Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / arm / mach-omap2 / omap-smp.c
1 /*
2  * OMAP4 SMP source file. It contains platform specific functions
3  * needed for the linux smp kernel.
4  *
5  * Copyright (C) 2009 Texas Instruments, Inc.
6  *
7  * Author:
8  *      Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *
10  * Platform file needed for the OMAP4 SMP. This file is based on arm
11  * realview smp platform.
12  * * Copyright (c) 2002 ARM Limited.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/irqchip/arm-gic.h>
23
24 #include <asm/smp_scu.h>
25 #include <asm/virt.h>
26
27 #include "omap-secure.h"
28 #include "omap-wakeupgen.h"
29 #include <asm/cputype.h>
30
31 #include "soc.h"
32 #include "iomap.h"
33 #include "common.h"
34 #include "clockdomain.h"
35 #include "pm.h"
36
37 #define CPU_MASK                0xff0ffff0
38 #define CPU_CORTEX_A9           0x410FC090
39 #define CPU_CORTEX_A15          0x410FC0F0
40
41 #define OMAP5_CORE_COUNT        0x2
42
43 /* SCU base address */
44 static void __iomem *scu_base;
45
46 static DEFINE_RAW_SPINLOCK(boot_lock);
47
48 void __iomem *omap4_get_scu_base(void)
49 {
50         return scu_base;
51 }
52
53 static void omap4_secondary_init(unsigned int cpu)
54 {
55         /*
56          * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
57          * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
58          * init and for CPU1, a secure PPA API provided. CPU0 must be ON
59          * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
60          * OMAP443X GP devices- SMP bit isn't accessible.
61          * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
62          */
63         if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
64                 omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
65                                                         4, 0, 0, 0, 0, 0);
66
67         /*
68          * Configure the CNTFRQ register for the secondary cpu's which
69          * indicates the frequency of the cpu local timers.
70          */
71         if (soc_is_omap54xx() || soc_is_dra7xx())
72                 set_cntfreq();
73
74         /*
75          * Synchronise with the boot thread.
76          */
77         raw_spin_lock(&boot_lock);
78         raw_spin_unlock(&boot_lock);
79 }
80
81 static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
82 {
83         static struct clockdomain *cpu1_clkdm;
84         static bool booted;
85         static struct powerdomain *cpu1_pwrdm;
86         void __iomem *base = omap_get_wakeupgen_base();
87
88         /*
89          * Set synchronisation state between this boot processor
90          * and the secondary one
91          */
92         raw_spin_lock(&boot_lock);
93
94         /*
95          * Update the AuxCoreBoot0 with boot state for secondary core.
96          * omap4_secondary_startup() routine will hold the secondary core till
97          * the AuxCoreBoot1 register is updated with cpu state
98          * A barrier is added to ensure that write buffer is drained
99          */
100         if (omap_secure_apis_support())
101                 omap_modify_auxcoreboot0(0x200, 0xfffffdff);
102         else
103                 writel_relaxed(0x20, base + OMAP_AUX_CORE_BOOT_0);
104
105         if (!cpu1_clkdm && !cpu1_pwrdm) {
106                 cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
107                 cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm");
108         }
109
110         /*
111          * The SGI(Software Generated Interrupts) are not wakeup capable
112          * from low power states. This is known limitation on OMAP4 and
113          * needs to be worked around by using software forced clockdomain
114          * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
115          * software force wakeup. The clockdomain is then put back to
116          * hardware supervised mode.
117          * More details can be found in OMAP4430 TRM - Version J
118          * Section :
119          *      4.3.4.2 Power States of CPU0 and CPU1
120          */
121         if (booted && cpu1_pwrdm && cpu1_clkdm) {
122                 /*
123                  * GIC distributor control register has changed between
124                  * CortexA9 r1pX and r2pX. The Control Register secure
125                  * banked version is now composed of 2 bits:
126                  * bit 0 == Secure Enable
127                  * bit 1 == Non-Secure Enable
128                  * The Non-Secure banked register has not changed
129                  * Because the ROM Code is based on the r1pX GIC, the CPU1
130                  * GIC restoration will cause a problem to CPU0 Non-Secure SW.
131                  * The workaround must be:
132                  * 1) Before doing the CPU1 wakeup, CPU0 must disable
133                  * the GIC distributor
134                  * 2) CPU1 must re-enable the GIC distributor on
135                  * it's wakeup path.
136                  */
137                 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
138                         local_irq_disable();
139                         gic_dist_disable();
140                 }
141
142                 /*
143                  * Ensure that CPU power state is set to ON to avoid CPU
144                  * powerdomain transition on wfi
145                  */
146                 clkdm_wakeup(cpu1_clkdm);
147                 omap_set_pwrdm_state(cpu1_pwrdm, PWRDM_POWER_ON);
148                 clkdm_allow_idle(cpu1_clkdm);
149
150                 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
151                         while (gic_dist_disabled()) {
152                                 udelay(1);
153                                 cpu_relax();
154                         }
155                         gic_timer_retrigger();
156                         local_irq_enable();
157                 }
158         } else {
159                 dsb_sev();
160                 booted = true;
161         }
162
163         arch_send_wakeup_ipi_mask(cpumask_of(cpu));
164
165         /*
166          * Now the secondary core is starting up let it run its
167          * calibrations, then wait for it to finish
168          */
169         raw_spin_unlock(&boot_lock);
170
171         return 0;
172 }
173
174 /*
175  * Initialise the CPU possible map early - this describes the CPUs
176  * which may be present or become present in the system.
177  */
178 static void __init omap4_smp_init_cpus(void)
179 {
180         unsigned int i = 0, ncores = 1, cpu_id;
181
182         /* Use ARM cpuid check here, as SoC detection will not work so early */
183         cpu_id = read_cpuid_id() & CPU_MASK;
184         if (cpu_id == CPU_CORTEX_A9) {
185                 /*
186                  * Currently we can't call ioremap here because
187                  * SoC detection won't work until after init_early.
188                  */
189                 scu_base =  OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
190                 BUG_ON(!scu_base);
191                 ncores = scu_get_core_count(scu_base);
192         } else if (cpu_id == CPU_CORTEX_A15) {
193                 ncores = OMAP5_CORE_COUNT;
194         }
195
196         /* sanity check */
197         if (ncores > nr_cpu_ids) {
198                 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
199                         ncores, nr_cpu_ids);
200                 ncores = nr_cpu_ids;
201         }
202
203         for (i = 0; i < ncores; i++)
204                 set_cpu_possible(i, true);
205 }
206
207 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
208 {
209         void *startup_addr = omap4_secondary_startup;
210         void __iomem *base = omap_get_wakeupgen_base();
211
212         /*
213          * Initialise the SCU and wake up the secondary core using
214          * wakeup_secondary().
215          */
216         if (scu_base)
217                 scu_enable(scu_base);
218
219         if (cpu_is_omap446x())
220                 startup_addr = omap4460_secondary_startup;
221
222         /*
223          * Write the address of secondary startup routine into the
224          * AuxCoreBoot1 where ROM code will jump and start executing
225          * on secondary core once out of WFE
226          * A barrier is added to ensure that write buffer is drained
227          */
228         if (omap_secure_apis_support())
229                 omap_auxcoreboot_addr(virt_to_phys(startup_addr));
230         else
231                 /*
232                  * If the boot CPU is in HYP mode then start secondary
233                  * CPU in HYP mode as well.
234                  */
235                 if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
236                         writel_relaxed(virt_to_phys(omap5_secondary_hyp_startup),
237                                        base + OMAP_AUX_CORE_BOOT_1);
238                 else
239                         writel_relaxed(virt_to_phys(omap5_secondary_startup),
240                                        base + OMAP_AUX_CORE_BOOT_1);
241
242 }
243
244 struct smp_operations omap4_smp_ops __initdata = {
245         .smp_init_cpus          = omap4_smp_init_cpus,
246         .smp_prepare_cpus       = omap4_smp_prepare_cpus,
247         .smp_secondary_init     = omap4_secondary_init,
248         .smp_boot_secondary     = omap4_boot_secondary,
249 #ifdef CONFIG_HOTPLUG_CPU
250         .cpu_die                = omap4_cpu_die,
251 #endif
252 };