The counter and interrupt enable registers are unknown at reset. */
1240         for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1241                 armv8pmu_disable_event(NULL, idx);
1242
1243         /* Initialize & Reset PMNC: C and P bits. */
1244         armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1245
1246         /* Disable access from userspace. */
1247         asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1248 }
1249
1250 static int armv8_pmuv3_map_event(struct perf_event *event)
1251 {
1252         return map_cpu_event(event, &armv8_pmuv3_perf_map,
1253                                 &armv8_pmuv3_perf_cache_map,
1254                                 ARMV8_EVTYPE_EVENT);
1255 }
1256
1257 static struct arm_pmu armv8pmu = {
1258         .handle_irq             = armv8pmu_handle_irq,
1259         .enable                 = armv8pmu_enable_event,
1260         .disable                = armv8pmu_disable_event,
1261         .read_counter           = armv8pmu_read_counter,
1262         .write_counter          = armv8pmu_write_counter,
1263         .get_event_idx          = armv8pmu_get_event_idx,
1264         .start                  = armv8pmu_start,
1265         .stop                   = armv8pmu_stop,
1266         .reset                  = armv8pmu_reset,
1267         .max_period             = (1LLU << 32) - 1,
1268 };
1269
1270 static u32 __init armv8pmu_read_num_pmnc_events(void)
1271 {
1272         u32 nb_cnt;
1273
1274         /* Read the nb of CNTx counters supported from PMNC */
1275         nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1276
1277         /* Add the CPU cycles counter and return */
1278         return nb_cnt + 1;
1279 }
1280
1281 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1282 {
1283         armv8pmu.name                   = "arm/armv8-pmuv3";
1284         armv8pmu.map_event              = armv8_pmuv3_map_event;
1285         armv8pmu.num_events             = armv8pmu_read_num_pmnc_events();
1286         armv8pmu.set_event_filter       = armv8pmu_set_event_filter;
1287         return &armv8pmu;
1288 }
1289
1290 /*
1291  * Ensure the PMU has sane values out of reset.
1292  * This requires SMP to be available, so exists as a separate initcall.
1293  */
1294 static int __init
1295 cpu_pmu_reset(void)
1296 {
1297         if (cpu_pmu && cpu_pmu->reset)
1298                 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1299         return 0;
1300 }
1301 arch_initcall(cpu_pmu_reset);
1302
1303 /*
1304  * PMU platform driver and devicetree bindings.
1305  */
1306 static const struct of_device_id armpmu_of_device_ids[] = {
1307         {.compatible = "arm,armv8-pmuv3"},
1308         {},
1309 };
1310
1311 static int armpmu_device_probe(struct platform_device *pdev)
1312 {
1313         int i, irq, *irqs;
1314
1315         if (!cpu_pmu)
1316                 return -ENODEV;
1317
1318         /* Don't bother with PPIs; they're already affine */
1319         irq = platform_get_irq(pdev, 0);
1320         if (irq >= 0 && irq_is_percpu(irq))
1321                 goto out;
1322
1323         irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
1324         if (!irqs)
1325                 return -ENOMEM;
1326
1327         for (i = 0; i < pdev->num_resources; ++i) {
1328                 struct device_node *dn;
1329                 int cpu;
1330
1331                 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity",
1332                                       i);
1333                 if (!dn) {
1334                         pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
1335                                 of_node_full_name(pdev->dev.of_node), i);
1336                         break;
1337                 }
1338
1339                 for_each_possible_cpu(cpu)
1340                         if (arch_find_n_match_cpu_physical_id(dn, cpu, NULL))
1341                                 break;
1342
1343                 of_node_put(dn);
1344                 if (cpu >= nr_cpu_ids) {
1345                         pr_warn("Failed to find logical CPU for %s\n",
1346                                 dn->name);
1347                         break;
1348                 }
1349
1350                 irqs[i] = cpu;
1351         }
1352
1353         if (i == pdev->num_resources)
1354                 cpu_pmu->irq_affinity = irqs;
1355         else
1356                 kfree(irqs);
1357
1358 out:
1359         cpu_pmu->plat_device = pdev;
1360         return 0;
1361 }
1362
1363 static struct platform_driver armpmu_driver = {
1364         .driver         = {
1365                 .name   = "arm-pmu",
1366                 .of_match_table = armpmu_of_device_ids,
1367         },
1368         .probe          = armpmu_device_probe,
1369 };
1370
1371 static int __init register_pmu_driver(void)
1372 {
1373         return platform_driver_register(&armpmu_driver);
1374 }
1375 device_initcall(register_pmu_driver);
1376
1377 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1378 {
1379         return this_cpu_ptr(&cpu_hw_events);
1380 }
1381
1382 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1383 {
1384         int cpu;
1385         for_each_possible_cpu(cpu) {
1386                 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1387                 events->events = per_cpu(hw_events, cpu);
1388                 events->used_mask = per_cpu(used_mask, cpu);
1389                 raw_spin_lock_init(&events->pmu_lock);
1390         }
1391         armpmu->get_hw_events = armpmu_get_cpu_events;
1392 }
1393
1394 static int __init init_hw_perf_events(void)
1395 {
1396         u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1397
1398         switch ((dfr >> 8) & 0xf) {
1399         case 0x1:       /* PMUv3 */
1400                 cpu_pmu = armv8_pmuv3_pmu_init();
1401                 break;
1402         }
1403
1404         if (cpu_pmu) {
1405                 pr_info("enabled with %s PMU driver, %d counters available\n",
1406                         cpu_pmu->name, cpu_pmu->num_events);
1407                 cpu_pmu_init(cpu_pmu);
1408                 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1409         } else {
1410                 pr_info("no hardware support available\n");
1411         }
1412
1413         return 0;
1414 }
1415 early_initcall(init_hw_perf_events);
1416
1417 /*
1418  * Callchain handling code.
1419  */
1420 struct frame_tail {
1421         struct frame_tail       __user *fp;
1422         unsigned long           lr;
1423 } __attribute__((packed));
1424
1425 /*
1426  * Get the return address for a single stackframe and return a pointer to the
1427  * next frame tail.
1428  */
1429 static struct frame_tail __user *
1430 user_backtrace(struct frame_tail __user *tail,
1431                struct perf_callchain_entry *entry)
1432 {
1433         struct frame_tail buftail;
1434         unsigned long err;
1435
1436         /* Also check accessibility of one struct frame_tail beyond */
1437         if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1438                 return NULL;
1439
1440         pagefault_disable();
1441         err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1442         pagefault_enable();
1443
1444         if (err)
1445                 return NULL;
1446
1447         perf_callchain_store(entry, buftail.lr);
1448
1449         /*
1450          * Frame pointers should strictly progress back up the stack
1451          * (towards higher addresses).
1452          */
1453         if (tail >= buftail.fp)
1454                 return NULL;
1455
1456         return buftail.fp;
1457 }
1458
1459 #ifdef CONFIG_COMPAT
1460 /*
1461  * The registers we're interested in are at the end of the variable
1462  * length saved register structure. The fp points at the end of this
1463  * structure so the address of this struct is:
1464  * (struct compat_frame_tail *)(xxx->fp)-1
1465  *
1466  * This code has been adapted from the ARM OProfile support.
1467  */
1468 struct compat_frame_tail {
1469         compat_uptr_t   fp; /* a (struct compat_frame_tail *) in compat mode */
1470         u32             sp;
1471         u32             lr;
1472 } __attribute__((packed));
1473
1474 static struct compat_frame_tail __user *
1475 compat_user_backtrace(struct compat_frame_tail __user *tail,
1476                       struct perf_callchain_entry *entry)
1477 {
1478         struct compat_frame_tail buftail;
1479         unsigned long err;
1480
1481         /* Also check accessibility of one struct frame_tail beyond */
1482         if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1483                 return NULL;
1484
1485         pagefault_disable();
1486         err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1487         pagefault_enable();
1488
1489         if (err)
1490                 return NULL;
1491
1492         perf_callchain_store(entry, buftail.lr);
1493
1494         /*
1495          * Frame pointers should strictly progress back up the stack
1496          * (towards higher addresses).
1497          */
1498         if (tail + 1 >= (struct compat_frame_tail __user *)
1499                         compat_ptr(buftail.fp))
1500                 return NULL;
1501
1502         return (struct compat_frame_tail __user *)compat_ptr(buftail.fp) - 1;
1503 }
1504 #endif /* CONFIG_COMPAT */
1505
1506 void perf_callchain_user(struct perf_callchain_entry *entry,
1507                          struct pt_regs *regs)
1508 {
1509         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1510                 /* We don't support guest os callchain now */
1511                 return;
1512         }
1513
1514         perf_callchain_store(entry, regs->pc);
1515
1516         if (!compat_user_mode(regs)) {
1517                 /* AARCH64 mode */
1518                 struct frame_tail __user *tail;
1519
1520                 tail = (struct frame_tail __user *)regs->regs[29];
1521
1522                 while (entry->nr < PERF_MAX_STACK_DEPTH &&
1523                        tail && !((unsigned long)tail & 0xf))
1524                         tail = user_backtrace(tail, entry);
1525         } else {
1526 #ifdef CONFIG_COMPAT
1527                 /* AARCH32 compat mode */
1528                 struct compat_frame_tail __user *tail;
1529
1530                 tail = (struct compat_frame_tail __user *)regs->compat_fp - 1;
1531
1532                 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1533                         tail && !((unsigned long)tail & 0x3))
1534                         tail = compat_user_backtrace(tail, entry);
1535 #endif
1536         }
1537 }
1538
1539 /*
1540  * Gets called by walk_stackframe() for every stackframe. This will be called
1541  * whist unwinding the stackframe and is like a subroutine return so we use
1542  * the PC.
1543  */
1544 static int callchain_trace(struct stackframe *frame, void *data)
1545 {
1546         struct perf_callchain_entry *entry = data;
1547         perf_callchain_store(entry, frame->pc);
1548         return 0;
1549 }
1550
1551 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1552                            struct pt_regs *regs)
1553 {
1554         struct stackframe frame;
1555
1556         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1557                 /* We don't support guest os callchain now */
1558                 return;
1559         }
1560
1561         frame.fp = regs->regs[29];
1562         frame.sp = regs->sp;
1563         frame.pc = regs->pc;
1564
1565         walk_stackframe(&frame, callchain_trace, entry);
1566 }
1567
1568 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1569 {
1570         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1571                 return perf_guest_cbs->get_guest_ip();
1572
1573         return instruction_pointer(regs);
1574 }
1575
1576 unsigned long perf_misc_flags(struct pt_regs *regs)
1577 {
1578         int misc = 0;
1579
1580         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1581                 if (perf_guest_cbs->is_user_mode())
1582                         misc |= PERF_RECORD_MISC_GUEST_USER;
1583                 else
1584                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1585         } else {
1586                 if (user_mode(regs))
1587                         misc |= PERF_RECORD_MISC_USER;
1588                 else
1589                         misc |= PERF_RECORD_MISC_KERNEL;
1590         }
1591
1592         return misc;
1593 }