These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30
31 #include <linux/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60
61 /*
62  * control for which core is the next to come out of the secondary
63  * boot "holding pen"
64  */
65 volatile int pen_release = -1;
66
67 enum ipi_msg_type {
68         IPI_WAKEUP,
69         IPI_TIMER,
70         IPI_RESCHEDULE,
71         IPI_CALL_FUNC,
72         IPI_CALL_FUNC_SINGLE,
73         IPI_CPU_STOP,
74         IPI_IRQ_WORK,
75         IPI_COMPLETION,
76         IPI_CPU_BACKTRACE = 15,
77 };
78
79 static DECLARE_COMPLETION(cpu_running);
80
81 static struct smp_operations smp_ops;
82
83 void __init smp_set_ops(const struct smp_operations *ops)
84 {
85         if (ops)
86                 smp_ops = *ops;
87 };
88
89 static unsigned long get_arch_pgd(pgd_t *pgd)
90 {
91 #ifdef CONFIG_ARM_LPAE
92         return __phys_to_pfn(virt_to_phys(pgd));
93 #else
94         return virt_to_phys(pgd);
95 #endif
96 }
97
98 int __cpu_up(unsigned int cpu, struct task_struct *idle)
99 {
100         int ret;
101
102         if (!smp_ops.smp_boot_secondary)
103                 return -ENOSYS;
104
105         /*
106          * We need to tell the secondary core where to find
107          * its stack and the page tables.
108          */
109         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
110 #ifdef CONFIG_ARM_MPU
111         secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
112 #endif
113
114 #ifdef CONFIG_MMU
115         secondary_data.pgdir = virt_to_phys(idmap_pgd);
116         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
117 #endif
118         sync_cache_w(&secondary_data);
119
120         /*
121          * Now bring the CPU into our world.
122          */
123         ret = smp_ops.smp_boot_secondary(cpu, idle);
124         if (ret == 0) {
125                 /*
126                  * CPU was successfully started, wait for it
127                  * to come online or time out.
128                  */
129                 wait_for_completion_timeout(&cpu_running,
130                                                  msecs_to_jiffies(1000));
131
132                 if (!cpu_online(cpu)) {
133                         pr_crit("CPU%u: failed to come online\n", cpu);
134                         ret = -EIO;
135                 }
136         } else {
137                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138         }
139
140
141         memset(&secondary_data, 0, sizeof(secondary_data));
142         return ret;
143 }
144
145 /* platform specific SMP operations */
146 void __init smp_init_cpus(void)
147 {
148         if (smp_ops.smp_init_cpus)
149                 smp_ops.smp_init_cpus();
150 }
151
152 int platform_can_secondary_boot(void)
153 {
154         return !!smp_ops.smp_boot_secondary;
155 }
156
157 int platform_can_cpu_hotplug(void)
158 {
159 #ifdef CONFIG_HOTPLUG_CPU
160         if (smp_ops.cpu_kill)
161                 return 1;
162 #endif
163
164         return 0;
165 }
166
167 #ifdef CONFIG_HOTPLUG_CPU
168 static int platform_cpu_kill(unsigned int cpu)
169 {
170         if (smp_ops.cpu_kill)
171                 return smp_ops.cpu_kill(cpu);
172         return 1;
173 }
174
175 static int platform_cpu_disable(unsigned int cpu)
176 {
177         if (smp_ops.cpu_disable)
178                 return smp_ops.cpu_disable(cpu);
179
180         return 0;
181 }
182
183 int platform_can_hotplug_cpu(unsigned int cpu)
184 {
185         /* cpu_die must be specified to support hotplug */
186         if (!smp_ops.cpu_die)
187                 return 0;
188
189         if (smp_ops.cpu_can_disable)
190                 return smp_ops.cpu_can_disable(cpu);
191
192         /*
193          * By default, allow disabling all CPUs except the first one,
194          * since this is special on a lot of platforms, e.g. because
195          * of clock tick interrupts.
196          */
197         return cpu != 0;
198 }
199
200 /*
201  * __cpu_disable runs on the processor to be shutdown.
202  */
203 int __cpu_disable(void)
204 {
205         unsigned int cpu = smp_processor_id();
206         int ret;
207
208         ret = platform_cpu_disable(cpu);
209         if (ret)
210                 return ret;
211
212         /*
213          * Take this CPU offline.  Once we clear this, we can't return,
214          * and we must not schedule until we're ready to give up the cpu.
215          */
216         set_cpu_online(cpu, false);
217
218         /*
219          * OK - migrate IRQs away from this CPU
220          */
221         migrate_irqs();
222
223         /*
224          * Flush user cache and TLB mappings, and then remove this CPU
225          * from the vm mask set of all processes.
226          *
227          * Caches are flushed to the Level of Unification Inner Shareable
228          * to write-back dirty lines to unified caches shared by all CPUs.
229          */
230         flush_cache_louis();
231         local_flush_tlb_all();
232
233         return 0;
234 }
235
236 static DECLARE_COMPLETION(cpu_died);
237
238 /*
239  * called on the thread which is asking for a CPU to be shutdown -
240  * waits until shutdown has completed, or it is timed out.
241  */
242 void __cpu_die(unsigned int cpu)
243 {
244         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
245                 pr_err("CPU%u: cpu didn't die\n", cpu);
246                 return;
247         }
248
249         clear_tasks_mm_cpumask(cpu);
250
251         pr_notice("CPU%u: shutdown\n", cpu);
252
253         /*
254          * platform_cpu_kill() is generally expected to do the powering off
255          * and/or cutting of clocks to the dying CPU.  Optionally, this may
256          * be done by the CPU which is dying in preference to supporting
257          * this call, but that means there is _no_ synchronisation between
258          * the requesting CPU and the dying CPU actually losing power.
259          */
260         if (!platform_cpu_kill(cpu))
261                 pr_err("CPU%u: unable to kill\n", cpu);
262 }
263
264 /*
265  * Called from the idle thread for the CPU which has been shutdown.
266  *
267  * Note that we disable IRQs here, but do not re-enable them
268  * before returning to the caller. This is also the behaviour
269  * of the other hotplug-cpu capable cores, so presumably coming
270  * out of idle fixes this.
271  */
272 void arch_cpu_idle_dead(void)
273 {
274         unsigned int cpu = smp_processor_id();
275
276         idle_task_exit();
277
278         local_irq_disable();
279
280         /*
281          * Flush the data out of the L1 cache for this CPU.  This must be
282          * before the completion to ensure that data is safely written out
283          * before platform_cpu_kill() gets called - which may disable
284          * *this* CPU and power down its cache.
285          */
286         flush_cache_louis();
287
288         /*
289          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
290          * this returns, power and/or clocks can be removed at any point
291          * from this CPU and its cache by platform_cpu_kill().
292          */
293         complete(&cpu_died);
294
295         /*
296          * Ensure that the cache lines associated with that completion are
297          * written out.  This covers the case where _this_ CPU is doing the
298          * powering down, to ensure that the completion is visible to the
299          * CPU waiting for this one.
300          */
301         flush_cache_louis();
302
303         /*
304          * The actual CPU shutdown procedure is at least platform (if not
305          * CPU) specific.  This may remove power, or it may simply spin.
306          *
307          * Platforms are generally expected *NOT* to return from this call,
308          * although there are some which do because they have no way to
309          * power down the CPU.  These platforms are the _only_ reason we
310          * have a return path which uses the fragment of assembly below.
311          *
312          * The return path should not be used for platforms which can
313          * power off the CPU.
314          */
315         if (smp_ops.cpu_die)
316                 smp_ops.cpu_die(cpu);
317
318         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
319                 cpu);
320
321         /*
322          * Do not return to the idle loop - jump back to the secondary
323          * cpu initialisation.  There's some initialisation which needs
324          * to be repeated to undo the effects of taking the CPU offline.
325          */
326         __asm__("mov    sp, %0\n"
327         "       mov     fp, #0\n"
328         "       b       secondary_start_kernel"
329                 :
330                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
331 }
332 #endif /* CONFIG_HOTPLUG_CPU */
333
334 /*
335  * Called by both boot and secondaries to move global data into
336  * per-processor storage.
337  */
338 static void smp_store_cpu_info(unsigned int cpuid)
339 {
340         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
341
342         cpu_info->loops_per_jiffy = loops_per_jiffy;
343         cpu_info->cpuid = read_cpuid_id();
344
345         store_cpu_topology(cpuid);
346 }
347
348 /*
349  * This is the secondary CPU boot entry.  We're using this CPUs
350  * idle thread stack, but a set of temporary page tables.
351  */
352 asmlinkage void secondary_start_kernel(void)
353 {
354         struct mm_struct *mm = &init_mm;
355         unsigned int cpu;
356
357         /*
358          * The identity mapping is uncached (strongly ordered), so
359          * switch away from it before attempting any exclusive accesses.
360          */
361         cpu_switch_mm(mm->pgd, mm);
362         local_flush_bp_all();
363         enter_lazy_tlb(mm, current);
364         local_flush_tlb_all();
365
366         /*
367          * All kernel threads share the same mm context; grab a
368          * reference and switch to it.
369          */
370         cpu = smp_processor_id();
371         atomic_inc(&mm->mm_count);
372         current->active_mm = mm;
373         cpumask_set_cpu(cpu, mm_cpumask(mm));
374
375         cpu_init();
376
377         pr_debug("CPU%u: Booted secondary processor\n", cpu);
378
379         preempt_disable();
380         trace_hardirqs_off();
381
382         /*
383          * Give the platform a chance to do its own initialisation.
384          */
385         if (smp_ops.smp_secondary_init)
386                 smp_ops.smp_secondary_init(cpu);
387
388         notify_cpu_starting(cpu);
389
390         calibrate_delay();
391
392         smp_store_cpu_info(cpu);
393
394         /*
395          * OK, now it's safe to let the boot CPU continue.  Wait for
396          * the CPU migration code to notice that the CPU is online
397          * before we continue - which happens after __cpu_up returns.
398          */
399         set_cpu_online(cpu, true);
400         complete(&cpu_running);
401
402         local_irq_enable();
403         local_fiq_enable();
404         local_abt_enable();
405
406         /*
407          * OK, it's off to the idle thread for us
408          */
409         cpu_startup_entry(CPUHP_ONLINE);
410 }
411
412 void __init smp_cpus_done(unsigned int max_cpus)
413 {
414         int cpu;
415         unsigned long bogosum = 0;
416
417         for_each_online_cpu(cpu)
418                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
419
420         printk(KERN_INFO "SMP: Total of %d processors activated "
421                "(%lu.%02lu BogoMIPS).\n",
422                num_online_cpus(),
423                bogosum / (500000/HZ),
424                (bogosum / (5000/HZ)) % 100);
425
426         hyp_mode_check();
427 }
428
429 void __init smp_prepare_boot_cpu(void)
430 {
431         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
432 }
433
434 void __init smp_prepare_cpus(unsigned int max_cpus)
435 {
436         unsigned int ncores = num_possible_cpus();
437
438         init_cpu_topology();
439
440         smp_store_cpu_info(smp_processor_id());
441
442         /*
443          * are we trying to boot more cores than exist?
444          */
445         if (max_cpus > ncores)
446                 max_cpus = ncores;
447         if (ncores > 1 && max_cpus) {
448                 /*
449                  * Initialise the present map, which describes the set of CPUs
450                  * actually populated at the present time. A platform should
451                  * re-initialize the map in the platforms smp_prepare_cpus()
452                  * if present != possible (e.g. physical hotplug).
453                  */
454                 init_cpu_present(cpu_possible_mask);
455
456                 /*
457                  * Initialise the SCU if there are more than one CPU
458                  * and let them know where to start.
459                  */
460                 if (smp_ops.smp_prepare_cpus)
461                         smp_ops.smp_prepare_cpus(max_cpus);
462         }
463 }
464
465 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
466
467 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
468 {
469         if (!__smp_cross_call)
470                 __smp_cross_call = fn;
471 }
472
473 static const char *ipi_types[NR_IPI] __tracepoint_string = {
474 #define S(x,s)  [x] = s
475         S(IPI_WAKEUP, "CPU wakeup interrupts"),
476         S(IPI_TIMER, "Timer broadcast interrupts"),
477         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
478         S(IPI_CALL_FUNC, "Function call interrupts"),
479         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
480         S(IPI_CPU_STOP, "CPU stop interrupts"),
481         S(IPI_IRQ_WORK, "IRQ work interrupts"),
482         S(IPI_COMPLETION, "completion interrupts"),
483 };
484
485 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
486 {
487         trace_ipi_raise(target, ipi_types[ipinr]);
488         __smp_cross_call(target, ipinr);
489 }
490
491 void show_ipi_list(struct seq_file *p, int prec)
492 {
493         unsigned int cpu, i;
494
495         for (i = 0; i < NR_IPI; i++) {
496                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
497
498                 for_each_online_cpu(cpu)
499                         seq_printf(p, "%10u ",
500                                    __get_irq_stat(cpu, ipi_irqs[i]));
501
502                 seq_printf(p, " %s\n", ipi_types[i]);
503         }
504 }
505
506 u64 smp_irq_stat_cpu(unsigned int cpu)
507 {
508         u64 sum = 0;
509         int i;
510
511         for (i = 0; i < NR_IPI; i++)
512                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
513
514         return sum;
515 }
516
517 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
518 {
519         smp_cross_call(mask, IPI_CALL_FUNC);
520 }
521
522 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
523 {
524         smp_cross_call(mask, IPI_WAKEUP);
525 }
526
527 void arch_send_call_function_single_ipi(int cpu)
528 {
529         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
530 }
531
532 #ifdef CONFIG_IRQ_WORK
533 void arch_irq_work_raise(void)
534 {
535         if (arch_irq_work_has_interrupt())
536                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
537 }
538 #endif
539
540 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
541 void tick_broadcast(const struct cpumask *mask)
542 {
543         smp_cross_call(mask, IPI_TIMER);
544 }
545 #endif
546
547 static DEFINE_RAW_SPINLOCK(stop_lock);
548
549 /*
550  * ipi_cpu_stop - handle IPI from smp_send_stop()
551  */
552 static void ipi_cpu_stop(unsigned int cpu)
553 {
554         if (system_state == SYSTEM_BOOTING ||
555             system_state == SYSTEM_RUNNING) {
556                 raw_spin_lock(&stop_lock);
557                 pr_crit("CPU%u: stopping\n", cpu);
558                 dump_stack();
559                 raw_spin_unlock(&stop_lock);
560         }
561
562         set_cpu_online(cpu, false);
563
564         local_fiq_disable();
565         local_irq_disable();
566
567         while (1)
568                 cpu_relax();
569 }
570
571 static DEFINE_PER_CPU(struct completion *, cpu_completion);
572
573 int register_ipi_completion(struct completion *completion, int cpu)
574 {
575         per_cpu(cpu_completion, cpu) = completion;
576         return IPI_COMPLETION;
577 }
578
579 static void ipi_complete(unsigned int cpu)
580 {
581         complete(per_cpu(cpu_completion, cpu));
582 }
583
584 /*
585  * Main handler for inter-processor interrupts
586  */
587 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
588 {
589         handle_IPI(ipinr, regs);
590 }
591
592 void handle_IPI(int ipinr, struct pt_regs *regs)
593 {
594         unsigned int cpu = smp_processor_id();
595         struct pt_regs *old_regs = set_irq_regs(regs);
596
597         if ((unsigned)ipinr < NR_IPI) {
598                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
599                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
600         }
601
602         switch (ipinr) {
603         case IPI_WAKEUP:
604                 break;
605
606 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
607         case IPI_TIMER:
608                 irq_enter();
609                 tick_receive_broadcast();
610                 irq_exit();
611                 break;
612 #endif
613
614         case IPI_RESCHEDULE:
615                 scheduler_ipi();
616                 break;
617
618         case IPI_CALL_FUNC:
619                 irq_enter();
620                 generic_smp_call_function_interrupt();
621                 irq_exit();
622                 break;
623
624         case IPI_CALL_FUNC_SINGLE:
625                 irq_enter();
626                 generic_smp_call_function_single_interrupt();
627                 irq_exit();
628                 break;
629
630         case IPI_CPU_STOP:
631                 irq_enter();
632                 ipi_cpu_stop(cpu);
633                 irq_exit();
634                 break;
635
636 #ifdef CONFIG_IRQ_WORK
637         case IPI_IRQ_WORK:
638                 irq_enter();
639                 irq_work_run();
640                 irq_exit();
641                 break;
642 #endif
643
644         case IPI_COMPLETION:
645                 irq_enter();
646                 ipi_complete(cpu);
647                 irq_exit();
648                 break;
649
650         case IPI_CPU_BACKTRACE:
651                 irq_enter();
652                 nmi_cpu_backtrace(regs);
653                 irq_exit();
654                 break;
655
656         default:
657                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
658                         cpu, ipinr);
659                 break;
660         }
661
662         if ((unsigned)ipinr < NR_IPI)
663                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
664         set_irq_regs(old_regs);
665 }
666
667 void smp_send_reschedule(int cpu)
668 {
669         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
670 }
671
672 void smp_send_stop(void)
673 {
674         unsigned long timeout;
675         struct cpumask mask;
676
677         cpumask_copy(&mask, cpu_online_mask);
678         cpumask_clear_cpu(smp_processor_id(), &mask);
679         if (!cpumask_empty(&mask))
680                 smp_cross_call(&mask, IPI_CPU_STOP);
681
682         /* Wait up to one second for other CPUs to stop */
683         timeout = USEC_PER_SEC;
684         while (num_online_cpus() > 1 && timeout--)
685                 udelay(1);
686
687         if (num_online_cpus() > 1)
688                 pr_warn("SMP: failed to stop secondary CPUs\n");
689 }
690
691 /*
692  * not supported here
693  */
694 int setup_profiling_timer(unsigned int multiplier)
695 {
696         return -EINVAL;
697 }
698
699 #ifdef CONFIG_CPU_FREQ
700
701 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
702 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
703 static unsigned long global_l_p_j_ref;
704 static unsigned long global_l_p_j_ref_freq;
705
706 static int cpufreq_callback(struct notifier_block *nb,
707                                         unsigned long val, void *data)
708 {
709         struct cpufreq_freqs *freq = data;
710         int cpu = freq->cpu;
711
712         if (freq->flags & CPUFREQ_CONST_LOOPS)
713                 return NOTIFY_OK;
714
715         if (!per_cpu(l_p_j_ref, cpu)) {
716                 per_cpu(l_p_j_ref, cpu) =
717                         per_cpu(cpu_data, cpu).loops_per_jiffy;
718                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
719                 if (!global_l_p_j_ref) {
720                         global_l_p_j_ref = loops_per_jiffy;
721                         global_l_p_j_ref_freq = freq->old;
722                 }
723         }
724
725         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
726             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
727                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
728                                                 global_l_p_j_ref_freq,
729                                                 freq->new);
730                 per_cpu(cpu_data, cpu).loops_per_jiffy =
731                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
732                                         per_cpu(l_p_j_ref_freq, cpu),
733                                         freq->new);
734         }
735         return NOTIFY_OK;
736 }
737
738 static struct notifier_block cpufreq_notifier = {
739         .notifier_call  = cpufreq_callback,
740 };
741
742 static int __init register_cpufreq_notifier(void)
743 {
744         return cpufreq_register_notifier(&cpufreq_notifier,
745                                                 CPUFREQ_TRANSITION_NOTIFIER);
746 }
747 core_initcall(register_cpufreq_notifier);
748
749 #endif
750
751 static void raise_nmi(cpumask_t *mask)
752 {
753         /*
754          * Generate the backtrace directly if we are running in a calling
755          * context that is not preemptible by the backtrace IPI. Note
756          * that nmi_cpu_backtrace() automatically removes the current cpu
757          * from mask.
758          */
759         if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
760                 nmi_cpu_backtrace(NULL);
761
762         smp_cross_call(mask, IPI_CPU_BACKTRACE);
763 }
764
765 void arch_trigger_all_cpu_backtrace(bool include_self)
766 {
767         nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
768 }