Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <asm/cpu.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/processor.h>
30 #include <asm/sysreg.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT        \
37                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42                                  COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50         {                                               \
51                 .sign = SIGNED,                         \
52                 .strict = STRICT,                       \
53                 .type = TYPE,                           \
54                 .shift = SHIFT,                         \
55                 .width = WIDTH,                         \
56                 .safe_val = SAFE_VAL,                   \
57         }
58
59 /* Define a feature with signed values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with unsigned value */
64 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END                                   \
68         {                                               \
69                 .width = 0,                             \
70         }
71
72 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
73         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
74         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
75         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
76         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
82         ARM64_FTR_END,
83 };
84
85 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
88         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
89         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
90         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
91         /* Linux doesn't care about the EL3 */
92         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
94         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
95         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
96         ARM64_FTR_END,
97 };
98
99 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
101         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
102         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
104         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
105         /* Linux shouldn't care about secure memory */
106         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
109         /*
110          * Differing PARange is fine as long as all peripherals and memory are mapped
111          * within the minimum PARange of all CPUs
112          */
113         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
114         ARM64_FTR_END,
115 };
116
117 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
118         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
119         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
120         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
125         ARM64_FTR_END,
126 };
127
128 static struct arm64_ftr_bits ftr_ctr[] = {
129         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
130         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
131         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
132         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
133         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
134         /*
135          * Linux can handle differing I-cache policies. Userspace JITs will
136          * make use of *minLine
137          */
138         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
139         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
140         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
141         ARM64_FTR_END,
142 };
143
144 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
145         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
146         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
147         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
150         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
151         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
152         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
153         ARM64_FTR_END,
154 };
155
156 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
158         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
159         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
160         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
161         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
162         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
163         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
164         ARM64_FTR_END,
165 };
166
167 static struct arm64_ftr_bits ftr_mvfr2[] = {
168         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
169         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
170         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
171         ARM64_FTR_END,
172 };
173
174 static struct arm64_ftr_bits ftr_dczid[] = {
175         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
177         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
178         ARM64_FTR_END,
179 };
180
181
182 static struct arm64_ftr_bits ftr_id_isar5[] = {
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
190         ARM64_FTR_END,
191 };
192
193 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
197         ARM64_FTR_END,
198 };
199
200 static struct arm64_ftr_bits ftr_id_pfr0[] = {
201         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
205         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
206         ARM64_FTR_END,
207 };
208
209 /*
210  * Common ftr bits for a 32bit register with all hidden, strict
211  * attributes, with 4bit feature fields and a default safe value of
212  * 0. Covers the following 32bit registers:
213  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
214  */
215 static struct arm64_ftr_bits ftr_generic_32bits[] = {
216         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
217         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
218         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
219         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
220         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
221         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
222         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
223         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
224         ARM64_FTR_END,
225 };
226
227 static struct arm64_ftr_bits ftr_generic[] = {
228         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
229         ARM64_FTR_END,
230 };
231
232 static struct arm64_ftr_bits ftr_generic32[] = {
233         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
234         ARM64_FTR_END,
235 };
236
237 static struct arm64_ftr_bits ftr_aa64raz[] = {
238         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
239         ARM64_FTR_END,
240 };
241
242 #define ARM64_FTR_REG(id, table)                \
243         {                                       \
244                 .sys_id = id,                   \
245                 .name = #id,                    \
246                 .ftr_bits = &((table)[0]),      \
247         }
248
249 static struct arm64_ftr_reg arm64_ftr_regs[] = {
250
251         /* Op1 = 0, CRn = 0, CRm = 1 */
252         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
253         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
254         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
255         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
256         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
257         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
258         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
259
260         /* Op1 = 0, CRn = 0, CRm = 2 */
261         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
262         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
263         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
264         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
266         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
267         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
268
269         /* Op1 = 0, CRn = 0, CRm = 3 */
270         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
271         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
272         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
273
274         /* Op1 = 0, CRn = 0, CRm = 4 */
275         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
276         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
277
278         /* Op1 = 0, CRn = 0, CRm = 5 */
279         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
280         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
281
282         /* Op1 = 0, CRn = 0, CRm = 6 */
283         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
284         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
285
286         /* Op1 = 0, CRn = 0, CRm = 7 */
287         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
288         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
289
290         /* Op1 = 3, CRn = 0, CRm = 0 */
291         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
292         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
293
294         /* Op1 = 3, CRn = 14, CRm = 0 */
295         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
296 };
297
298 static int search_cmp_ftr_reg(const void *id, const void *regp)
299 {
300         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
301 }
302
303 /*
304  * get_arm64_ftr_reg - Lookup a feature register entry using its
305  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
306  * ascending order of sys_id , we use binary search to find a matching
307  * entry.
308  *
309  * returns - Upon success,  matching ftr_reg entry for id.
310  *         - NULL on failure. It is upto the caller to decide
311  *           the impact of a failure.
312  */
313 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
314 {
315         return bsearch((const void *)(unsigned long)sys_id,
316                         arm64_ftr_regs,
317                         ARRAY_SIZE(arm64_ftr_regs),
318                         sizeof(arm64_ftr_regs[0]),
319                         search_cmp_ftr_reg);
320 }
321
322 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
323 {
324         u64 mask = arm64_ftr_mask(ftrp);
325
326         reg &= ~mask;
327         reg |= (ftr_val << ftrp->shift) & mask;
328         return reg;
329 }
330
331 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
332 {
333         s64 ret = 0;
334
335         switch (ftrp->type) {
336         case FTR_EXACT:
337                 ret = ftrp->safe_val;
338                 break;
339         case FTR_LOWER_SAFE:
340                 ret = new < cur ? new : cur;
341                 break;
342         case FTR_HIGHER_SAFE:
343                 ret = new > cur ? new : cur;
344                 break;
345         default:
346                 BUG();
347         }
348
349         return ret;
350 }
351
352 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
353 {
354         return ((const struct arm64_ftr_reg *)a)->sys_id -
355                  ((const struct arm64_ftr_reg *)b)->sys_id;
356 }
357
358 static void __init swap_ftr_regs(void *a, void *b, int size)
359 {
360         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
361         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
362         *(struct arm64_ftr_reg *)b = tmp;
363 }
364
365 static void __init sort_ftr_regs(void)
366 {
367         /* Keep the array sorted so that we can do the binary search */
368         sort(arm64_ftr_regs,
369                 ARRAY_SIZE(arm64_ftr_regs),
370                 sizeof(arm64_ftr_regs[0]),
371                 sort_cmp_ftr_regs,
372                 swap_ftr_regs);
373 }
374
375 /*
376  * Initialise the CPU feature register from Boot CPU values.
377  * Also initiliases the strict_mask for the register.
378  */
379 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
380 {
381         u64 val = 0;
382         u64 strict_mask = ~0x0ULL;
383         struct arm64_ftr_bits *ftrp;
384         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
385
386         BUG_ON(!reg);
387
388         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
389                 s64 ftr_new = arm64_ftr_value(ftrp, new);
390
391                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
392                 if (!ftrp->strict)
393                         strict_mask &= ~arm64_ftr_mask(ftrp);
394         }
395         reg->sys_val = val;
396         reg->strict_mask = strict_mask;
397 }
398
399 void __init init_cpu_features(struct cpuinfo_arm64 *info)
400 {
401         /* Before we start using the tables, make sure it is sorted */
402         sort_ftr_regs();
403
404         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
405         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
406         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
407         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
408         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
409         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
410         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
411         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
412         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
413         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
414         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
415         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
416         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
417         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
418         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
419         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
420         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
421         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
422         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
423         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
424         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
425         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
426         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
427         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
428         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
429         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
430         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
431 }
432
433 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
434 {
435         struct arm64_ftr_bits *ftrp;
436
437         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
438                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
439                 s64 ftr_new = arm64_ftr_value(ftrp, new);
440
441                 if (ftr_cur == ftr_new)
442                         continue;
443                 /* Find a safe value */
444                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
445                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
446         }
447
448 }
449
450 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
451 {
452         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
453
454         BUG_ON(!regp);
455         update_cpu_ftr_reg(regp, val);
456         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
457                 return 0;
458         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
459                         regp->name, boot, cpu, val);
460         return 1;
461 }
462
463 /*
464  * Update system wide CPU feature registers with the values from a
465  * non-boot CPU. Also performs SANITY checks to make sure that there
466  * aren't any insane variations from that of the boot CPU.
467  */
468 void update_cpu_features(int cpu,
469                          struct cpuinfo_arm64 *info,
470                          struct cpuinfo_arm64 *boot)
471 {
472         int taint = 0;
473
474         /*
475          * The kernel can handle differing I-cache policies, but otherwise
476          * caches should look identical. Userspace JITs will make use of
477          * *minLine.
478          */
479         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
480                                       info->reg_ctr, boot->reg_ctr);
481
482         /*
483          * Userspace may perform DC ZVA instructions. Mismatched block sizes
484          * could result in too much or too little memory being zeroed if a
485          * process is preempted and migrated between CPUs.
486          */
487         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
488                                       info->reg_dczid, boot->reg_dczid);
489
490         /* If different, timekeeping will be broken (especially with KVM) */
491         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
492                                       info->reg_cntfrq, boot->reg_cntfrq);
493
494         /*
495          * The kernel uses self-hosted debug features and expects CPUs to
496          * support identical debug features. We presently need CTX_CMPs, WRPs,
497          * and BRPs to be identical.
498          * ID_AA64DFR1 is currently RES0.
499          */
500         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
501                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
502         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
503                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
504         /*
505          * Even in big.LITTLE, processors should be identical instruction-set
506          * wise.
507          */
508         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
509                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
510         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
511                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
512
513         /*
514          * Differing PARange support is fine as long as all peripherals and
515          * memory are mapped within the minimum PARange of all CPUs.
516          * Linux should not care about secure memory.
517          */
518         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
519                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
520         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
521                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
522
523         /*
524          * EL3 is not our concern.
525          * ID_AA64PFR1 is currently RES0.
526          */
527         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
528                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
529         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
530                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
531
532         /*
533          * If we have AArch32, we care about 32-bit features for compat. These
534          * registers should be RES0 otherwise.
535          */
536         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
537                                         info->reg_id_dfr0, boot->reg_id_dfr0);
538         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
539                                         info->reg_id_isar0, boot->reg_id_isar0);
540         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
541                                         info->reg_id_isar1, boot->reg_id_isar1);
542         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
543                                         info->reg_id_isar2, boot->reg_id_isar2);
544         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
545                                         info->reg_id_isar3, boot->reg_id_isar3);
546         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
547                                         info->reg_id_isar4, boot->reg_id_isar4);
548         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
549                                         info->reg_id_isar5, boot->reg_id_isar5);
550
551         /*
552          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
553          * ACTLR formats could differ across CPUs and therefore would have to
554          * be trapped for virtualization anyway.
555          */
556         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
557                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
558         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
559                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
560         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
561                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
562         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
563                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
564         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
565                                         info->reg_id_pfr0, boot->reg_id_pfr0);
566         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
567                                         info->reg_id_pfr1, boot->reg_id_pfr1);
568         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
569                                         info->reg_mvfr0, boot->reg_mvfr0);
570         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
571                                         info->reg_mvfr1, boot->reg_mvfr1);
572         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
573                                         info->reg_mvfr2, boot->reg_mvfr2);
574
575         /*
576          * Mismatched CPU features are a recipe for disaster. Don't even
577          * pretend to support them.
578          */
579         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
580                         "Unsupported CPU feature variation.\n");
581 }
582
583 u64 read_system_reg(u32 id)
584 {
585         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
586
587         /* We shouldn't get a request for an unsupported register */
588         BUG_ON(!regp);
589         return regp->sys_val;
590 }
591
592 #include <linux/irqchip/arm-gic-v3.h>
593
594 static bool
595 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
596 {
597         int val = cpuid_feature_extract_field(reg, entry->field_pos);
598
599         return val >= entry->min_field_value;
600 }
601
602 static bool
603 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
604 {
605         u64 val;
606
607         val = read_system_reg(entry->sys_reg);
608         return feature_matches(val, entry);
609 }
610
611 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
612 {
613         bool has_sre;
614
615         if (!has_cpuid_feature(entry))
616                 return false;
617
618         has_sre = gic_enable_sre();
619         if (!has_sre)
620                 pr_warn_once("%s present but disabled by higher exception level\n",
621                              entry->desc);
622
623         return has_sre;
624 }
625
626 static const struct arm64_cpu_capabilities arm64_features[] = {
627         {
628                 .desc = "GIC system register CPU interface",
629                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
630                 .matches = has_useable_gicv3_cpuif,
631                 .sys_reg = SYS_ID_AA64PFR0_EL1,
632                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
633                 .min_field_value = 1,
634         },
635 #ifdef CONFIG_ARM64_PAN
636         {
637                 .desc = "Privileged Access Never",
638                 .capability = ARM64_HAS_PAN,
639                 .matches = has_cpuid_feature,
640                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
641                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
642                 .min_field_value = 1,
643                 .enable = cpu_enable_pan,
644         },
645 #endif /* CONFIG_ARM64_PAN */
646 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
647         {
648                 .desc = "LSE atomic instructions",
649                 .capability = ARM64_HAS_LSE_ATOMICS,
650                 .matches = has_cpuid_feature,
651                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
652                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
653                 .min_field_value = 2,
654         },
655 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
656         {},
657 };
658
659 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
660         {                                                       \
661                 .desc = #cap,                                   \
662                 .matches = has_cpuid_feature,                   \
663                 .sys_reg = reg,                                 \
664                 .field_pos = field,                             \
665                 .min_field_value = min_value,                   \
666                 .hwcap_type = type,                             \
667                 .hwcap = cap,                                   \
668         }
669
670 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
671         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
672         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
673         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
674         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
675         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
676         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
677         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
678         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
679 #ifdef CONFIG_COMPAT
680         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
681         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
682         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
683         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
684         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
685 #endif
686         {},
687 };
688
689 static void cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
690 {
691         switch (cap->hwcap_type) {
692         case CAP_HWCAP:
693                 elf_hwcap |= cap->hwcap;
694                 break;
695 #ifdef CONFIG_COMPAT
696         case CAP_COMPAT_HWCAP:
697                 compat_elf_hwcap |= (u32)cap->hwcap;
698                 break;
699         case CAP_COMPAT_HWCAP2:
700                 compat_elf_hwcap2 |= (u32)cap->hwcap;
701                 break;
702 #endif
703         default:
704                 WARN_ON(1);
705                 break;
706         }
707 }
708
709 /* Check if we have a particular HWCAP enabled */
710 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
711 {
712         bool rc;
713
714         switch (cap->hwcap_type) {
715         case CAP_HWCAP:
716                 rc = (elf_hwcap & cap->hwcap) != 0;
717                 break;
718 #ifdef CONFIG_COMPAT
719         case CAP_COMPAT_HWCAP:
720                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
721                 break;
722         case CAP_COMPAT_HWCAP2:
723                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
724                 break;
725 #endif
726         default:
727                 WARN_ON(1);
728                 rc = false;
729         }
730
731         return rc;
732 }
733
734 static void setup_cpu_hwcaps(void)
735 {
736         int i;
737         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
738
739         for (i = 0; hwcaps[i].desc; i++)
740                 if (hwcaps[i].matches(&hwcaps[i]))
741                         cap_set_hwcap(&hwcaps[i]);
742 }
743
744 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
745                             const char *info)
746 {
747         int i;
748
749         for (i = 0; caps[i].desc; i++) {
750                 if (!caps[i].matches(&caps[i]))
751                         continue;
752
753                 if (!cpus_have_cap(caps[i].capability))
754                         pr_info("%s %s\n", info, caps[i].desc);
755                 cpus_set_cap(caps[i].capability);
756         }
757 }
758
759 /*
760  * Run through the enabled capabilities and enable() it on all active
761  * CPUs
762  */
763 static void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
764 {
765         int i;
766
767         for (i = 0; caps[i].desc; i++)
768                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
769                         /*
770                          * Use stop_machine() as it schedules the work allowing
771                          * us to modify PSTATE, instead of on_each_cpu() which
772                          * uses an IPI, giving us a PSTATE that disappears when
773                          * we return.
774                          */
775                         stop_machine(caps[i].enable, NULL, cpu_online_mask);
776 }
777
778 #ifdef CONFIG_HOTPLUG_CPU
779
780 /*
781  * Flag to indicate if we have computed the system wide
782  * capabilities based on the boot time active CPUs. This
783  * will be used to determine if a new booting CPU should
784  * go through the verification process to make sure that it
785  * supports the system capabilities, without using a hotplug
786  * notifier.
787  */
788 static bool sys_caps_initialised;
789
790 static inline void set_sys_caps_initialised(void)
791 {
792         sys_caps_initialised = true;
793 }
794
795 /*
796  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
797  */
798 static u64 __raw_read_system_reg(u32 sys_id)
799 {
800         switch (sys_id) {
801         case SYS_ID_PFR0_EL1:           return (u64)read_cpuid(ID_PFR0_EL1);
802         case SYS_ID_PFR1_EL1:           return (u64)read_cpuid(ID_PFR1_EL1);
803         case SYS_ID_DFR0_EL1:           return (u64)read_cpuid(ID_DFR0_EL1);
804         case SYS_ID_MMFR0_EL1:          return (u64)read_cpuid(ID_MMFR0_EL1);
805         case SYS_ID_MMFR1_EL1:          return (u64)read_cpuid(ID_MMFR1_EL1);
806         case SYS_ID_MMFR2_EL1:          return (u64)read_cpuid(ID_MMFR2_EL1);
807         case SYS_ID_MMFR3_EL1:          return (u64)read_cpuid(ID_MMFR3_EL1);
808         case SYS_ID_ISAR0_EL1:          return (u64)read_cpuid(ID_ISAR0_EL1);
809         case SYS_ID_ISAR1_EL1:          return (u64)read_cpuid(ID_ISAR1_EL1);
810         case SYS_ID_ISAR2_EL1:          return (u64)read_cpuid(ID_ISAR2_EL1);
811         case SYS_ID_ISAR3_EL1:          return (u64)read_cpuid(ID_ISAR3_EL1);
812         case SYS_ID_ISAR4_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
813         case SYS_ID_ISAR5_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
814         case SYS_MVFR0_EL1:             return (u64)read_cpuid(MVFR0_EL1);
815         case SYS_MVFR1_EL1:             return (u64)read_cpuid(MVFR1_EL1);
816         case SYS_MVFR2_EL1:             return (u64)read_cpuid(MVFR2_EL1);
817
818         case SYS_ID_AA64PFR0_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
819         case SYS_ID_AA64PFR1_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
820         case SYS_ID_AA64DFR0_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
821         case SYS_ID_AA64DFR1_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
822         case SYS_ID_AA64MMFR0_EL1:      return (u64)read_cpuid(ID_AA64MMFR0_EL1);
823         case SYS_ID_AA64MMFR1_EL1:      return (u64)read_cpuid(ID_AA64MMFR1_EL1);
824         case SYS_ID_AA64ISAR0_EL1:      return (u64)read_cpuid(ID_AA64ISAR0_EL1);
825         case SYS_ID_AA64ISAR1_EL1:      return (u64)read_cpuid(ID_AA64ISAR1_EL1);
826
827         case SYS_CNTFRQ_EL0:            return (u64)read_cpuid(CNTFRQ_EL0);
828         case SYS_CTR_EL0:               return (u64)read_cpuid(CTR_EL0);
829         case SYS_DCZID_EL0:             return (u64)read_cpuid(DCZID_EL0);
830         default:
831                 BUG();
832                 return 0;
833         }
834 }
835
836 /*
837  * Park the CPU which doesn't have the capability as advertised
838  * by the system.
839  */
840 static void fail_incapable_cpu(char *cap_type,
841                                  const struct arm64_cpu_capabilities *cap)
842 {
843         int cpu = smp_processor_id();
844
845         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
846         /* Mark this CPU absent */
847         set_cpu_present(cpu, 0);
848
849         /* Check if we can park ourselves */
850         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
851                 cpu_ops[cpu]->cpu_die(cpu);
852         asm(
853         "1:     wfe\n"
854         "       wfi\n"
855         "       b       1b");
856 }
857
858 /*
859  * Run through the enabled system capabilities and enable() it on this CPU.
860  * The capabilities were decided based on the available CPUs at the boot time.
861  * Any new CPU should match the system wide status of the capability. If the
862  * new CPU doesn't have a capability which the system now has enabled, we
863  * cannot do anything to fix it up and could cause unexpected failures. So
864  * we park the CPU.
865  */
866 void verify_local_cpu_capabilities(void)
867 {
868         int i;
869         const struct arm64_cpu_capabilities *caps;
870
871         /*
872          * If we haven't computed the system capabilities, there is nothing
873          * to verify.
874          */
875         if (!sys_caps_initialised)
876                 return;
877
878         caps = arm64_features;
879         for (i = 0; caps[i].desc; i++) {
880                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
881                         continue;
882                 /*
883                  * If the new CPU misses an advertised feature, we cannot proceed
884                  * further, park the cpu.
885                  */
886                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
887                         fail_incapable_cpu("arm64_features", &caps[i]);
888                 if (caps[i].enable)
889                         caps[i].enable(NULL);
890         }
891
892         for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
893                 if (!cpus_have_hwcap(&caps[i]))
894                         continue;
895                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
896                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
897         }
898 }
899
900 #else   /* !CONFIG_HOTPLUG_CPU */
901
902 static inline void set_sys_caps_initialised(void)
903 {
904 }
905
906 #endif  /* CONFIG_HOTPLUG_CPU */
907
908 static void setup_feature_capabilities(void)
909 {
910         update_cpu_capabilities(arm64_features, "detected feature:");
911         enable_cpu_capabilities(arm64_features);
912 }
913
914 void __init setup_cpu_features(void)
915 {
916         u32 cwg;
917         int cls;
918
919         /* Set the CPU feature capabilies */
920         setup_feature_capabilities();
921         setup_cpu_hwcaps();
922
923         /* Advertise that we have computed the system capabilities */
924         set_sys_caps_initialised();
925
926         /*
927          * Check for sane CTR_EL0.CWG value.
928          */
929         cwg = cache_type_cwg();
930         cls = cache_line_size();
931         if (!cwg)
932                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
933                         cls);
934         if (L1_CACHE_BYTES < cls)
935                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
936                         L1_CACHE_BYTES, cls);
937 }