Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66         BUG_ON(preemptible());
67         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76         BUG_ON(preemptible());
77         return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85         return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100         return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105         *(int *)rtn = 0;
106 }
107
108
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:        pointer to the KVM struct
112  */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115         int ret = 0;
116
117         if (type)
118                 return -EINVAL;
119
120         ret = kvm_alloc_stage2_pgd(kvm);
121         if (ret)
122                 goto out_fail_alloc;
123
124         ret = create_hyp_mappings(kvm, kvm + 1);
125         if (ret)
126                 goto out_free_stage2_pgd;
127
128         kvm_timer_init(kvm);
129
130         /* Mark the initial VMID generation invalid */
131         kvm->arch.vmid_gen = 0;
132
133         /* The maximum number of VCPUs is limited by the host's GIC model */
134         kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136         return ret;
137 out_free_stage2_pgd:
138         kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140         return ret;
141 }
142
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145         return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150  * kvm_arch_destroy_vm - destroy the VM data structure
151  * @kvm:        pointer to the KVM struct
152  */
153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155         int i;
156
157         kvm_free_stage2_pgd(kvm);
158
159         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160                 if (kvm->vcpus[i]) {
161                         kvm_arch_vcpu_free(kvm->vcpus[i]);
162                         kvm->vcpus[i] = NULL;
163                 }
164         }
165
166         kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171         int r;
172         switch (ext) {
173         case KVM_CAP_IRQCHIP:
174         case KVM_CAP_IRQFD:
175         case KVM_CAP_IOEVENTFD:
176         case KVM_CAP_DEVICE_CTRL:
177         case KVM_CAP_USER_MEMORY:
178         case KVM_CAP_SYNC_MMU:
179         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180         case KVM_CAP_ONE_REG:
181         case KVM_CAP_ARM_PSCI:
182         case KVM_CAP_ARM_PSCI_0_2:
183         case KVM_CAP_READONLY_MEM:
184         case KVM_CAP_MP_STATE:
185                 r = 1;
186                 break;
187         case KVM_CAP_COALESCED_MMIO:
188                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189                 break;
190         case KVM_CAP_ARM_SET_DEVICE_ADDR:
191                 r = 1;
192                 break;
193         case KVM_CAP_NR_VCPUS:
194                 r = num_online_cpus();
195                 break;
196         case KVM_CAP_MAX_VCPUS:
197                 r = KVM_MAX_VCPUS;
198                 break;
199         default:
200                 r = kvm_arch_dev_ioctl_check_extension(ext);
201                 break;
202         }
203         return r;
204 }
205
206 long kvm_arch_dev_ioctl(struct file *filp,
207                         unsigned int ioctl, unsigned long arg)
208 {
209         return -EINVAL;
210 }
211
212
213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214 {
215         int err;
216         struct kvm_vcpu *vcpu;
217
218         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219                 err = -EBUSY;
220                 goto out;
221         }
222
223         if (id >= kvm->arch.max_vcpus) {
224                 err = -EINVAL;
225                 goto out;
226         }
227
228         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229         if (!vcpu) {
230                 err = -ENOMEM;
231                 goto out;
232         }
233
234         err = kvm_vcpu_init(vcpu, kvm, id);
235         if (err)
236                 goto free_vcpu;
237
238         err = create_hyp_mappings(vcpu, vcpu + 1);
239         if (err)
240                 goto vcpu_uninit;
241
242         return vcpu;
243 vcpu_uninit:
244         kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246         kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248         return ERR_PTR(err);
249 }
250
251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252 {
253 }
254
255 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
256 {
257         kvm_mmu_free_memory_caches(vcpu);
258         kvm_timer_vcpu_terminate(vcpu);
259         kvm_vgic_vcpu_destroy(vcpu);
260         kmem_cache_free(kvm_vcpu_cache, vcpu);
261 }
262
263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
264 {
265         kvm_arch_vcpu_free(vcpu);
266 }
267
268 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
269 {
270         return kvm_timer_should_fire(vcpu);
271 }
272
273 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
274 {
275         /* Force users to call KVM_ARM_VCPU_INIT */
276         vcpu->arch.target = -1;
277         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
278
279         /* Set up the timer */
280         kvm_timer_vcpu_init(vcpu);
281
282         return 0;
283 }
284
285 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
286 {
287         vcpu->cpu = cpu;
288         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
289
290         kvm_arm_set_running_vcpu(vcpu);
291 }
292
293 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
294 {
295         /*
296          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
297          * if the vcpu is no longer assigned to a cpu.  This is used for the
298          * optimized make_all_cpus_request path.
299          */
300         vcpu->cpu = -1;
301
302         kvm_arm_set_running_vcpu(NULL);
303 }
304
305 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
306                                         struct kvm_guest_debug *dbg)
307 {
308         return -EINVAL;
309 }
310
311
312 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
313                                     struct kvm_mp_state *mp_state)
314 {
315         if (vcpu->arch.pause)
316                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
317         else
318                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
319
320         return 0;
321 }
322
323 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
324                                     struct kvm_mp_state *mp_state)
325 {
326         switch (mp_state->mp_state) {
327         case KVM_MP_STATE_RUNNABLE:
328                 vcpu->arch.pause = false;
329                 break;
330         case KVM_MP_STATE_STOPPED:
331                 vcpu->arch.pause = true;
332                 break;
333         default:
334                 return -EINVAL;
335         }
336
337         return 0;
338 }
339
340 /**
341  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
342  * @v:          The VCPU pointer
343  *
344  * If the guest CPU is not waiting for interrupts or an interrupt line is
345  * asserted, the CPU is by definition runnable.
346  */
347 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
348 {
349         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
350 }
351
352 /* Just ensure a guest exit from a particular CPU */
353 static void exit_vm_noop(void *info)
354 {
355 }
356
357 void force_vm_exit(const cpumask_t *mask)
358 {
359         smp_call_function_many(mask, exit_vm_noop, NULL, true);
360 }
361
362 /**
363  * need_new_vmid_gen - check that the VMID is still valid
364  * @kvm: The VM's VMID to checkt
365  *
366  * return true if there is a new generation of VMIDs being used
367  *
368  * The hardware supports only 256 values with the value zero reserved for the
369  * host, so we check if an assigned value belongs to a previous generation,
370  * which which requires us to assign a new value. If we're the first to use a
371  * VMID for the new generation, we must flush necessary caches and TLBs on all
372  * CPUs.
373  */
374 static bool need_new_vmid_gen(struct kvm *kvm)
375 {
376         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
377 }
378
379 /**
380  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
381  * @kvm The guest that we are about to run
382  *
383  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
384  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
385  * caches and TLBs.
386  */
387 static void update_vttbr(struct kvm *kvm)
388 {
389         phys_addr_t pgd_phys;
390         u64 vmid;
391
392         if (!need_new_vmid_gen(kvm))
393                 return;
394
395         spin_lock(&kvm_vmid_lock);
396
397         /*
398          * We need to re-check the vmid_gen here to ensure that if another vcpu
399          * already allocated a valid vmid for this vm, then this vcpu should
400          * use the same vmid.
401          */
402         if (!need_new_vmid_gen(kvm)) {
403                 spin_unlock(&kvm_vmid_lock);
404                 return;
405         }
406
407         /* First user of a new VMID generation? */
408         if (unlikely(kvm_next_vmid == 0)) {
409                 atomic64_inc(&kvm_vmid_gen);
410                 kvm_next_vmid = 1;
411
412                 /*
413                  * On SMP we know no other CPUs can use this CPU's or each
414                  * other's VMID after force_vm_exit returns since the
415                  * kvm_vmid_lock blocks them from reentry to the guest.
416                  */
417                 force_vm_exit(cpu_all_mask);
418                 /*
419                  * Now broadcast TLB + ICACHE invalidation over the inner
420                  * shareable domain to make sure all data structures are
421                  * clean.
422                  */
423                 kvm_call_hyp(__kvm_flush_vm_context);
424         }
425
426         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
427         kvm->arch.vmid = kvm_next_vmid;
428         kvm_next_vmid++;
429
430         /* update vttbr to be used with the new vmid */
431         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
432         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
433         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
434         kvm->arch.vttbr = pgd_phys | vmid;
435
436         spin_unlock(&kvm_vmid_lock);
437 }
438
439 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
440 {
441         struct kvm *kvm = vcpu->kvm;
442         int ret;
443
444         if (likely(vcpu->arch.has_run_once))
445                 return 0;
446
447         vcpu->arch.has_run_once = true;
448
449         /*
450          * Map the VGIC hardware resources before running a vcpu the first
451          * time on this VM.
452          */
453         if (unlikely(!vgic_ready(kvm))) {
454                 ret = kvm_vgic_map_resources(kvm);
455                 if (ret)
456                         return ret;
457         }
458
459         /*
460          * Enable the arch timers only if we have an in-kernel VGIC
461          * and it has been properly initialized, since we cannot handle
462          * interrupts from the virtual timer with a userspace gic.
463          */
464         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
465                 kvm_timer_enable(kvm);
466
467         return 0;
468 }
469
470 bool kvm_arch_intc_initialized(struct kvm *kvm)
471 {
472         return vgic_initialized(kvm);
473 }
474
475 static void vcpu_pause(struct kvm_vcpu *vcpu)
476 {
477         struct swait_head *wq = kvm_arch_vcpu_wq(vcpu);
478
479         swait_event_interruptible(*wq, !vcpu->arch.pause);
480 }
481
482 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
483 {
484         return vcpu->arch.target >= 0;
485 }
486
487 /**
488  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
489  * @vcpu:       The VCPU pointer
490  * @run:        The kvm_run structure pointer used for userspace state exchange
491  *
492  * This function is called through the VCPU_RUN ioctl called from user space. It
493  * will execute VM code in a loop until the time slice for the process is used
494  * or some emulation is needed from user space in which case the function will
495  * return with return value 0 and with the kvm_run structure filled in with the
496  * required data for the requested emulation.
497  */
498 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
499 {
500         int ret;
501         sigset_t sigsaved;
502
503         if (unlikely(!kvm_vcpu_initialized(vcpu)))
504                 return -ENOEXEC;
505
506         ret = kvm_vcpu_first_run_init(vcpu);
507         if (ret)
508                 return ret;
509
510         if (run->exit_reason == KVM_EXIT_MMIO) {
511                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
512                 if (ret)
513                         return ret;
514         }
515
516         if (vcpu->sigset_active)
517                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
518
519         ret = 1;
520         run->exit_reason = KVM_EXIT_UNKNOWN;
521         while (ret > 0) {
522                 /*
523                  * Check conditions before entering the guest
524                  */
525                 cond_resched();
526
527                 update_vttbr(vcpu->kvm);
528
529                 if (vcpu->arch.pause)
530                         vcpu_pause(vcpu);
531
532                 kvm_vgic_flush_hwstate(vcpu);
533                 kvm_timer_flush_hwstate(vcpu);
534
535                 local_irq_disable();
536
537                 /*
538                  * Re-check atomic conditions
539                  */
540                 if (signal_pending(current)) {
541                         ret = -EINTR;
542                         run->exit_reason = KVM_EXIT_INTR;
543                 }
544
545                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
546                         local_irq_enable();
547                         kvm_timer_sync_hwstate(vcpu);
548                         kvm_vgic_sync_hwstate(vcpu);
549                         continue;
550                 }
551
552                 /**************************************************************
553                  * Enter the guest
554                  */
555                 trace_kvm_entry(*vcpu_pc(vcpu));
556                 kvm_guest_enter();
557                 vcpu->mode = IN_GUEST_MODE;
558
559                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
560
561                 vcpu->mode = OUTSIDE_GUEST_MODE;
562                 kvm_guest_exit();
563                 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
564                 /*
565                  * We may have taken a host interrupt in HYP mode (ie
566                  * while executing the guest). This interrupt is still
567                  * pending, as we haven't serviced it yet!
568                  *
569                  * We're now back in SVC mode, with interrupts
570                  * disabled.  Enabling the interrupts now will have
571                  * the effect of taking the interrupt again, in SVC
572                  * mode this time.
573                  */
574                 local_irq_enable();
575
576                 /*
577                  * Back from guest
578                  *************************************************************/
579
580                 kvm_timer_sync_hwstate(vcpu);
581                 kvm_vgic_sync_hwstate(vcpu);
582
583                 ret = handle_exit(vcpu, run, ret);
584         }
585
586         if (vcpu->sigset_active)
587                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
588         return ret;
589 }
590
591 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
592 {
593         int bit_index;
594         bool set;
595         unsigned long *ptr;
596
597         if (number == KVM_ARM_IRQ_CPU_IRQ)
598                 bit_index = __ffs(HCR_VI);
599         else /* KVM_ARM_IRQ_CPU_FIQ */
600                 bit_index = __ffs(HCR_VF);
601
602         ptr = (unsigned long *)&vcpu->arch.irq_lines;
603         if (level)
604                 set = test_and_set_bit(bit_index, ptr);
605         else
606                 set = test_and_clear_bit(bit_index, ptr);
607
608         /*
609          * If we didn't change anything, no need to wake up or kick other CPUs
610          */
611         if (set == level)
612                 return 0;
613
614         /*
615          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
616          * trigger a world-switch round on the running physical CPU to set the
617          * virtual IRQ/FIQ fields in the HCR appropriately.
618          */
619         kvm_vcpu_kick(vcpu);
620
621         return 0;
622 }
623
624 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
625                           bool line_status)
626 {
627         u32 irq = irq_level->irq;
628         unsigned int irq_type, vcpu_idx, irq_num;
629         int nrcpus = atomic_read(&kvm->online_vcpus);
630         struct kvm_vcpu *vcpu = NULL;
631         bool level = irq_level->level;
632
633         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
634         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
635         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
636
637         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
638
639         switch (irq_type) {
640         case KVM_ARM_IRQ_TYPE_CPU:
641                 if (irqchip_in_kernel(kvm))
642                         return -ENXIO;
643
644                 if (vcpu_idx >= nrcpus)
645                         return -EINVAL;
646
647                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
648                 if (!vcpu)
649                         return -EINVAL;
650
651                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
652                         return -EINVAL;
653
654                 return vcpu_interrupt_line(vcpu, irq_num, level);
655         case KVM_ARM_IRQ_TYPE_PPI:
656                 if (!irqchip_in_kernel(kvm))
657                         return -ENXIO;
658
659                 if (vcpu_idx >= nrcpus)
660                         return -EINVAL;
661
662                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
663                 if (!vcpu)
664                         return -EINVAL;
665
666                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
667                         return -EINVAL;
668
669                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
670         case KVM_ARM_IRQ_TYPE_SPI:
671                 if (!irqchip_in_kernel(kvm))
672                         return -ENXIO;
673
674                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
675                         return -EINVAL;
676
677                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
678         }
679
680         return -EINVAL;
681 }
682
683 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
684                                const struct kvm_vcpu_init *init)
685 {
686         unsigned int i;
687         int phys_target = kvm_target_cpu();
688
689         if (init->target != phys_target)
690                 return -EINVAL;
691
692         /*
693          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
694          * use the same target.
695          */
696         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
697                 return -EINVAL;
698
699         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
700         for (i = 0; i < sizeof(init->features) * 8; i++) {
701                 bool set = (init->features[i / 32] & (1 << (i % 32)));
702
703                 if (set && i >= KVM_VCPU_MAX_FEATURES)
704                         return -ENOENT;
705
706                 /*
707                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
708                  * use the same feature set.
709                  */
710                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
711                     test_bit(i, vcpu->arch.features) != set)
712                         return -EINVAL;
713
714                 if (set)
715                         set_bit(i, vcpu->arch.features);
716         }
717
718         vcpu->arch.target = phys_target;
719
720         /* Now we know what it is, we can reset it. */
721         return kvm_reset_vcpu(vcpu);
722 }
723
724
725 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
726                                          struct kvm_vcpu_init *init)
727 {
728         int ret;
729
730         ret = kvm_vcpu_set_target(vcpu, init);
731         if (ret)
732                 return ret;
733
734         /*
735          * Ensure a rebooted VM will fault in RAM pages and detect if the
736          * guest MMU is turned off and flush the caches as needed.
737          */
738         if (vcpu->arch.has_run_once)
739                 stage2_unmap_vm(vcpu->kvm);
740
741         vcpu_reset_hcr(vcpu);
742
743         /*
744          * Handle the "start in power-off" case by marking the VCPU as paused.
745          */
746         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
747                 vcpu->arch.pause = true;
748         else
749                 vcpu->arch.pause = false;
750
751         return 0;
752 }
753
754 long kvm_arch_vcpu_ioctl(struct file *filp,
755                          unsigned int ioctl, unsigned long arg)
756 {
757         struct kvm_vcpu *vcpu = filp->private_data;
758         void __user *argp = (void __user *)arg;
759
760         switch (ioctl) {
761         case KVM_ARM_VCPU_INIT: {
762                 struct kvm_vcpu_init init;
763
764                 if (copy_from_user(&init, argp, sizeof(init)))
765                         return -EFAULT;
766
767                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
768         }
769         case KVM_SET_ONE_REG:
770         case KVM_GET_ONE_REG: {
771                 struct kvm_one_reg reg;
772
773                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
774                         return -ENOEXEC;
775
776                 if (copy_from_user(&reg, argp, sizeof(reg)))
777                         return -EFAULT;
778                 if (ioctl == KVM_SET_ONE_REG)
779                         return kvm_arm_set_reg(vcpu, &reg);
780                 else
781                         return kvm_arm_get_reg(vcpu, &reg);
782         }
783         case KVM_GET_REG_LIST: {
784                 struct kvm_reg_list __user *user_list = argp;
785                 struct kvm_reg_list reg_list;
786                 unsigned n;
787
788                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
789                         return -ENOEXEC;
790
791                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
792                         return -EFAULT;
793                 n = reg_list.n;
794                 reg_list.n = kvm_arm_num_regs(vcpu);
795                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
796                         return -EFAULT;
797                 if (n < reg_list.n)
798                         return -E2BIG;
799                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
800         }
801         default:
802                 return -EINVAL;
803         }
804 }
805
806 /**
807  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
808  * @kvm: kvm instance
809  * @log: slot id and address to which we copy the log
810  *
811  * Steps 1-4 below provide general overview of dirty page logging. See
812  * kvm_get_dirty_log_protect() function description for additional details.
813  *
814  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
815  * always flush the TLB (step 4) even if previous step failed  and the dirty
816  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
817  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
818  * writes will be marked dirty for next log read.
819  *
820  *   1. Take a snapshot of the bit and clear it if needed.
821  *   2. Write protect the corresponding page.
822  *   3. Copy the snapshot to the userspace.
823  *   4. Flush TLB's if needed.
824  */
825 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
826 {
827         bool is_dirty = false;
828         int r;
829
830         mutex_lock(&kvm->slots_lock);
831
832         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
833
834         if (is_dirty)
835                 kvm_flush_remote_tlbs(kvm);
836
837         mutex_unlock(&kvm->slots_lock);
838         return r;
839 }
840
841 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
842                                         struct kvm_arm_device_addr *dev_addr)
843 {
844         unsigned long dev_id, type;
845
846         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
847                 KVM_ARM_DEVICE_ID_SHIFT;
848         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
849                 KVM_ARM_DEVICE_TYPE_SHIFT;
850
851         switch (dev_id) {
852         case KVM_ARM_DEVICE_VGIC_V2:
853                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
854         default:
855                 return -ENODEV;
856         }
857 }
858
859 long kvm_arch_vm_ioctl(struct file *filp,
860                        unsigned int ioctl, unsigned long arg)
861 {
862         struct kvm *kvm = filp->private_data;
863         void __user *argp = (void __user *)arg;
864
865         switch (ioctl) {
866         case KVM_CREATE_IRQCHIP: {
867                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
868         }
869         case KVM_ARM_SET_DEVICE_ADDR: {
870                 struct kvm_arm_device_addr dev_addr;
871
872                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
873                         return -EFAULT;
874                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
875         }
876         case KVM_ARM_PREFERRED_TARGET: {
877                 int err;
878                 struct kvm_vcpu_init init;
879
880                 err = kvm_vcpu_preferred_target(&init);
881                 if (err)
882                         return err;
883
884                 if (copy_to_user(argp, &init, sizeof(init)))
885                         return -EFAULT;
886
887                 return 0;
888         }
889         default:
890                 return -EINVAL;
891         }
892 }
893
894 static void cpu_init_hyp_mode(void *dummy)
895 {
896         phys_addr_t boot_pgd_ptr;
897         phys_addr_t pgd_ptr;
898         unsigned long hyp_stack_ptr;
899         unsigned long stack_page;
900         unsigned long vector_ptr;
901
902         /* Switch from the HYP stub to our own HYP init vector */
903         __hyp_set_vectors(kvm_get_idmap_vector());
904
905         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
906         pgd_ptr = kvm_mmu_get_httbr();
907         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
908         hyp_stack_ptr = stack_page + PAGE_SIZE;
909         vector_ptr = (unsigned long)__kvm_hyp_vector;
910
911         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
912 }
913
914 static int hyp_init_cpu_notify(struct notifier_block *self,
915                                unsigned long action, void *cpu)
916 {
917         switch (action) {
918         case CPU_STARTING:
919         case CPU_STARTING_FROZEN:
920                 if (__hyp_get_vectors() == hyp_default_vectors)
921                         cpu_init_hyp_mode(NULL);
922                 break;
923         }
924
925         return NOTIFY_OK;
926 }
927
928 static struct notifier_block hyp_init_cpu_nb = {
929         .notifier_call = hyp_init_cpu_notify,
930 };
931
932 #ifdef CONFIG_CPU_PM
933 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
934                                     unsigned long cmd,
935                                     void *v)
936 {
937         if (cmd == CPU_PM_EXIT &&
938             __hyp_get_vectors() == hyp_default_vectors) {
939                 cpu_init_hyp_mode(NULL);
940                 return NOTIFY_OK;
941         }
942
943         return NOTIFY_DONE;
944 }
945
946 static struct notifier_block hyp_init_cpu_pm_nb = {
947         .notifier_call = hyp_init_cpu_pm_notifier,
948 };
949
950 static void __init hyp_cpu_pm_init(void)
951 {
952         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
953 }
954 #else
955 static inline void hyp_cpu_pm_init(void)
956 {
957 }
958 #endif
959
960 /**
961  * Inits Hyp-mode on all online CPUs
962  */
963 static int init_hyp_mode(void)
964 {
965         int cpu;
966         int err = 0;
967
968         /*
969          * Allocate Hyp PGD and setup Hyp identity mapping
970          */
971         err = kvm_mmu_init();
972         if (err)
973                 goto out_err;
974
975         /*
976          * It is probably enough to obtain the default on one
977          * CPU. It's unlikely to be different on the others.
978          */
979         hyp_default_vectors = __hyp_get_vectors();
980
981         /*
982          * Allocate stack pages for Hypervisor-mode
983          */
984         for_each_possible_cpu(cpu) {
985                 unsigned long stack_page;
986
987                 stack_page = __get_free_page(GFP_KERNEL);
988                 if (!stack_page) {
989                         err = -ENOMEM;
990                         goto out_free_stack_pages;
991                 }
992
993                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
994         }
995
996         /*
997          * Map the Hyp-code called directly from the host
998          */
999         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1000         if (err) {
1001                 kvm_err("Cannot map world-switch code\n");
1002                 goto out_free_mappings;
1003         }
1004
1005         /*
1006          * Map the Hyp stack pages
1007          */
1008         for_each_possible_cpu(cpu) {
1009                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1010                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1011
1012                 if (err) {
1013                         kvm_err("Cannot map hyp stack\n");
1014                         goto out_free_mappings;
1015                 }
1016         }
1017
1018         /*
1019          * Map the host CPU structures
1020          */
1021         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1022         if (!kvm_host_cpu_state) {
1023                 err = -ENOMEM;
1024                 kvm_err("Cannot allocate host CPU state\n");
1025                 goto out_free_mappings;
1026         }
1027
1028         for_each_possible_cpu(cpu) {
1029                 kvm_cpu_context_t *cpu_ctxt;
1030
1031                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1032                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1033
1034                 if (err) {
1035                         kvm_err("Cannot map host CPU state: %d\n", err);
1036                         goto out_free_context;
1037                 }
1038         }
1039
1040         /*
1041          * Execute the init code on each CPU.
1042          */
1043         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1044
1045         /*
1046          * Init HYP view of VGIC
1047          */
1048         err = kvm_vgic_hyp_init();
1049         if (err)
1050                 goto out_free_context;
1051
1052         /*
1053          * Init HYP architected timer support
1054          */
1055         err = kvm_timer_hyp_init();
1056         if (err)
1057                 goto out_free_mappings;
1058
1059 #ifndef CONFIG_HOTPLUG_CPU
1060         free_boot_hyp_pgd();
1061 #endif
1062
1063         kvm_perf_init();
1064
1065         kvm_info("Hyp mode initialized successfully\n");
1066
1067         return 0;
1068 out_free_context:
1069         free_percpu(kvm_host_cpu_state);
1070 out_free_mappings:
1071         free_hyp_pgds();
1072 out_free_stack_pages:
1073         for_each_possible_cpu(cpu)
1074                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1075 out_err:
1076         kvm_err("error initializing Hyp mode: %d\n", err);
1077         return err;
1078 }
1079
1080 static void check_kvm_target_cpu(void *ret)
1081 {
1082         *(int *)ret = kvm_target_cpu();
1083 }
1084
1085 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1086 {
1087         struct kvm_vcpu *vcpu;
1088         int i;
1089
1090         mpidr &= MPIDR_HWID_BITMASK;
1091         kvm_for_each_vcpu(i, vcpu, kvm) {
1092                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1093                         return vcpu;
1094         }
1095         return NULL;
1096 }
1097
1098 /**
1099  * Initialize Hyp-mode and memory mappings on all CPUs.
1100  */
1101 int kvm_arch_init(void *opaque)
1102 {
1103         int err;
1104         int ret, cpu;
1105
1106         if (!is_hyp_mode_available()) {
1107                 kvm_err("HYP mode not available\n");
1108                 return -ENODEV;
1109         }
1110
1111         for_each_online_cpu(cpu) {
1112                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1113                 if (ret < 0) {
1114                         kvm_err("Error, CPU %d not supported!\n", cpu);
1115                         return -ENODEV;
1116                 }
1117         }
1118
1119         cpu_notifier_register_begin();
1120
1121         err = init_hyp_mode();
1122         if (err)
1123                 goto out_err;
1124
1125         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1126         if (err) {
1127                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1128                 goto out_err;
1129         }
1130
1131         cpu_notifier_register_done();
1132
1133         hyp_cpu_pm_init();
1134
1135         kvm_coproc_table_init();
1136         return 0;
1137 out_err:
1138         cpu_notifier_register_done();
1139         return err;
1140 }
1141
1142 /* NOP: Compiling as a module not supported */
1143 void kvm_arch_exit(void)
1144 {
1145         kvm_perf_teardown();
1146 }
1147
1148 static int arm_init(void)
1149 {
1150         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1151         return rc;
1152 }
1153
1154 module_init(arm_init);