These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT        \
35                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40                                  COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46
47 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
48         {                                               \
49                 .sign = SIGNED,                         \
50                 .strict = STRICT,                       \
51                 .type = TYPE,                           \
52                 .shift = SHIFT,                         \
53                 .width = WIDTH,                         \
54                 .safe_val = SAFE_VAL,                   \
55         }
56
57 /* Define a feature with signed values */
58 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
59         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
60
61 /* Define a feature with unsigned value */
62 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
64
65 #define ARM64_FTR_END                                   \
66         {                                               \
67                 .width = 0,                             \
68         }
69
70 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
71         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
72         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
73         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
74         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
75         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
76         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
80         ARM64_FTR_END,
81 };
82
83 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
84         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
88         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
89         /* Linux doesn't care about the EL3 */
90         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
94         ARM64_FTR_END,
95 };
96
97 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
101         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
102         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
103         /* Linux shouldn't care about secure memory */
104         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
107         /*
108          * Differing PARange is fine as long as all peripherals and memory are mapped
109          * within the minimum PARange of all CPUs
110          */
111         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
112         ARM64_FTR_END,
113 };
114
115 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
116         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
117         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
118         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
119         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
120         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
123         ARM64_FTR_END,
124 };
125
126 static struct arm64_ftr_bits ftr_ctr[] = {
127         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
129         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
130         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
131         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
132         /*
133          * Linux can handle differing I-cache policies. Userspace JITs will
134          * make use of *minLine
135          */
136         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
137         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
138         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
139         ARM64_FTR_END,
140 };
141
142 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
143         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
144         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
145         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
146         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
147         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
150         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
151         ARM64_FTR_END,
152 };
153
154 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
155         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
156         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
157         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
158         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
159         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
160         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
161         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
162         ARM64_FTR_END,
163 };
164
165 static struct arm64_ftr_bits ftr_mvfr2[] = {
166         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
167         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
168         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
169         ARM64_FTR_END,
170 };
171
172 static struct arm64_ftr_bits ftr_dczid[] = {
173         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
174         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
175         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
176         ARM64_FTR_END,
177 };
178
179
180 static struct arm64_ftr_bits ftr_id_isar5[] = {
181         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
182         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
188         ARM64_FTR_END,
189 };
190
191 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
195         ARM64_FTR_END,
196 };
197
198 static struct arm64_ftr_bits ftr_id_pfr0[] = {
199         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
200         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
201         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
204         ARM64_FTR_END,
205 };
206
207 /*
208  * Common ftr bits for a 32bit register with all hidden, strict
209  * attributes, with 4bit feature fields and a default safe value of
210  * 0. Covers the following 32bit registers:
211  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
212  */
213 static struct arm64_ftr_bits ftr_generic_32bits[] = {
214         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
215         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
216         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
217         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
218         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
219         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
220         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
221         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
222         ARM64_FTR_END,
223 };
224
225 static struct arm64_ftr_bits ftr_generic[] = {
226         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
227         ARM64_FTR_END,
228 };
229
230 static struct arm64_ftr_bits ftr_generic32[] = {
231         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
232         ARM64_FTR_END,
233 };
234
235 static struct arm64_ftr_bits ftr_aa64raz[] = {
236         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
237         ARM64_FTR_END,
238 };
239
240 #define ARM64_FTR_REG(id, table)                \
241         {                                       \
242                 .sys_id = id,                   \
243                 .name = #id,                    \
244                 .ftr_bits = &((table)[0]),      \
245         }
246
247 static struct arm64_ftr_reg arm64_ftr_regs[] = {
248
249         /* Op1 = 0, CRn = 0, CRm = 1 */
250         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
251         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
252         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
253         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
254         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
255         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
256         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
257
258         /* Op1 = 0, CRn = 0, CRm = 2 */
259         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
260         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
261         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
262         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
263         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
264         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
265         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
266
267         /* Op1 = 0, CRn = 0, CRm = 3 */
268         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
269         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
270         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
271
272         /* Op1 = 0, CRn = 0, CRm = 4 */
273         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
274         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
275
276         /* Op1 = 0, CRn = 0, CRm = 5 */
277         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
278         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
279
280         /* Op1 = 0, CRn = 0, CRm = 6 */
281         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
282         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
283
284         /* Op1 = 0, CRn = 0, CRm = 7 */
285         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
286         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
287
288         /* Op1 = 3, CRn = 0, CRm = 0 */
289         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
290         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
291
292         /* Op1 = 3, CRn = 14, CRm = 0 */
293         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
294 };
295
296 static int search_cmp_ftr_reg(const void *id, const void *regp)
297 {
298         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
299 }
300
301 /*
302  * get_arm64_ftr_reg - Lookup a feature register entry using its
303  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
304  * ascending order of sys_id , we use binary search to find a matching
305  * entry.
306  *
307  * returns - Upon success,  matching ftr_reg entry for id.
308  *         - NULL on failure. It is upto the caller to decide
309  *           the impact of a failure.
310  */
311 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
312 {
313         return bsearch((const void *)(unsigned long)sys_id,
314                         arm64_ftr_regs,
315                         ARRAY_SIZE(arm64_ftr_regs),
316                         sizeof(arm64_ftr_regs[0]),
317                         search_cmp_ftr_reg);
318 }
319
320 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
321 {
322         u64 mask = arm64_ftr_mask(ftrp);
323
324         reg &= ~mask;
325         reg |= (ftr_val << ftrp->shift) & mask;
326         return reg;
327 }
328
329 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
330 {
331         s64 ret = 0;
332
333         switch (ftrp->type) {
334         case FTR_EXACT:
335                 ret = ftrp->safe_val;
336                 break;
337         case FTR_LOWER_SAFE:
338                 ret = new < cur ? new : cur;
339                 break;
340         case FTR_HIGHER_SAFE:
341                 ret = new > cur ? new : cur;
342                 break;
343         default:
344                 BUG();
345         }
346
347         return ret;
348 }
349
350 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
351 {
352         return ((const struct arm64_ftr_reg *)a)->sys_id -
353                  ((const struct arm64_ftr_reg *)b)->sys_id;
354 }
355
356 static void __init swap_ftr_regs(void *a, void *b, int size)
357 {
358         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
359         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
360         *(struct arm64_ftr_reg *)b = tmp;
361 }
362
363 static void __init sort_ftr_regs(void)
364 {
365         /* Keep the array sorted so that we can do the binary search */
366         sort(arm64_ftr_regs,
367                 ARRAY_SIZE(arm64_ftr_regs),
368                 sizeof(arm64_ftr_regs[0]),
369                 sort_cmp_ftr_regs,
370                 swap_ftr_regs);
371 }
372
373 /*
374  * Initialise the CPU feature register from Boot CPU values.
375  * Also initiliases the strict_mask for the register.
376  */
377 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
378 {
379         u64 val = 0;
380         u64 strict_mask = ~0x0ULL;
381         struct arm64_ftr_bits *ftrp;
382         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
383
384         BUG_ON(!reg);
385
386         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
387                 s64 ftr_new = arm64_ftr_value(ftrp, new);
388
389                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
390                 if (!ftrp->strict)
391                         strict_mask &= ~arm64_ftr_mask(ftrp);
392         }
393         reg->sys_val = val;
394         reg->strict_mask = strict_mask;
395 }
396
397 void __init init_cpu_features(struct cpuinfo_arm64 *info)
398 {
399         /* Before we start using the tables, make sure it is sorted */
400         sort_ftr_regs();
401
402         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
403         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
404         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
405         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
406         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
407         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
408         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
409         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
410         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
411         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
412         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
413         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
414         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
415         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
416         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
417         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
418         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
419         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
420         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
421         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
422         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
423         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
424         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
425         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
426         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
427         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
428         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
429 }
430
431 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
432 {
433         struct arm64_ftr_bits *ftrp;
434
435         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
436                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
437                 s64 ftr_new = arm64_ftr_value(ftrp, new);
438
439                 if (ftr_cur == ftr_new)
440                         continue;
441                 /* Find a safe value */
442                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
443                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
444         }
445
446 }
447
448 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
449 {
450         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
451
452         BUG_ON(!regp);
453         update_cpu_ftr_reg(regp, val);
454         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
455                 return 0;
456         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
457                         regp->name, boot, cpu, val);
458         return 1;
459 }
460
461 /*
462  * Update system wide CPU feature registers with the values from a
463  * non-boot CPU. Also performs SANITY checks to make sure that there
464  * aren't any insane variations from that of the boot CPU.
465  */
466 void update_cpu_features(int cpu,
467                          struct cpuinfo_arm64 *info,
468                          struct cpuinfo_arm64 *boot)
469 {
470         int taint = 0;
471
472         /*
473          * The kernel can handle differing I-cache policies, but otherwise
474          * caches should look identical. Userspace JITs will make use of
475          * *minLine.
476          */
477         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
478                                       info->reg_ctr, boot->reg_ctr);
479
480         /*
481          * Userspace may perform DC ZVA instructions. Mismatched block sizes
482          * could result in too much or too little memory being zeroed if a
483          * process is preempted and migrated between CPUs.
484          */
485         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
486                                       info->reg_dczid, boot->reg_dczid);
487
488         /* If different, timekeeping will be broken (especially with KVM) */
489         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
490                                       info->reg_cntfrq, boot->reg_cntfrq);
491
492         /*
493          * The kernel uses self-hosted debug features and expects CPUs to
494          * support identical debug features. We presently need CTX_CMPs, WRPs,
495          * and BRPs to be identical.
496          * ID_AA64DFR1 is currently RES0.
497          */
498         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
499                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
500         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
501                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
502         /*
503          * Even in big.LITTLE, processors should be identical instruction-set
504          * wise.
505          */
506         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
507                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
508         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
509                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
510
511         /*
512          * Differing PARange support is fine as long as all peripherals and
513          * memory are mapped within the minimum PARange of all CPUs.
514          * Linux should not care about secure memory.
515          */
516         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
517                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
518         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
519                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
520
521         /*
522          * EL3 is not our concern.
523          * ID_AA64PFR1 is currently RES0.
524          */
525         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
526                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
527         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
528                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
529
530         /*
531          * If we have AArch32, we care about 32-bit features for compat. These
532          * registers should be RES0 otherwise.
533          */
534         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
535                                         info->reg_id_dfr0, boot->reg_id_dfr0);
536         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
537                                         info->reg_id_isar0, boot->reg_id_isar0);
538         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
539                                         info->reg_id_isar1, boot->reg_id_isar1);
540         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
541                                         info->reg_id_isar2, boot->reg_id_isar2);
542         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
543                                         info->reg_id_isar3, boot->reg_id_isar3);
544         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
545                                         info->reg_id_isar4, boot->reg_id_isar4);
546         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
547                                         info->reg_id_isar5, boot->reg_id_isar5);
548
549         /*
550          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
551          * ACTLR formats could differ across CPUs and therefore would have to
552          * be trapped for virtualization anyway.
553          */
554         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
555                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
556         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
557                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
558         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
559                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
560         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
561                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
562         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
563                                         info->reg_id_pfr0, boot->reg_id_pfr0);
564         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
565                                         info->reg_id_pfr1, boot->reg_id_pfr1);
566         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
567                                         info->reg_mvfr0, boot->reg_mvfr0);
568         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
569                                         info->reg_mvfr1, boot->reg_mvfr1);
570         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
571                                         info->reg_mvfr2, boot->reg_mvfr2);
572
573         /*
574          * Mismatched CPU features are a recipe for disaster. Don't even
575          * pretend to support them.
576          */
577         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
578                         "Unsupported CPU feature variation.\n");
579 }
580
581 u64 read_system_reg(u32 id)
582 {
583         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
584
585         /* We shouldn't get a request for an unsupported register */
586         BUG_ON(!regp);
587         return regp->sys_val;
588 }
589
590 #include <linux/irqchip/arm-gic-v3.h>
591
592 static bool
593 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
594 {
595         int val = cpuid_feature_extract_field(reg, entry->field_pos);
596
597         return val >= entry->min_field_value;
598 }
599
600 static bool
601 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
602 {
603         u64 val;
604
605         val = read_system_reg(entry->sys_reg);
606         return feature_matches(val, entry);
607 }
608
609 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
610 {
611         bool has_sre;
612
613         if (!has_cpuid_feature(entry))
614                 return false;
615
616         has_sre = gic_enable_sre();
617         if (!has_sre)
618                 pr_warn_once("%s present but disabled by higher exception level\n",
619                              entry->desc);
620
621         return has_sre;
622 }
623
624 static const struct arm64_cpu_capabilities arm64_features[] = {
625         {
626                 .desc = "GIC system register CPU interface",
627                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
628                 .matches = has_useable_gicv3_cpuif,
629                 .sys_reg = SYS_ID_AA64PFR0_EL1,
630                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
631                 .min_field_value = 1,
632         },
633 #ifdef CONFIG_ARM64_PAN
634         {
635                 .desc = "Privileged Access Never",
636                 .capability = ARM64_HAS_PAN,
637                 .matches = has_cpuid_feature,
638                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
639                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
640                 .min_field_value = 1,
641                 .enable = cpu_enable_pan,
642         },
643 #endif /* CONFIG_ARM64_PAN */
644 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
645         {
646                 .desc = "LSE atomic instructions",
647                 .capability = ARM64_HAS_LSE_ATOMICS,
648                 .matches = has_cpuid_feature,
649                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
650                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
651                 .min_field_value = 2,
652         },
653 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
654         {},
655 };
656
657 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
658         {                                                       \
659                 .desc = #cap,                                   \
660                 .matches = has_cpuid_feature,                   \
661                 .sys_reg = reg,                                 \
662                 .field_pos = field,                             \
663                 .min_field_value = min_value,                   \
664                 .hwcap_type = type,                             \
665                 .hwcap = cap,                                   \
666         }
667
668 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
669         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
670         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
671         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
672         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
673         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
674         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
675         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
676         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
677 #ifdef CONFIG_COMPAT
678         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
679         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
680         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
681         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
682         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
683 #endif
684         {},
685 };
686
687 static void cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
688 {
689         switch (cap->hwcap_type) {
690         case CAP_HWCAP:
691                 elf_hwcap |= cap->hwcap;
692                 break;
693 #ifdef CONFIG_COMPAT
694         case CAP_COMPAT_HWCAP:
695                 compat_elf_hwcap |= (u32)cap->hwcap;
696                 break;
697         case CAP_COMPAT_HWCAP2:
698                 compat_elf_hwcap2 |= (u32)cap->hwcap;
699                 break;
700 #endif
701         default:
702                 WARN_ON(1);
703                 break;
704         }
705 }
706
707 /* Check if we have a particular HWCAP enabled */
708 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
709 {
710         bool rc;
711
712         switch (cap->hwcap_type) {
713         case CAP_HWCAP:
714                 rc = (elf_hwcap & cap->hwcap) != 0;
715                 break;
716 #ifdef CONFIG_COMPAT
717         case CAP_COMPAT_HWCAP:
718                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
719                 break;
720         case CAP_COMPAT_HWCAP2:
721                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
722                 break;
723 #endif
724         default:
725                 WARN_ON(1);
726                 rc = false;
727         }
728
729         return rc;
730 }
731
732 static void setup_cpu_hwcaps(void)
733 {
734         int i;
735         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
736
737         for (i = 0; hwcaps[i].desc; i++)
738                 if (hwcaps[i].matches(&hwcaps[i]))
739                         cap_set_hwcap(&hwcaps[i]);
740 }
741
742 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
743                             const char *info)
744 {
745         int i;
746
747         for (i = 0; caps[i].desc; i++) {
748                 if (!caps[i].matches(&caps[i]))
749                         continue;
750
751                 if (!cpus_have_cap(caps[i].capability))
752                         pr_info("%s %s\n", info, caps[i].desc);
753                 cpus_set_cap(caps[i].capability);
754         }
755 }
756
757 /*
758  * Run through the enabled capabilities and enable() it on all active
759  * CPUs
760  */
761 static void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
762 {
763         int i;
764
765         for (i = 0; caps[i].desc; i++)
766                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
767                         on_each_cpu(caps[i].enable, NULL, true);
768 }
769
770 #ifdef CONFIG_HOTPLUG_CPU
771
772 /*
773  * Flag to indicate if we have computed the system wide
774  * capabilities based on the boot time active CPUs. This
775  * will be used to determine if a new booting CPU should
776  * go through the verification process to make sure that it
777  * supports the system capabilities, without using a hotplug
778  * notifier.
779  */
780 static bool sys_caps_initialised;
781
782 static inline void set_sys_caps_initialised(void)
783 {
784         sys_caps_initialised = true;
785 }
786
787 /*
788  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
789  */
790 static u64 __raw_read_system_reg(u32 sys_id)
791 {
792         switch (sys_id) {
793         case SYS_ID_PFR0_EL1:           return (u64)read_cpuid(ID_PFR0_EL1);
794         case SYS_ID_PFR1_EL1:           return (u64)read_cpuid(ID_PFR1_EL1);
795         case SYS_ID_DFR0_EL1:           return (u64)read_cpuid(ID_DFR0_EL1);
796         case SYS_ID_MMFR0_EL1:          return (u64)read_cpuid(ID_MMFR0_EL1);
797         case SYS_ID_MMFR1_EL1:          return (u64)read_cpuid(ID_MMFR1_EL1);
798         case SYS_ID_MMFR2_EL1:          return (u64)read_cpuid(ID_MMFR2_EL1);
799         case SYS_ID_MMFR3_EL1:          return (u64)read_cpuid(ID_MMFR3_EL1);
800         case SYS_ID_ISAR0_EL1:          return (u64)read_cpuid(ID_ISAR0_EL1);
801         case SYS_ID_ISAR1_EL1:          return (u64)read_cpuid(ID_ISAR1_EL1);
802         case SYS_ID_ISAR2_EL1:          return (u64)read_cpuid(ID_ISAR2_EL1);
803         case SYS_ID_ISAR3_EL1:          return (u64)read_cpuid(ID_ISAR3_EL1);
804         case SYS_ID_ISAR4_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
805         case SYS_ID_ISAR5_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
806         case SYS_MVFR0_EL1:             return (u64)read_cpuid(MVFR0_EL1);
807         case SYS_MVFR1_EL1:             return (u64)read_cpuid(MVFR1_EL1);
808         case SYS_MVFR2_EL1:             return (u64)read_cpuid(MVFR2_EL1);
809
810         case SYS_ID_AA64PFR0_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
811         case SYS_ID_AA64PFR1_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
812         case SYS_ID_AA64DFR0_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
813         case SYS_ID_AA64DFR1_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
814         case SYS_ID_AA64MMFR0_EL1:      return (u64)read_cpuid(ID_AA64MMFR0_EL1);
815         case SYS_ID_AA64MMFR1_EL1:      return (u64)read_cpuid(ID_AA64MMFR1_EL1);
816         case SYS_ID_AA64ISAR0_EL1:      return (u64)read_cpuid(ID_AA64ISAR0_EL1);
817         case SYS_ID_AA64ISAR1_EL1:      return (u64)read_cpuid(ID_AA64ISAR1_EL1);
818
819         case SYS_CNTFRQ_EL0:            return (u64)read_cpuid(CNTFRQ_EL0);
820         case SYS_CTR_EL0:               return (u64)read_cpuid(CTR_EL0);
821         case SYS_DCZID_EL0:             return (u64)read_cpuid(DCZID_EL0);
822         default:
823                 BUG();
824                 return 0;
825         }
826 }
827
828 /*
829  * Park the CPU which doesn't have the capability as advertised
830  * by the system.
831  */
832 static void fail_incapable_cpu(char *cap_type,
833                                  const struct arm64_cpu_capabilities *cap)
834 {
835         int cpu = smp_processor_id();
836
837         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
838         /* Mark this CPU absent */
839         set_cpu_present(cpu, 0);
840
841         /* Check if we can park ourselves */
842         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
843                 cpu_ops[cpu]->cpu_die(cpu);
844         asm(
845         "1:     wfe\n"
846         "       wfi\n"
847         "       b       1b");
848 }
849
850 /*
851  * Run through the enabled system capabilities and enable() it on this CPU.
852  * The capabilities were decided based on the available CPUs at the boot time.
853  * Any new CPU should match the system wide status of the capability. If the
854  * new CPU doesn't have a capability which the system now has enabled, we
855  * cannot do anything to fix it up and could cause unexpected failures. So
856  * we park the CPU.
857  */
858 void verify_local_cpu_capabilities(void)
859 {
860         int i;
861         const struct arm64_cpu_capabilities *caps;
862
863         /*
864          * If we haven't computed the system capabilities, there is nothing
865          * to verify.
866          */
867         if (!sys_caps_initialised)
868                 return;
869
870         caps = arm64_features;
871         for (i = 0; caps[i].desc; i++) {
872                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
873                         continue;
874                 /*
875                  * If the new CPU misses an advertised feature, we cannot proceed
876                  * further, park the cpu.
877                  */
878                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
879                         fail_incapable_cpu("arm64_features", &caps[i]);
880                 if (caps[i].enable)
881                         caps[i].enable(NULL);
882         }
883
884         for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
885                 if (!cpus_have_hwcap(&caps[i]))
886                         continue;
887                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
888                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
889         }
890 }
891
892 #else   /* !CONFIG_HOTPLUG_CPU */
893
894 static inline void set_sys_caps_initialised(void)
895 {
896 }
897
898 #endif  /* CONFIG_HOTPLUG_CPU */
899
900 static void setup_feature_capabilities(void)
901 {
902         update_cpu_capabilities(arm64_features, "detected feature:");
903         enable_cpu_capabilities(arm64_features);
904 }
905
906 void __init setup_cpu_features(void)
907 {
908         u32 cwg;
909         int cls;
910
911         /* Set the CPU feature capabilies */
912         setup_feature_capabilities();
913         setup_cpu_hwcaps();
914
915         /* Advertise that we have computed the system capabilities */
916         set_sys_caps_initialised();
917
918         /*
919          * Check for sane CTR_EL0.CWG value.
920          */
921         cwg = cache_type_cwg();
922         cls = cache_line_size();
923         if (!cwg)
924                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
925                         cls);
926         if (L1_CACHE_BYTES < cls)
927                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
928                         L1_CACHE_BYTES, cls);
929 }