Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / arm / kernel / setup.c
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34
35 #include <asm/unified.h>
36 #include <asm/cp15.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/elf.h>
40 #include <asm/procinfo.h>
41 #include <asm/psci.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp_plat.h>
45 #include <asm/mach-types.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cachetype.h>
48 #include <asm/tlbflush.h>
49
50 #include <asm/prom.h>
51 #include <asm/mach/arch.h>
52 #include <asm/mach/irq.h>
53 #include <asm/mach/time.h>
54 #include <asm/system_info.h>
55 #include <asm/system_misc.h>
56 #include <asm/traps.h>
57 #include <asm/unwind.h>
58 #include <asm/memblock.h>
59 #include <asm/virt.h>
60
61 #include "atags.h"
62
63
64 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
65 char fpe_type[8];
66
67 static int __init fpe_setup(char *line)
68 {
69         memcpy(fpe_type, line, 8);
70         return 1;
71 }
72
73 __setup("fpe=", fpe_setup);
74 #endif
75
76 extern void init_default_cache_policy(unsigned long);
77 extern void paging_init(const struct machine_desc *desc);
78 extern void early_paging_init(const struct machine_desc *,
79                               struct proc_info_list *);
80 extern void sanity_check_meminfo(void);
81 extern enum reboot_mode reboot_mode;
82 extern void setup_dma_zone(const struct machine_desc *desc);
83
84 unsigned int processor_id;
85 EXPORT_SYMBOL(processor_id);
86 unsigned int __machine_arch_type __read_mostly;
87 EXPORT_SYMBOL(__machine_arch_type);
88 unsigned int cacheid __read_mostly;
89 EXPORT_SYMBOL(cacheid);
90
91 unsigned int __atags_pointer __initdata;
92
93 unsigned int system_rev;
94 EXPORT_SYMBOL(system_rev);
95
96 unsigned int system_serial_low;
97 EXPORT_SYMBOL(system_serial_low);
98
99 unsigned int system_serial_high;
100 EXPORT_SYMBOL(system_serial_high);
101
102 unsigned int elf_hwcap __read_mostly;
103 EXPORT_SYMBOL(elf_hwcap);
104
105 unsigned int elf_hwcap2 __read_mostly;
106 EXPORT_SYMBOL(elf_hwcap2);
107
108
109 #ifdef MULTI_CPU
110 struct processor processor __read_mostly;
111 #endif
112 #ifdef MULTI_TLB
113 struct cpu_tlb_fns cpu_tlb __read_mostly;
114 #endif
115 #ifdef MULTI_USER
116 struct cpu_user_fns cpu_user __read_mostly;
117 #endif
118 #ifdef MULTI_CACHE
119 struct cpu_cache_fns cpu_cache __read_mostly;
120 #endif
121 #ifdef CONFIG_OUTER_CACHE
122 struct outer_cache_fns outer_cache __read_mostly;
123 EXPORT_SYMBOL(outer_cache);
124 #endif
125
126 /*
127  * Cached cpu_architecture() result for use by assembler code.
128  * C code should use the cpu_architecture() function instead of accessing this
129  * variable directly.
130  */
131 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
132
133 struct stack {
134         u32 irq[3];
135         u32 abt[3];
136         u32 und[3];
137         u32 fiq[3];
138 } ____cacheline_aligned;
139
140 #ifndef CONFIG_CPU_V7M
141 static struct stack stacks[NR_CPUS];
142 #endif
143
144 char elf_platform[ELF_PLATFORM_SIZE];
145 EXPORT_SYMBOL(elf_platform);
146
147 static const char *cpu_name;
148 static const char *machine_name;
149 static char __initdata cmd_line[COMMAND_LINE_SIZE];
150 const struct machine_desc *machine_desc __initdata;
151
152 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
153 #define ENDIANNESS ((char)endian_test.l)
154
155 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
156
157 /*
158  * Standard memory resources
159  */
160 static struct resource mem_res[] = {
161         {
162                 .name = "Video RAM",
163                 .start = 0,
164                 .end = 0,
165                 .flags = IORESOURCE_MEM
166         },
167         {
168                 .name = "Kernel code",
169                 .start = 0,
170                 .end = 0,
171                 .flags = IORESOURCE_MEM
172         },
173         {
174                 .name = "Kernel data",
175                 .start = 0,
176                 .end = 0,
177                 .flags = IORESOURCE_MEM
178         }
179 };
180
181 #define video_ram   mem_res[0]
182 #define kernel_code mem_res[1]
183 #define kernel_data mem_res[2]
184
185 static struct resource io_res[] = {
186         {
187                 .name = "reserved",
188                 .start = 0x3bc,
189                 .end = 0x3be,
190                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
191         },
192         {
193                 .name = "reserved",
194                 .start = 0x378,
195                 .end = 0x37f,
196                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
197         },
198         {
199                 .name = "reserved",
200                 .start = 0x278,
201                 .end = 0x27f,
202                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
203         }
204 };
205
206 #define lp0 io_res[0]
207 #define lp1 io_res[1]
208 #define lp2 io_res[2]
209
210 static const char *proc_arch[] = {
211         "undefined/unknown",
212         "3",
213         "4",
214         "4T",
215         "5",
216         "5T",
217         "5TE",
218         "5TEJ",
219         "6TEJ",
220         "7",
221         "7M",
222         "?(12)",
223         "?(13)",
224         "?(14)",
225         "?(15)",
226         "?(16)",
227         "?(17)",
228 };
229
230 #ifdef CONFIG_CPU_V7M
231 static int __get_cpu_architecture(void)
232 {
233         return CPU_ARCH_ARMv7M;
234 }
235 #else
236 static int __get_cpu_architecture(void)
237 {
238         int cpu_arch;
239
240         if ((read_cpuid_id() & 0x0008f000) == 0) {
241                 cpu_arch = CPU_ARCH_UNKNOWN;
242         } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
243                 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
244         } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
245                 cpu_arch = (read_cpuid_id() >> 16) & 7;
246                 if (cpu_arch)
247                         cpu_arch += CPU_ARCH_ARMv3;
248         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
249                 /* Revised CPUID format. Read the Memory Model Feature
250                  * Register 0 and check for VMSAv7 or PMSAv7 */
251                 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
252                 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
253                     (mmfr0 & 0x000000f0) >= 0x00000030)
254                         cpu_arch = CPU_ARCH_ARMv7;
255                 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
256                          (mmfr0 & 0x000000f0) == 0x00000020)
257                         cpu_arch = CPU_ARCH_ARMv6;
258                 else
259                         cpu_arch = CPU_ARCH_UNKNOWN;
260         } else
261                 cpu_arch = CPU_ARCH_UNKNOWN;
262
263         return cpu_arch;
264 }
265 #endif
266
267 int __pure cpu_architecture(void)
268 {
269         BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
270
271         return __cpu_architecture;
272 }
273
274 static int cpu_has_aliasing_icache(unsigned int arch)
275 {
276         int aliasing_icache;
277         unsigned int id_reg, num_sets, line_size;
278
279         /* PIPT caches never alias. */
280         if (icache_is_pipt())
281                 return 0;
282
283         /* arch specifies the register format */
284         switch (arch) {
285         case CPU_ARCH_ARMv7:
286                 asm("mcr        p15, 2, %0, c0, c0, 0 @ set CSSELR"
287                     : /* No output operands */
288                     : "r" (1));
289                 isb();
290                 asm("mrc        p15, 1, %0, c0, c0, 0 @ read CCSIDR"
291                     : "=r" (id_reg));
292                 line_size = 4 << ((id_reg & 0x7) + 2);
293                 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
294                 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
295                 break;
296         case CPU_ARCH_ARMv6:
297                 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
298                 break;
299         default:
300                 /* I-cache aliases will be handled by D-cache aliasing code */
301                 aliasing_icache = 0;
302         }
303
304         return aliasing_icache;
305 }
306
307 static void __init cacheid_init(void)
308 {
309         unsigned int arch = cpu_architecture();
310
311         if (arch == CPU_ARCH_ARMv7M) {
312                 cacheid = 0;
313         } else if (arch >= CPU_ARCH_ARMv6) {
314                 unsigned int cachetype = read_cpuid_cachetype();
315                 if ((cachetype & (7 << 29)) == 4 << 29) {
316                         /* ARMv7 register format */
317                         arch = CPU_ARCH_ARMv7;
318                         cacheid = CACHEID_VIPT_NONALIASING;
319                         switch (cachetype & (3 << 14)) {
320                         case (1 << 14):
321                                 cacheid |= CACHEID_ASID_TAGGED;
322                                 break;
323                         case (3 << 14):
324                                 cacheid |= CACHEID_PIPT;
325                                 break;
326                         }
327                 } else {
328                         arch = CPU_ARCH_ARMv6;
329                         if (cachetype & (1 << 23))
330                                 cacheid = CACHEID_VIPT_ALIASING;
331                         else
332                                 cacheid = CACHEID_VIPT_NONALIASING;
333                 }
334                 if (cpu_has_aliasing_icache(arch))
335                         cacheid |= CACHEID_VIPT_I_ALIASING;
336         } else {
337                 cacheid = CACHEID_VIVT;
338         }
339
340         pr_info("CPU: %s data cache, %s instruction cache\n",
341                 cache_is_vivt() ? "VIVT" :
342                 cache_is_vipt_aliasing() ? "VIPT aliasing" :
343                 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
344                 cache_is_vivt() ? "VIVT" :
345                 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
346                 icache_is_vipt_aliasing() ? "VIPT aliasing" :
347                 icache_is_pipt() ? "PIPT" :
348                 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
349 }
350
351 /*
352  * These functions re-use the assembly code in head.S, which
353  * already provide the required functionality.
354  */
355 extern struct proc_info_list *lookup_processor_type(unsigned int);
356
357 void __init early_print(const char *str, ...)
358 {
359         extern void printascii(const char *);
360         char buf[256];
361         va_list ap;
362
363         va_start(ap, str);
364         vsnprintf(buf, sizeof(buf), str, ap);
365         va_end(ap);
366
367 #ifdef CONFIG_DEBUG_LL
368         printascii(buf);
369 #endif
370         printk("%s", buf);
371 }
372
373 static void __init cpuid_init_hwcaps(void)
374 {
375         int block;
376         u32 isar5;
377
378         if (cpu_architecture() < CPU_ARCH_ARMv7)
379                 return;
380
381         block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
382         if (block >= 2)
383                 elf_hwcap |= HWCAP_IDIVA;
384         if (block >= 1)
385                 elf_hwcap |= HWCAP_IDIVT;
386
387         /* LPAE implies atomic ldrd/strd instructions */
388         block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
389         if (block >= 5)
390                 elf_hwcap |= HWCAP_LPAE;
391
392         /* check for supported v8 Crypto instructions */
393         isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
394
395         block = cpuid_feature_extract_field(isar5, 4);
396         if (block >= 2)
397                 elf_hwcap2 |= HWCAP2_PMULL;
398         if (block >= 1)
399                 elf_hwcap2 |= HWCAP2_AES;
400
401         block = cpuid_feature_extract_field(isar5, 8);
402         if (block >= 1)
403                 elf_hwcap2 |= HWCAP2_SHA1;
404
405         block = cpuid_feature_extract_field(isar5, 12);
406         if (block >= 1)
407                 elf_hwcap2 |= HWCAP2_SHA2;
408
409         block = cpuid_feature_extract_field(isar5, 16);
410         if (block >= 1)
411                 elf_hwcap2 |= HWCAP2_CRC32;
412 }
413
414 static void __init elf_hwcap_fixup(void)
415 {
416         unsigned id = read_cpuid_id();
417
418         /*
419          * HWCAP_TLS is available only on 1136 r1p0 and later,
420          * see also kuser_get_tls_init.
421          */
422         if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
423             ((id >> 20) & 3) == 0) {
424                 elf_hwcap &= ~HWCAP_TLS;
425                 return;
426         }
427
428         /* Verify if CPUID scheme is implemented */
429         if ((id & 0x000f0000) != 0x000f0000)
430                 return;
431
432         /*
433          * If the CPU supports LDREX/STREX and LDREXB/STREXB,
434          * avoid advertising SWP; it may not be atomic with
435          * multiprocessing cores.
436          */
437         if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
438             (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
439              cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
440                 elf_hwcap &= ~HWCAP_SWP;
441 }
442
443 /*
444  * cpu_init - initialise one CPU.
445  *
446  * cpu_init sets up the per-CPU stacks.
447  */
448 void notrace cpu_init(void)
449 {
450 #ifndef CONFIG_CPU_V7M
451         unsigned int cpu = smp_processor_id();
452         struct stack *stk = &stacks[cpu];
453
454         if (cpu >= NR_CPUS) {
455                 pr_crit("CPU%u: bad primary CPU number\n", cpu);
456                 BUG();
457         }
458
459         /*
460          * This only works on resume and secondary cores. For booting on the
461          * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
462          */
463         set_my_cpu_offset(per_cpu_offset(cpu));
464
465         cpu_proc_init();
466
467         /*
468          * Define the placement constraint for the inline asm directive below.
469          * In Thumb-2, msr with an immediate value is not allowed.
470          */
471 #ifdef CONFIG_THUMB2_KERNEL
472 #define PLC     "r"
473 #else
474 #define PLC     "I"
475 #endif
476
477         /*
478          * setup stacks for re-entrant exception handlers
479          */
480         __asm__ (
481         "msr    cpsr_c, %1\n\t"
482         "add    r14, %0, %2\n\t"
483         "mov    sp, r14\n\t"
484         "msr    cpsr_c, %3\n\t"
485         "add    r14, %0, %4\n\t"
486         "mov    sp, r14\n\t"
487         "msr    cpsr_c, %5\n\t"
488         "add    r14, %0, %6\n\t"
489         "mov    sp, r14\n\t"
490         "msr    cpsr_c, %7\n\t"
491         "add    r14, %0, %8\n\t"
492         "mov    sp, r14\n\t"
493         "msr    cpsr_c, %9"
494             :
495             : "r" (stk),
496               PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
497               "I" (offsetof(struct stack, irq[0])),
498               PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
499               "I" (offsetof(struct stack, abt[0])),
500               PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
501               "I" (offsetof(struct stack, und[0])),
502               PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
503               "I" (offsetof(struct stack, fiq[0])),
504               PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
505             : "r14");
506 #endif
507 }
508
509 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
510
511 void __init smp_setup_processor_id(void)
512 {
513         int i;
514         u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
515         u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
516
517         cpu_logical_map(0) = cpu;
518         for (i = 1; i < nr_cpu_ids; ++i)
519                 cpu_logical_map(i) = i == cpu ? 0 : i;
520
521         /*
522          * clear __my_cpu_offset on boot CPU to avoid hang caused by
523          * using percpu variable early, for example, lockdep will
524          * access percpu variable inside lock_release
525          */
526         set_my_cpu_offset(0);
527
528         pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
529 }
530
531 struct mpidr_hash mpidr_hash;
532 #ifdef CONFIG_SMP
533 /**
534  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
535  *                        level in order to build a linear index from an
536  *                        MPIDR value. Resulting algorithm is a collision
537  *                        free hash carried out through shifting and ORing
538  */
539 static void __init smp_build_mpidr_hash(void)
540 {
541         u32 i, affinity;
542         u32 fs[3], bits[3], ls, mask = 0;
543         /*
544          * Pre-scan the list of MPIDRS and filter out bits that do
545          * not contribute to affinity levels, ie they never toggle.
546          */
547         for_each_possible_cpu(i)
548                 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
549         pr_debug("mask of set bits 0x%x\n", mask);
550         /*
551          * Find and stash the last and first bit set at all affinity levels to
552          * check how many bits are required to represent them.
553          */
554         for (i = 0; i < 3; i++) {
555                 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
556                 /*
557                  * Find the MSB bit and LSB bits position
558                  * to determine how many bits are required
559                  * to express the affinity level.
560                  */
561                 ls = fls(affinity);
562                 fs[i] = affinity ? ffs(affinity) - 1 : 0;
563                 bits[i] = ls - fs[i];
564         }
565         /*
566          * An index can be created from the MPIDR by isolating the
567          * significant bits at each affinity level and by shifting
568          * them in order to compress the 24 bits values space to a
569          * compressed set of values. This is equivalent to hashing
570          * the MPIDR through shifting and ORing. It is a collision free
571          * hash though not minimal since some levels might contain a number
572          * of CPUs that is not an exact power of 2 and their bit
573          * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
574          */
575         mpidr_hash.shift_aff[0] = fs[0];
576         mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
577         mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
578                                                 (bits[1] + bits[0]);
579         mpidr_hash.mask = mask;
580         mpidr_hash.bits = bits[2] + bits[1] + bits[0];
581         pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
582                                 mpidr_hash.shift_aff[0],
583                                 mpidr_hash.shift_aff[1],
584                                 mpidr_hash.shift_aff[2],
585                                 mpidr_hash.mask,
586                                 mpidr_hash.bits);
587         /*
588          * 4x is an arbitrary value used to warn on a hash table much bigger
589          * than expected on most systems.
590          */
591         if (mpidr_hash_size() > 4 * num_possible_cpus())
592                 pr_warn("Large number of MPIDR hash buckets detected\n");
593         sync_cache_w(&mpidr_hash);
594 }
595 #endif
596
597 static void __init setup_processor(void)
598 {
599         struct proc_info_list *list;
600
601         /*
602          * locate processor in the list of supported processor
603          * types.  The linker builds this table for us from the
604          * entries in arch/arm/mm/proc-*.S
605          */
606         list = lookup_processor_type(read_cpuid_id());
607         if (!list) {
608                 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
609                        read_cpuid_id());
610                 while (1);
611         }
612
613         cpu_name = list->cpu_name;
614         __cpu_architecture = __get_cpu_architecture();
615
616 #ifdef MULTI_CPU
617         processor = *list->proc;
618 #endif
619 #ifdef MULTI_TLB
620         cpu_tlb = *list->tlb;
621 #endif
622 #ifdef MULTI_USER
623         cpu_user = *list->user;
624 #endif
625 #ifdef MULTI_CACHE
626         cpu_cache = *list->cache;
627 #endif
628
629         pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
630                 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
631                 proc_arch[cpu_architecture()], get_cr());
632
633         snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
634                  list->arch_name, ENDIANNESS);
635         snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
636                  list->elf_name, ENDIANNESS);
637         elf_hwcap = list->elf_hwcap;
638
639         cpuid_init_hwcaps();
640
641 #ifndef CONFIG_ARM_THUMB
642         elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
643 #endif
644 #ifdef CONFIG_MMU
645         init_default_cache_policy(list->__cpu_mm_mmu_flags);
646 #endif
647         erratum_a15_798181_init();
648
649         elf_hwcap_fixup();
650
651         cacheid_init();
652         cpu_init();
653 }
654
655 void __init dump_machine_table(void)
656 {
657         const struct machine_desc *p;
658
659         early_print("Available machine support:\n\nID (hex)\tNAME\n");
660         for_each_machine_desc(p)
661                 early_print("%08x\t%s\n", p->nr, p->name);
662
663         early_print("\nPlease check your kernel config and/or bootloader.\n");
664
665         while (true)
666                 /* can't use cpu_relax() here as it may require MMU setup */;
667 }
668
669 int __init arm_add_memory(u64 start, u64 size)
670 {
671         u64 aligned_start;
672
673         /*
674          * Ensure that start/size are aligned to a page boundary.
675          * Size is rounded down, start is rounded up.
676          */
677         aligned_start = PAGE_ALIGN(start);
678         if (aligned_start > start + size)
679                 size = 0;
680         else
681                 size -= aligned_start - start;
682
683 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
684         if (aligned_start > ULONG_MAX) {
685                 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
686                         (long long)start);
687                 return -EINVAL;
688         }
689
690         if (aligned_start + size > ULONG_MAX) {
691                 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
692                         (long long)start);
693                 /*
694                  * To ensure bank->start + bank->size is representable in
695                  * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
696                  * This means we lose a page after masking.
697                  */
698                 size = ULONG_MAX - aligned_start;
699         }
700 #endif
701
702         if (aligned_start < PHYS_OFFSET) {
703                 if (aligned_start + size <= PHYS_OFFSET) {
704                         pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
705                                 aligned_start, aligned_start + size);
706                         return -EINVAL;
707                 }
708
709                 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
710                         aligned_start, (u64)PHYS_OFFSET);
711
712                 size -= PHYS_OFFSET - aligned_start;
713                 aligned_start = PHYS_OFFSET;
714         }
715
716         start = aligned_start;
717         size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
718
719         /*
720          * Check whether this memory region has non-zero size or
721          * invalid node number.
722          */
723         if (size == 0)
724                 return -EINVAL;
725
726         memblock_add(start, size);
727         return 0;
728 }
729
730 /*
731  * Pick out the memory size.  We look for mem=size@start,
732  * where start and size are "size[KkMm]"
733  */
734
735 static int __init early_mem(char *p)
736 {
737         static int usermem __initdata = 0;
738         u64 size;
739         u64 start;
740         char *endp;
741
742         /*
743          * If the user specifies memory size, we
744          * blow away any automatically generated
745          * size.
746          */
747         if (usermem == 0) {
748                 usermem = 1;
749                 memblock_remove(memblock_start_of_DRAM(),
750                         memblock_end_of_DRAM() - memblock_start_of_DRAM());
751         }
752
753         start = PHYS_OFFSET;
754         size  = memparse(p, &endp);
755         if (*endp == '@')
756                 start = memparse(endp + 1, NULL);
757
758         arm_add_memory(start, size);
759
760         return 0;
761 }
762 early_param("mem", early_mem);
763
764 static void __init request_standard_resources(const struct machine_desc *mdesc)
765 {
766         struct memblock_region *region;
767         struct resource *res;
768
769         kernel_code.start   = virt_to_phys(_text);
770         kernel_code.end     = virt_to_phys(_etext - 1);
771         kernel_data.start   = virt_to_phys(_sdata);
772         kernel_data.end     = virt_to_phys(_end - 1);
773
774         for_each_memblock(memory, region) {
775                 res = memblock_virt_alloc(sizeof(*res), 0);
776                 res->name  = "System RAM";
777                 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
778                 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
779                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
780
781                 request_resource(&iomem_resource, res);
782
783                 if (kernel_code.start >= res->start &&
784                     kernel_code.end <= res->end)
785                         request_resource(res, &kernel_code);
786                 if (kernel_data.start >= res->start &&
787                     kernel_data.end <= res->end)
788                         request_resource(res, &kernel_data);
789         }
790
791         if (mdesc->video_start) {
792                 video_ram.start = mdesc->video_start;
793                 video_ram.end   = mdesc->video_end;
794                 request_resource(&iomem_resource, &video_ram);
795         }
796
797         /*
798          * Some machines don't have the possibility of ever
799          * possessing lp0, lp1 or lp2
800          */
801         if (mdesc->reserve_lp0)
802                 request_resource(&ioport_resource, &lp0);
803         if (mdesc->reserve_lp1)
804                 request_resource(&ioport_resource, &lp1);
805         if (mdesc->reserve_lp2)
806                 request_resource(&ioport_resource, &lp2);
807 }
808
809 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
810 struct screen_info screen_info = {
811  .orig_video_lines      = 30,
812  .orig_video_cols       = 80,
813  .orig_video_mode       = 0,
814  .orig_video_ega_bx     = 0,
815  .orig_video_isVGA      = 1,
816  .orig_video_points     = 8
817 };
818 #endif
819
820 static int __init customize_machine(void)
821 {
822         /*
823          * customizes platform devices, or adds new ones
824          * On DT based machines, we fall back to populating the
825          * machine from the device tree, if no callback is provided,
826          * otherwise we would always need an init_machine callback.
827          */
828         of_iommu_init();
829         if (machine_desc->init_machine)
830                 machine_desc->init_machine();
831 #ifdef CONFIG_OF
832         else
833                 of_platform_populate(NULL, of_default_bus_match_table,
834                                         NULL, NULL);
835 #endif
836         return 0;
837 }
838 arch_initcall(customize_machine);
839
840 static int __init init_machine_late(void)
841 {
842         if (machine_desc->init_late)
843                 machine_desc->init_late();
844         return 0;
845 }
846 late_initcall(init_machine_late);
847
848 #ifdef CONFIG_KEXEC
849 static inline unsigned long long get_total_mem(void)
850 {
851         unsigned long total;
852
853         total = max_low_pfn - min_low_pfn;
854         return total << PAGE_SHIFT;
855 }
856
857 /**
858  * reserve_crashkernel() - reserves memory are for crash kernel
859  *
860  * This function reserves memory area given in "crashkernel=" kernel command
861  * line parameter. The memory reserved is used by a dump capture kernel when
862  * primary kernel is crashing.
863  */
864 static void __init reserve_crashkernel(void)
865 {
866         unsigned long long crash_size, crash_base;
867         unsigned long long total_mem;
868         int ret;
869
870         total_mem = get_total_mem();
871         ret = parse_crashkernel(boot_command_line, total_mem,
872                                 &crash_size, &crash_base);
873         if (ret)
874                 return;
875
876         ret = memblock_reserve(crash_base, crash_size);
877         if (ret < 0) {
878                 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
879                         (unsigned long)crash_base);
880                 return;
881         }
882
883         pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
884                 (unsigned long)(crash_size >> 20),
885                 (unsigned long)(crash_base >> 20),
886                 (unsigned long)(total_mem >> 20));
887
888         crashk_res.start = crash_base;
889         crashk_res.end = crash_base + crash_size - 1;
890         insert_resource(&iomem_resource, &crashk_res);
891 }
892 #else
893 static inline void reserve_crashkernel(void) {}
894 #endif /* CONFIG_KEXEC */
895
896 void __init hyp_mode_check(void)
897 {
898 #ifdef CONFIG_ARM_VIRT_EXT
899         sync_boot_mode();
900
901         if (is_hyp_mode_available()) {
902                 pr_info("CPU: All CPU(s) started in HYP mode.\n");
903                 pr_info("CPU: Virtualization extensions available.\n");
904         } else if (is_hyp_mode_mismatched()) {
905                 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
906                         __boot_cpu_mode & MODE_MASK);
907                 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
908         } else
909                 pr_info("CPU: All CPU(s) started in SVC mode.\n");
910 #endif
911 }
912
913 void __init setup_arch(char **cmdline_p)
914 {
915         const struct machine_desc *mdesc;
916
917         setup_processor();
918         mdesc = setup_machine_fdt(__atags_pointer);
919         if (!mdesc)
920                 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
921         machine_desc = mdesc;
922         machine_name = mdesc->name;
923         dump_stack_set_arch_desc("%s", mdesc->name);
924
925         if (mdesc->reboot_mode != REBOOT_HARD)
926                 reboot_mode = mdesc->reboot_mode;
927
928         init_mm.start_code = (unsigned long) _text;
929         init_mm.end_code   = (unsigned long) _etext;
930         init_mm.end_data   = (unsigned long) _edata;
931         init_mm.brk        = (unsigned long) _end;
932
933         /* populate cmd_line too for later use, preserving boot_command_line */
934         strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
935         *cmdline_p = cmd_line;
936
937         parse_early_param();
938
939         early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
940         setup_dma_zone(mdesc);
941         sanity_check_meminfo();
942         arm_memblock_init(mdesc);
943
944         paging_init(mdesc);
945         request_standard_resources(mdesc);
946
947         if (mdesc->restart)
948                 arm_pm_restart = mdesc->restart;
949
950         unflatten_device_tree();
951
952         arm_dt_init_cpu_maps();
953         psci_init();
954 #ifdef CONFIG_SMP
955         if (is_smp()) {
956                 if (!mdesc->smp_init || !mdesc->smp_init()) {
957                         if (psci_smp_available())
958                                 smp_set_ops(&psci_smp_ops);
959                         else if (mdesc->smp)
960                                 smp_set_ops(mdesc->smp);
961                 }
962                 smp_init_cpus();
963                 smp_build_mpidr_hash();
964         }
965 #endif
966
967         if (!is_smp())
968                 hyp_mode_check();
969
970         reserve_crashkernel();
971
972 #ifdef CONFIG_MULTI_IRQ_HANDLER
973         handle_arch_irq = mdesc->handle_irq;
974 #endif
975
976 #ifdef CONFIG_VT
977 #if defined(CONFIG_VGA_CONSOLE)
978         conswitchp = &vga_con;
979 #elif defined(CONFIG_DUMMY_CONSOLE)
980         conswitchp = &dummy_con;
981 #endif
982 #endif
983
984         if (mdesc->init_early)
985                 mdesc->init_early();
986 }
987
988
989 static int __init topology_init(void)
990 {
991         int cpu;
992
993         for_each_possible_cpu(cpu) {
994                 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
995                 cpuinfo->cpu.hotpluggable = 1;
996                 register_cpu(&cpuinfo->cpu, cpu);
997         }
998
999         return 0;
1000 }
1001 subsys_initcall(topology_init);
1002
1003 #ifdef CONFIG_HAVE_PROC_CPU
1004 static int __init proc_cpu_init(void)
1005 {
1006         struct proc_dir_entry *res;
1007
1008         res = proc_mkdir("cpu", NULL);
1009         if (!res)
1010                 return -ENOMEM;
1011         return 0;
1012 }
1013 fs_initcall(proc_cpu_init);
1014 #endif
1015
1016 static const char *hwcap_str[] = {
1017         "swp",
1018         "half",
1019         "thumb",
1020         "26bit",
1021         "fastmult",
1022         "fpa",
1023         "vfp",
1024         "edsp",
1025         "java",
1026         "iwmmxt",
1027         "crunch",
1028         "thumbee",
1029         "neon",
1030         "vfpv3",
1031         "vfpv3d16",
1032         "tls",
1033         "vfpv4",
1034         "idiva",
1035         "idivt",
1036         "vfpd32",
1037         "lpae",
1038         "evtstrm",
1039         NULL
1040 };
1041
1042 static const char *hwcap2_str[] = {
1043         "aes",
1044         "pmull",
1045         "sha1",
1046         "sha2",
1047         "crc32",
1048         NULL
1049 };
1050
1051 static int c_show(struct seq_file *m, void *v)
1052 {
1053         int i, j;
1054         u32 cpuid;
1055
1056         for_each_online_cpu(i) {
1057                 /*
1058                  * glibc reads /proc/cpuinfo to determine the number of
1059                  * online processors, looking for lines beginning with
1060                  * "processor".  Give glibc what it expects.
1061                  */
1062                 seq_printf(m, "processor\t: %d\n", i);
1063                 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1064                 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1065                            cpu_name, cpuid & 15, elf_platform);
1066
1067 #if defined(CONFIG_SMP)
1068                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1069                            per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1070                            (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1071 #else
1072                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1073                            loops_per_jiffy / (500000/HZ),
1074                            (loops_per_jiffy / (5000/HZ)) % 100);
1075 #endif
1076                 /* dump out the processor features */
1077                 seq_puts(m, "Features\t: ");
1078
1079                 for (j = 0; hwcap_str[j]; j++)
1080                         if (elf_hwcap & (1 << j))
1081                                 seq_printf(m, "%s ", hwcap_str[j]);
1082
1083                 for (j = 0; hwcap2_str[j]; j++)
1084                         if (elf_hwcap2 & (1 << j))
1085                                 seq_printf(m, "%s ", hwcap2_str[j]);
1086
1087                 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1088                 seq_printf(m, "CPU architecture: %s\n",
1089                            proc_arch[cpu_architecture()]);
1090
1091                 if ((cpuid & 0x0008f000) == 0x00000000) {
1092                         /* pre-ARM7 */
1093                         seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1094                 } else {
1095                         if ((cpuid & 0x0008f000) == 0x00007000) {
1096                                 /* ARM7 */
1097                                 seq_printf(m, "CPU variant\t: 0x%02x\n",
1098                                            (cpuid >> 16) & 127);
1099                         } else {
1100                                 /* post-ARM7 */
1101                                 seq_printf(m, "CPU variant\t: 0x%x\n",
1102                                            (cpuid >> 20) & 15);
1103                         }
1104                         seq_printf(m, "CPU part\t: 0x%03x\n",
1105                                    (cpuid >> 4) & 0xfff);
1106                 }
1107                 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1108         }
1109
1110         seq_printf(m, "Hardware\t: %s\n", machine_name);
1111         seq_printf(m, "Revision\t: %04x\n", system_rev);
1112         seq_printf(m, "Serial\t\t: %08x%08x\n",
1113                    system_serial_high, system_serial_low);
1114
1115         return 0;
1116 }
1117
1118 static void *c_start(struct seq_file *m, loff_t *pos)
1119 {
1120         return *pos < 1 ? (void *)1 : NULL;
1121 }
1122
1123 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1124 {
1125         ++*pos;
1126         return NULL;
1127 }
1128
1129 static void c_stop(struct seq_file *m, void *v)
1130 {
1131 }
1132
1133 const struct seq_operations cpuinfo_op = {
1134         .start  = c_start,
1135         .next   = c_next,
1136         .stop   = c_stop,
1137         .show   = c_show
1138 };