// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2011 New Dream Network * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License version 2, as published by the Free Software * Foundation. See file COPYING. * */ #include "include/int_types.h" #include "include/rados/librados.h" #include "include/rbd_types.h" #include "include/rbd/librbd.h" #include "include/rbd/librbd.hpp" #include "include/event_type.h" #include "include/err.h" #include "gtest/gtest.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "test/librados/test.h" #include "test/librbd/test_support.h" #include "common/event_socket.h" #include "include/interval_set.h" #include "include/stringify.h" #include #include #ifdef HAVE_EVENTFD #include #endif using namespace std; using std::chrono::seconds; #define ASSERT_PASSED(x, args...) \ do { \ bool passed = false; \ x(args, &passed); \ ASSERT_TRUE(passed); \ } while(0) void register_test_librbd() { } static int get_features(bool *old_format, uint64_t *features) { const char *c = getenv("RBD_FEATURES"); if (c) { stringstream ss; ss << c; ss >> *features; if (ss.fail()) return -EINVAL; *old_format = false; cout << "using new format!" << std::endl; } else { *old_format = true; *features = 0; cout << "using old format" << std::endl; } return 0; } static int create_image_full(rados_ioctx_t ioctx, const char *name, uint64_t size, int *order, int old_format, uint64_t features) { if (old_format) { // ensure old-format tests actually use the old format int r = rados_conf_set(rados_ioctx_get_cluster(ioctx), "rbd_default_format", "1"); if (r < 0) { return r; } return rbd_create(ioctx, name, size, order); } else if ((features & RBD_FEATURE_STRIPINGV2) != 0) { uint64_t stripe_unit = IMAGE_STRIPE_UNIT; if (*order) { // use a conservative stripe_unit for non default order stripe_unit = (1ull << (*order-1)); } printf("creating image with stripe unit: %" PRIu64 ", " "stripe count: %" PRIu64 "\n", stripe_unit, IMAGE_STRIPE_COUNT); return rbd_create3(ioctx, name, size, features, order, stripe_unit, IMAGE_STRIPE_COUNT); } else { return rbd_create2(ioctx, name, size, features, order); } } static int clone_image(rados_ioctx_t p_ioctx, rbd_image_t p_image, const char *p_name, const char *p_snap_name, rados_ioctx_t c_ioctx, const char *c_name, uint64_t features, int *c_order) { uint64_t stripe_unit, stripe_count; int r; r = rbd_get_stripe_unit(p_image, &stripe_unit); if (r != 0) { return r; } r = rbd_get_stripe_count(p_image, &stripe_count); if (r != 0) { return r; } return rbd_clone2(p_ioctx, p_name, p_snap_name, c_ioctx, c_name, features, c_order, stripe_unit, stripe_count); } static int create_image(rados_ioctx_t ioctx, const char *name, uint64_t size, int *order) { bool old_format; uint64_t features; int r = get_features(&old_format, &features); if (r < 0) return r; return create_image_full(ioctx, name, size, order, old_format, features); } static int create_image_pp(librbd::RBD &rbd, librados::IoCtx &ioctx, const char *name, uint64_t size, int *order) { bool old_format; uint64_t features; int r = get_features(&old_format, &features); if (r < 0) return r; if (old_format) { librados::Rados rados(ioctx); int r = rados.conf_set("rbd_default_format", "1"); if (r < 0) { return r; } return rbd.create(ioctx, name, size, order); } else { return rbd.create2(ioctx, name, size, features, order); } } class TestLibRBD : public ::testing::Test { public: TestLibRBD() : m_pool_number() { } static void SetUpTestCase() { static bool seeded = false; if (!seeded) { seeded = true; int seed = getpid(); cout << "seed " << seed << std::endl; srand(seed); } _pool_names.clear(); _unique_pool_names.clear(); _image_number = 0; ASSERT_EQ("", connect_cluster(&_cluster)); ASSERT_EQ("", connect_cluster_pp(_rados)); create_optional_data_pool(); } static void TearDownTestCase() { rados_shutdown(_cluster); _rados.wait_for_latest_osdmap(); _pool_names.insert(_pool_names.end(), _unique_pool_names.begin(), _unique_pool_names.end()); for (size_t i = 1; i < _pool_names.size(); ++i) { ASSERT_EQ(0, _rados.pool_delete(_pool_names[i].c_str())); } if (!_pool_names.empty()) { ASSERT_EQ(0, destroy_one_pool_pp(_pool_names[0], _rados)); } } void SetUp() override { ASSERT_NE("", m_pool_name = create_pool()); } bool is_skip_partial_discard_enabled() { std::string value; EXPECT_EQ(0, _rados.conf_get("rbd_skip_partial_discard", value)); return value == "true"; } void validate_object_map(rbd_image_t image, bool *passed) { uint64_t flags; ASSERT_EQ(0, rbd_get_flags(image, &flags)); *passed = ((flags & RBD_FLAG_OBJECT_MAP_INVALID) == 0); } void validate_object_map(librbd::Image &image, bool *passed) { uint64_t flags; ASSERT_EQ(0, image.get_flags(&flags)); *passed = ((flags & RBD_FLAG_OBJECT_MAP_INVALID) == 0); } std::string get_temp_image_name() { ++_image_number; return "image" + stringify(_image_number); } static void create_optional_data_pool() { bool created = false; std::string data_pool; ASSERT_EQ(0, create_image_data_pool(_rados, data_pool, &created)); if (!data_pool.empty()) { printf("using image data pool: %s\n", data_pool.c_str()); if (created) { _unique_pool_names.push_back(data_pool); } } } std::string create_pool(bool unique = false) { librados::Rados rados; std::string pool_name; if (unique) { pool_name = get_temp_pool_name("test-librbd-"); EXPECT_EQ("", create_one_pool_pp(pool_name, rados)); _unique_pool_names.push_back(pool_name); } else if (m_pool_number < _pool_names.size()) { pool_name = _pool_names[m_pool_number]; } else { pool_name = get_temp_pool_name("test-librbd-"); EXPECT_EQ("", create_one_pool_pp(pool_name, rados)); _pool_names.push_back(pool_name); } ++m_pool_number; return pool_name; } static std::vector _pool_names; static std::vector _unique_pool_names; static rados_t _cluster; static librados::Rados _rados; static uint64_t _image_number; std::string m_pool_name; uint32_t m_pool_number; }; std::vector TestLibRBD::_pool_names; std::vector TestLibRBD::_unique_pool_names; rados_t TestLibRBD::_cluster; librados::Rados TestLibRBD::_rados; uint64_t TestLibRBD::_image_number = 0; TEST_F(TestLibRBD, CreateAndStat) { rados_ioctx_t ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); rbd_image_info_t info; rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); printf("image has size %llu and order %d\n", (unsigned long long) info.size, info.order); ASSERT_EQ(info.size, size); ASSERT_EQ(info.order, order); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, CreateWithSameDataPool) { REQUIRE_FORMAT_V2(); rados_ioctx_t ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); rbd_image_t image; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; bool old_format; uint64_t features; ASSERT_EQ(0, get_features(&old_format, &features)); ASSERT_FALSE(old_format); rbd_image_options_t image_options; rbd_image_options_create(&image_options); BOOST_SCOPE_EXIT( (&image_options) ) { rbd_image_options_destroy(image_options); } BOOST_SCOPE_EXIT_END; ASSERT_EQ(0, rbd_image_options_set_uint64(image_options, RBD_IMAGE_OPTION_FEATURES, features)); ASSERT_EQ(0, rbd_image_options_set_string(image_options, RBD_IMAGE_OPTION_DATA_POOL, m_pool_name.c_str())); ASSERT_EQ(0, rbd_create4(ioctx, name.c_str(), size, image_options)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, CreateAndStatPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::image_info_t info; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); ASSERT_EQ(0, image.stat(info, sizeof(info))); ASSERT_EQ(info.size, size); ASSERT_EQ(info.order, order); } ioctx.close(); } TEST_F(TestLibRBD, GetId) { rados_ioctx_t ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); ASSERT_EQ(0, create_image(ioctx, name.c_str(), 0, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char id[4096]; if (!is_feature_enabled(0)) { // V1 image ASSERT_EQ(-EINVAL, rbd_get_id(image, id, sizeof(id))); } else { ASSERT_EQ(-ERANGE, rbd_get_id(image, id, 0)); ASSERT_EQ(0, rbd_get_id(image, id, sizeof(id))); ASSERT_LT(0U, strlen(id)); } ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, GetIdPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); std::string id; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), 0, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); if (!is_feature_enabled(0)) { // V1 image ASSERT_EQ(-EINVAL, image.get_id(&id)); } else { ASSERT_EQ(0, image.get_id(&id)); ASSERT_LT(0U, id.size()); } } TEST_F(TestLibRBD, GetBlockNamePrefix) { rados_ioctx_t ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); ASSERT_EQ(0, create_image(ioctx, name.c_str(), 0, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char prefix[4096]; ASSERT_EQ(-ERANGE, rbd_get_block_name_prefix(image, prefix, 0)); ASSERT_EQ(0, rbd_get_block_name_prefix(image, prefix, sizeof(prefix))); ASSERT_LT(0U, strlen(prefix)); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, GetBlockNamePrefixPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), 0, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); ASSERT_LT(0U, image.get_block_name_prefix().size()); } TEST_F(TestLibRBD, TestGetCreateTimestamp) { REQUIRE_FORMAT_V2(); rados_ioctx_t ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); ASSERT_EQ(0, create_image(ioctx, name.c_str(), 0, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); struct timespec timestamp; ASSERT_EQ(0, rbd_get_create_timestamp(image, ×tamp)); ASSERT_LT(0, timestamp.tv_sec); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, GetCreateTimestampPP) { REQUIRE_FORMAT_V2(); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), 0, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); struct timespec timestamp; ASSERT_EQ(0, image.get_create_timestamp(×tamp)); ASSERT_LT(0, timestamp.tv_sec); } TEST_F(TestLibRBD, OpenAio) { rados_ioctx_t ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); rbd_image_info_t info; rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); rbd_completion_t open_comp; ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &open_comp)); ASSERT_EQ(0, rbd_aio_open(ioctx, name.c_str(), &image, NULL, open_comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(open_comp)); ASSERT_EQ(1, rbd_aio_is_complete(open_comp)); ASSERT_EQ(0, rbd_aio_get_return_value(open_comp)); rbd_aio_release(open_comp); ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); printf("image has size %llu and order %d\n", (unsigned long long) info.size, info.order); ASSERT_EQ(info.size, size); ASSERT_EQ(info.order, order); rbd_completion_t close_comp; ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &close_comp)); ASSERT_EQ(0, rbd_aio_close(image, close_comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(close_comp)); ASSERT_EQ(1, rbd_aio_is_complete(close_comp)); ASSERT_EQ(0, rbd_aio_get_return_value(close_comp)); rbd_aio_release(close_comp); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, OpenAioFail) { rados_ioctx_t ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); std::string name = get_temp_image_name(); rbd_image_t image; rbd_completion_t open_comp; ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &open_comp)); ASSERT_EQ(0, rbd_aio_open(ioctx, name.c_str(), &image, NULL, open_comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(open_comp)); ASSERT_EQ(1, rbd_aio_is_complete(open_comp)); ASSERT_EQ(-ENOENT, rbd_aio_get_return_value(open_comp)); rbd_aio_release(open_comp); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, OpenAioPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; librbd::image_info_t info; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::RBD::AioCompletion *open_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, rbd.aio_open(ioctx, image, name.c_str(), NULL, open_comp)); ASSERT_EQ(0, open_comp->wait_for_complete()); ASSERT_EQ(1, open_comp->is_complete()); ASSERT_EQ(0, open_comp->get_return_value()); open_comp->release(); ASSERT_EQ(0, image.stat(info, sizeof(info))); ASSERT_EQ(info.size, size); ASSERT_EQ(info.order, order); // reopen open_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, rbd.aio_open(ioctx, image, name.c_str(), NULL, open_comp)); ASSERT_EQ(0, open_comp->wait_for_complete()); ASSERT_EQ(1, open_comp->is_complete()); ASSERT_EQ(0, open_comp->get_return_value()); open_comp->release(); // close librbd::RBD::AioCompletion *close_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, image.aio_close(close_comp)); ASSERT_EQ(0, close_comp->wait_for_complete()); ASSERT_EQ(1, close_comp->is_complete()); ASSERT_EQ(0, close_comp->get_return_value()); close_comp->release(); // close closed image close_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(-EINVAL, image.aio_close(close_comp)); close_comp->release(); ioctx.close(); } TEST_F(TestLibRBD, OpenAioFailPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; std::string name = get_temp_image_name(); librbd::RBD::AioCompletion *open_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, rbd.aio_open(ioctx, image, name.c_str(), NULL, open_comp)); ASSERT_EQ(0, open_comp->wait_for_complete()); ASSERT_EQ(1, open_comp->is_complete()); ASSERT_EQ(-ENOENT, open_comp->get_return_value()); open_comp->release(); } ioctx.close(); } TEST_F(TestLibRBD, ResizeAndStat) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_info_t info; rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_resize(image, size * 4)); ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); ASSERT_EQ(info.size, size * 4); ASSERT_EQ(0, rbd_resize(image, size / 2)); ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); ASSERT_EQ(info.size, size / 2); // downsizing without allowing shrink should fail // and image size should not change ASSERT_EQ(-EINVAL, rbd_resize2(image, size / 4, false, NULL, NULL)); ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); ASSERT_EQ(info.size, size / 2); ASSERT_EQ(0, rbd_resize2(image, size / 4, true, NULL, NULL)); ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); ASSERT_EQ(info.size, size / 4); ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, ResizeAndStatPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::image_info_t info; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); ASSERT_EQ(0, image.resize(size * 4)); ASSERT_EQ(0, image.stat(info, sizeof(info))); ASSERT_EQ(info.size, size * 4); ASSERT_EQ(0, image.resize(size / 2)); ASSERT_EQ(0, image.stat(info, sizeof(info))); ASSERT_EQ(info.size, size / 2); ASSERT_PASSED(validate_object_map, image); } ioctx.close(); } TEST_F(TestLibRBD, UpdateWatchAndResize) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; struct Watcher { rbd_image_t &m_image; mutex m_lock; condition_variable m_cond; size_t m_size = 0; static void cb(void *arg) { Watcher *watcher = static_cast(arg); watcher->handle_notify(); } Watcher(rbd_image_t &image) : m_image(image) {} void handle_notify() { rbd_image_info_t info; ASSERT_EQ(0, rbd_stat(m_image, &info, sizeof(info))); lock_guard locker(m_lock); m_size = info.size; m_cond.notify_one(); } void wait_for_size(size_t size) { unique_lock locker(m_lock); ASSERT_TRUE(m_cond.wait_for(locker, seconds(5), [size, this] { return this->m_size == size;})); } } watcher(image); uint64_t handle; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_update_watch(image, &handle, Watcher::cb, &watcher)); ASSERT_EQ(0, rbd_resize(image, size * 4)); watcher.wait_for_size(size * 4); ASSERT_EQ(0, rbd_resize(image, size / 2)); watcher.wait_for_size(size / 2); ASSERT_EQ(0, rbd_update_unwatch(image, handle)); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, UpdateWatchAndResizePP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; struct Watcher : public librbd::UpdateWatchCtx { Watcher(librbd::Image &image) : m_image(image) { } void handle_notify() override { librbd::image_info_t info; ASSERT_EQ(0, m_image.stat(info, sizeof(info))); lock_guard locker(m_lock); m_size = info.size; m_cond.notify_one(); } void wait_for_size(size_t size) { unique_lock locker(m_lock); ASSERT_TRUE(m_cond.wait_for(locker, seconds(5), [size, this] { return this->m_size == size;})); } librbd::Image &m_image; mutex m_lock; condition_variable m_cond; size_t m_size = 0; } watcher(image); uint64_t handle; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); ASSERT_EQ(0, image.update_watch(&watcher, &handle)); ASSERT_EQ(0, image.resize(size * 4)); watcher.wait_for_size(size * 4); ASSERT_EQ(0, image.resize(size / 2)); watcher.wait_for_size(size / 2); ASSERT_EQ(0, image.update_unwatch(handle)); } ioctx.close(); } int test_ls(rados_ioctx_t io_ctx, size_t num_expected, ...) { int num_images, i; char *names, *cur_name; va_list ap; size_t max_size = 1024; names = (char *) malloc(sizeof(char) * 1024); int len = rbd_list(io_ctx, names, &max_size); std::set image_names; for (i = 0, num_images = 0, cur_name = names; cur_name < names + len; i++) { printf("image: %s\n", cur_name); image_names.insert(cur_name); cur_name += strlen(cur_name) + 1; num_images++; } free(names); va_start(ap, num_expected); for (i = num_expected; i > 0; i--) { char *expected = va_arg(ap, char *); printf("expected = %s\n", expected); std::set::iterator it = image_names.find(expected); if (it != image_names.end()) { printf("found %s\n", expected); image_names.erase(it); printf("erased %s\n", expected); } else { ADD_FAILURE() << "Unable to find image " << expected; va_end(ap); return -ENOENT; } } va_end(ap); if (!image_names.empty()) { ADD_FAILURE() << "Unexpected images discovered"; return -EINVAL; } return num_images; } TEST_F(TestLibRBD, TestCreateLsDelete) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, create_pool(true).c_str(), &ioctx); int order = 0; std::string name = get_temp_image_name(); std::string name2 = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(1, test_ls(ioctx, 1, name.c_str())); ASSERT_EQ(0, create_image(ioctx, name2.c_str(), size, &order)); ASSERT_EQ(2, test_ls(ioctx, 2, name.c_str(), name2.c_str())); ASSERT_EQ(0, rbd_remove(ioctx, name.c_str())); ASSERT_EQ(1, test_ls(ioctx, 1, name2.c_str())); ASSERT_EQ(-ENOENT, rbd_remove(ioctx, name.c_str())); rados_ioctx_destroy(ioctx); } int test_ls_pp(librbd::RBD& rbd, librados::IoCtx& io_ctx, size_t num_expected, ...) { int r; size_t i; va_list ap; vector names; r = rbd.list(io_ctx, names); if (r == -ENOENT) r = 0; EXPECT_TRUE(r >= 0); cout << "num images is: " << names.size() << std::endl << "expected: " << num_expected << std::endl; int num = names.size(); for (i = 0; i < names.size(); i++) { cout << "image: " << names[i] << std::endl; } va_start(ap, num_expected); for (i = num_expected; i > 0; i--) { char *expected = va_arg(ap, char *); cout << "expected = " << expected << std::endl; vector::iterator listed_name = find(names.begin(), names.end(), string(expected)); if (listed_name == names.end()) { ADD_FAILURE() << "Unable to find image " << expected; va_end(ap); return -ENOENT; } names.erase(listed_name); } va_end(ap); if (!names.empty()) { ADD_FAILURE() << "Unexpected images discovered"; return -EINVAL; } return num; } TEST_F(TestLibRBD, TestCreateLsDeletePP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(create_pool(true).c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); std::string name2 = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(1, test_ls_pp(rbd, ioctx, 1, name.c_str())); ASSERT_EQ(0, create_image_pp(rbd, ioctx, name2.c_str(), size, &order)); ASSERT_EQ(2, test_ls_pp(rbd, ioctx, 2, name.c_str(), name2.c_str())); ASSERT_EQ(0, rbd.remove(ioctx, name.c_str())); ASSERT_EQ(1, test_ls_pp(rbd, ioctx, 1, name2.c_str())); } ioctx.close(); } static int print_progress_percent(uint64_t offset, uint64_t src_size, void *data) { float percent = ((float)offset * 100) / src_size; printf("%3.2f%% done\n", percent); return 0; } TEST_F(TestLibRBD, TestCopy) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, create_pool(true).c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); std::string name2 = get_temp_image_name(); std::string name3 = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(1, test_ls(ioctx, 1, name.c_str())); ASSERT_EQ(0, rbd_copy(image, ioctx, name2.c_str())); ASSERT_EQ(2, test_ls(ioctx, 2, name.c_str(), name2.c_str())); ASSERT_EQ(0, rbd_copy_with_progress(image, ioctx, name3.c_str(), print_progress_percent, NULL)); ASSERT_EQ(3, test_ls(ioctx, 3, name.c_str(), name2.c_str(), name3.c_str())); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } class PrintProgress : public librbd::ProgressContext { public: int update_progress(uint64_t offset, uint64_t src_size) override { float percent = ((float)offset * 100) / src_size; printf("%3.2f%% done\n", percent); return 0; } }; TEST_F(TestLibRBD, TestCopyPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(create_pool(true).c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); std::string name2 = get_temp_image_name(); std::string name3 = get_temp_image_name(); uint64_t size = 2 << 20; PrintProgress pp; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); ASSERT_EQ(1, test_ls_pp(rbd, ioctx, 1, name.c_str())); ASSERT_EQ(0, image.copy(ioctx, name2.c_str())); ASSERT_EQ(2, test_ls_pp(rbd, ioctx, 2, name.c_str(), name2.c_str())); ASSERT_EQ(0, image.copy_with_progress(ioctx, name3.c_str(), pp)); ASSERT_EQ(3, test_ls_pp(rbd, ioctx, 3, name.c_str(), name2.c_str(), name3.c_str())); } ioctx.close(); } int test_ls_snaps(rbd_image_t image, int num_expected, ...) { int num_snaps, i, j, max_size = 10; va_list ap; rbd_snap_info_t snaps[max_size]; num_snaps = rbd_snap_list(image, snaps, &max_size); printf("num snaps is: %d\nexpected: %d\n", num_snaps, num_expected); for (i = 0; i < num_snaps; i++) { printf("snap: %s\n", snaps[i].name); } va_start(ap, num_expected); for (i = num_expected; i > 0; i--) { char *expected = va_arg(ap, char *); uint64_t expected_size = va_arg(ap, uint64_t); bool found = false; for (j = 0; j < num_snaps; j++) { if (snaps[j].name == NULL) continue; if (strcmp(snaps[j].name, expected) == 0) { printf("found %s with size %llu\n", snaps[j].name, (unsigned long long) snaps[j].size); EXPECT_EQ(expected_size, snaps[j].size); free((void *) snaps[j].name); snaps[j].name = NULL; found = true; break; } } EXPECT_TRUE(found); } va_end(ap); for (i = 0; i < num_snaps; i++) { EXPECT_EQ((const char *)0, snaps[i].name); } return num_snaps; } TEST_F(TestLibRBD, TestCreateLsDeleteSnap) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; uint64_t size2 = 4 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_snap_create(image, "snap1")); ASSERT_EQ(1, test_ls_snaps(image, 1, "snap1", size)); ASSERT_EQ(0, rbd_resize(image, size2)); ASSERT_EQ(0, rbd_snap_create(image, "snap2")); ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1", size, "snap2", size2)); ASSERT_EQ(0, rbd_snap_remove(image, "snap1")); ASSERT_EQ(1, test_ls_snaps(image, 1, "snap2", size2)); ASSERT_EQ(0, rbd_snap_remove(image, "snap2")); ASSERT_EQ(0, test_ls_snaps(image, 0)); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } int test_get_snapshot_timestamp(rbd_image_t image, uint64_t snap_id) { struct timespec timestamp; EXPECT_EQ(0, rbd_snap_get_timestamp(image, snap_id, ×tamp)); EXPECT_LT(0, timestamp.tv_sec); return 0; } TEST_F(TestLibRBD, TestGetSnapShotTimeStamp) { REQUIRE_FORMAT_V2(); rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int num_snaps, max_size = 10; rbd_snap_info_t snaps[max_size]; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_snap_create(image, "snap1")); num_snaps = rbd_snap_list(image, snaps, &max_size); ASSERT_EQ(1, num_snaps); ASSERT_EQ(0, test_get_snapshot_timestamp(image, snaps[0].id)); free((void *)snaps[0].name); ASSERT_EQ(0, rbd_snap_create(image, "snap2")); num_snaps = rbd_snap_list(image, snaps, &max_size); ASSERT_EQ(2, num_snaps); ASSERT_EQ(0, test_get_snapshot_timestamp(image, snaps[0].id)); ASSERT_EQ(0, test_get_snapshot_timestamp(image, snaps[1].id)); free((void *)snaps[0].name); free((void *)snaps[1].name); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } int test_ls_snaps(librbd::Image& image, size_t num_expected, ...) { int r; size_t i, j; va_list ap; vector snaps; r = image.snap_list(snaps); EXPECT_TRUE(r >= 0); cout << "num snaps is: " << snaps.size() << std::endl << "expected: " << num_expected << std::endl; for (i = 0; i < snaps.size(); i++) { cout << "snap: " << snaps[i].name << std::endl; } va_start(ap, num_expected); for (i = num_expected; i > 0; i--) { char *expected = va_arg(ap, char *); uint64_t expected_size = va_arg(ap, uint64_t); int found = 0; for (j = 0; j < snaps.size(); j++) { if (snaps[j].name == "") continue; if (strcmp(snaps[j].name.c_str(), expected) == 0) { cout << "found " << snaps[j].name << " with size " << snaps[j].size << std::endl; EXPECT_EQ(expected_size, snaps[j].size); snaps[j].name = ""; found = 1; break; } } EXPECT_TRUE(found); } va_end(ap); for (i = 0; i < snaps.size(); i++) { EXPECT_EQ("", snaps[i].name); } return snaps.size(); } TEST_F(TestLibRBD, TestCreateLsDeleteSnapPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; uint64_t size2 = 4 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); bool exists; ASSERT_EQ(0, image.snap_exists2("snap1", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image.snap_create("snap1")); ASSERT_EQ(0, image.snap_exists2("snap1", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(1, test_ls_snaps(image, 1, "snap1", size)); ASSERT_EQ(0, image.resize(size2)); ASSERT_EQ(0, image.snap_exists2("snap2", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image.snap_create("snap2")); ASSERT_EQ(0, image.snap_exists2("snap2", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1", size, "snap2", size2)); ASSERT_EQ(0, image.snap_remove("snap1")); ASSERT_EQ(0, image.snap_exists2("snap1", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(1, test_ls_snaps(image, 1, "snap2", size2)); ASSERT_EQ(0, image.snap_remove("snap2")); ASSERT_EQ(0, image.snap_exists2("snap2", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, test_ls_snaps(image, 0)); } ioctx.close(); } TEST_F(TestLibRBD, TestCreateLsRenameSnapPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; uint64_t size2 = 4 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); bool exists; ASSERT_EQ(0, image.snap_exists2("snap1", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image.snap_create("snap1")); ASSERT_EQ(0, image.snap_exists2("snap1", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(1, test_ls_snaps(image, 1, "snap1", size)); ASSERT_EQ(0, image.resize(size2)); ASSERT_EQ(0, image.snap_exists2("snap2", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image.snap_create("snap2")); ASSERT_EQ(0, image.snap_exists2("snap2", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1", size, "snap2", size2)); ASSERT_EQ(0, image.snap_rename("snap1","snap1-rename")); ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1-rename", size, "snap2", size2)); ASSERT_EQ(0, image.snap_exists2("snap1", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image.snap_exists2("snap1-rename", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image.snap_remove("snap1-rename")); ASSERT_EQ(0, image.snap_rename("snap2","snap2-rename")); ASSERT_EQ(1, test_ls_snaps(image, 1, "snap2-rename", size2)); ASSERT_EQ(0, image.snap_exists2("snap2", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image.snap_exists2("snap2-rename", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image.snap_remove("snap2-rename")); ASSERT_EQ(0, test_ls_snaps(image, 0)); } ioctx.close(); } void simple_write_cb(rbd_completion_t cb, void *arg) { printf("write completion cb called!\n"); } void simple_read_cb(rbd_completion_t cb, void *arg) { printf("read completion cb called!\n"); } void aio_write_test_data_and_poll(rbd_image_t image, int fd, const char *test_data, uint64_t off, size_t len, uint32_t iohint, bool *passed) { rbd_completion_t comp; uint64_t data = 0x123; rbd_aio_create_completion((void*)&data, (rbd_callback_t) simple_write_cb, &comp); printf("created completion\n"); printf("started write\n"); if (iohint) rbd_aio_write2(image, off, len, test_data, comp, iohint); else rbd_aio_write(image, off, len, test_data, comp); struct pollfd pfd; pfd.fd = fd; pfd.events = POLLIN; ASSERT_EQ(1, poll(&pfd, 1, -1)); ASSERT_TRUE(pfd.revents & POLLIN); rbd_completion_t comps[1]; ASSERT_EQ(1, rbd_poll_io_events(image, comps, 1)); uint64_t count; ASSERT_EQ(static_cast(sizeof(count)), read(fd, &count, sizeof(count))); int r = rbd_aio_get_return_value(comps[0]); ASSERT_TRUE(rbd_aio_is_complete(comps[0])); ASSERT_TRUE(*(uint64_t*)rbd_aio_get_arg(comps[0]) == data); printf("return value is: %d\n", r); ASSERT_EQ(0, r); printf("finished write\n"); rbd_aio_release(comps[0]); *passed = true; } void aio_write_test_data(rbd_image_t image, const char *test_data, uint64_t off, size_t len, uint32_t iohint, bool *passed) { rbd_completion_t comp; rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp); printf("created completion\n"); if (iohint) rbd_aio_write2(image, off, len, test_data, comp, iohint); else rbd_aio_write(image, off, len, test_data, comp); printf("started write\n"); rbd_aio_wait_for_complete(comp); int r = rbd_aio_get_return_value(comp); printf("return value is: %d\n", r); ASSERT_EQ(0, r); printf("finished write\n"); rbd_aio_release(comp); *passed = true; } void write_test_data(rbd_image_t image, const char *test_data, uint64_t off, size_t len, uint32_t iohint, bool *passed) { ssize_t written; if (iohint) written = rbd_write2(image, off, len, test_data, iohint); else written = rbd_write(image, off, len, test_data); printf("wrote: %d\n", (int) written); ASSERT_EQ(len, static_cast(written)); *passed = true; } void aio_discard_test_data(rbd_image_t image, uint64_t off, uint64_t len, bool *passed) { rbd_completion_t comp; rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp); rbd_aio_discard(image, off, len, comp); rbd_aio_wait_for_complete(comp); int r = rbd_aio_get_return_value(comp); ASSERT_EQ(0, r); printf("aio discard: %d~%d = %d\n", (int)off, (int)len, (int)r); rbd_aio_release(comp); *passed = true; } void discard_test_data(rbd_image_t image, uint64_t off, size_t len, bool *passed) { ssize_t written; written = rbd_discard(image, off, len); printf("discard: %d~%d = %d\n", (int)off, (int)len, (int)written); ASSERT_EQ(len, static_cast(written)); *passed = true; } void aio_read_test_data_and_poll(rbd_image_t image, int fd, const char *expected, uint64_t off, size_t len, uint32_t iohint, bool *passed) { rbd_completion_t comp; char *result = (char *)malloc(len + 1); ASSERT_NE(static_cast(NULL), result); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); printf("created completion\n"); printf("started read\n"); if (iohint) rbd_aio_read2(image, off, len, result, comp, iohint); else rbd_aio_read(image, off, len, result, comp); struct pollfd pfd; pfd.fd = fd; pfd.events = POLLIN; ASSERT_EQ(1, poll(&pfd, 1, -1)); ASSERT_TRUE(pfd.revents & POLLIN); rbd_completion_t comps[1]; ASSERT_EQ(1, rbd_poll_io_events(image, comps, 1)); uint64_t count; ASSERT_EQ(static_cast(sizeof(count)), read(fd, &count, sizeof(count))); int r = rbd_aio_get_return_value(comps[0]); ASSERT_TRUE(rbd_aio_is_complete(comps[0])); printf("return value is: %d\n", r); ASSERT_EQ(len, static_cast(r)); rbd_aio_release(comps[0]); if (memcmp(result, expected, len)) { printf("read: %s\nexpected: %s\n", result, expected); ASSERT_EQ(0, memcmp(result, expected, len)); } free(result); *passed = true; } void aio_read_test_data(rbd_image_t image, const char *expected, uint64_t off, size_t len, uint32_t iohint, bool *passed) { rbd_completion_t comp; char *result = (char *)malloc(len + 1); ASSERT_NE(static_cast(NULL), result); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); printf("created completion\n"); if (iohint) rbd_aio_read2(image, off, len, result, comp, iohint); else rbd_aio_read(image, off, len, result, comp); printf("started read\n"); rbd_aio_wait_for_complete(comp); int r = rbd_aio_get_return_value(comp); printf("return value is: %d\n", r); ASSERT_EQ(len, static_cast(r)); rbd_aio_release(comp); if (memcmp(result, expected, len)) { printf("read: %s\nexpected: %s\n", result, expected); ASSERT_EQ(0, memcmp(result, expected, len)); } free(result); *passed = true; } void read_test_data(rbd_image_t image, const char *expected, uint64_t off, size_t len, uint32_t iohint, bool *passed) { ssize_t read; char *result = (char *)malloc(len + 1); ASSERT_NE(static_cast(NULL), result); if (iohint) read = rbd_read2(image, off, len, result, iohint); else read = rbd_read(image, off, len, result); printf("read: %d\n", (int) read); ASSERT_EQ(len, static_cast(read)); result[len] = '\0'; if (memcmp(result, expected, len)) { printf("read: %s\nexpected: %s\n", result, expected); ASSERT_EQ(0, memcmp(result, expected, len)); } free(result); *passed = true; } void aio_writesame_test_data(rbd_image_t image, const char *test_data, uint64_t off, uint64_t len, uint64_t data_len, uint32_t iohint, bool *passed) { rbd_completion_t comp; rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp); printf("created completion\n"); int r; r = rbd_aio_writesame(image, off, len, test_data, data_len, comp, iohint); printf("started writesame\n"); if (len % data_len) { ASSERT_EQ(-EINVAL, r); printf("expected fail, finished writesame\n"); rbd_aio_release(comp); *passed = true; return; } rbd_aio_wait_for_complete(comp); r = rbd_aio_get_return_value(comp); printf("return value is: %d\n", r); ASSERT_EQ(0, r); printf("finished writesame\n"); rbd_aio_release(comp); //verify data printf("to verify the data\n"); ssize_t read; char *result = (char *)malloc(data_len+ 1); ASSERT_NE(static_cast(NULL), result); uint64_t left = len; while (left > 0) { read = rbd_read(image, off, data_len, result); ASSERT_EQ(data_len, static_cast(read)); result[data_len] = '\0'; if (memcmp(result, test_data, data_len)) { printf("read: %d ~ %d\n", (int) off, (int) read); printf("read: %s\nexpected: %s\n", result, test_data); ASSERT_EQ(0, memcmp(result, test_data, data_len)); } off += data_len; left -= data_len; } ASSERT_EQ(0U, left); free(result); printf("verified\n"); *passed = true; } void writesame_test_data(rbd_image_t image, const char *test_data, uint64_t off, uint64_t len, uint64_t data_len, uint32_t iohint, bool *passed) { ssize_t written; written = rbd_writesame(image, off, len, test_data, data_len, iohint); if (len % data_len) { ASSERT_EQ(-EINVAL, written); printf("expected fail, finished writesame\n"); *passed = true; return; } ASSERT_EQ(len, static_cast(written)); printf("wrote: %d\n", (int) written); //verify data printf("to verify the data\n"); ssize_t read; char *result = (char *)malloc(data_len+ 1); ASSERT_NE(static_cast(NULL), result); uint64_t left = len; while (left > 0) { read = rbd_read(image, off, data_len, result); ASSERT_EQ(data_len, static_cast(read)); result[data_len] = '\0'; if (memcmp(result, test_data, data_len)) { printf("read: %d ~ %d\n", (int) off, (int) read); printf("read: %s\nexpected: %s\n", result, test_data); ASSERT_EQ(0, memcmp(result, test_data, data_len)); } off += data_len; left -= data_len; } ASSERT_EQ(0U, left); free(result); printf("verified\n"); *passed = true; } void aio_compare_and_write_test_data(rbd_image_t image, const char *cmp_data, const char *test_data, uint64_t off, size_t len, uint32_t iohint, bool *passed) { rbd_completion_t comp; rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp); printf("created completion\n"); uint64_t mismatch_offset; rbd_aio_compare_and_write(image, off, len, cmp_data, test_data, comp, &mismatch_offset, iohint); printf("started aio compare and write\n"); rbd_aio_wait_for_complete(comp); int r = rbd_aio_get_return_value(comp); printf("return value is: %d\n", r); ASSERT_EQ(0, r); printf("finished aio compare and write\n"); rbd_aio_release(comp); *passed = true; } void compare_and_write_test_data(rbd_image_t image, const char *cmp_data, const char *test_data, uint64_t off, size_t len, uint64_t *mismatch_off, uint32_t iohint, bool *passed) { printf("start compare and write\n"); ssize_t written; written = rbd_compare_and_write(image, off, len, cmp_data, test_data, mismatch_off, iohint); printf("compare and wrote: %d\n", (int) written); ASSERT_EQ(len, static_cast(written)); *passed = true; } TEST_F(TestLibRBD, TestIO) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); bool skip_discard = is_skip_partial_discard_enabled(); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char test_data[TEST_IO_SIZE + 1]; char zero_data[TEST_IO_SIZE + 1]; char mismatch_data[TEST_IO_SIZE + 1]; int i; uint64_t mismatch_offset; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } test_data[TEST_IO_SIZE] = '\0'; memset(zero_data, 0, sizeof(zero_data)); memset(mismatch_data, 9, sizeof(mismatch_data)); for (i = 0; i < 5; ++i) ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 0; i < 5; ++i) ASSERT_PASSED(compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, &mismatch_offset, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 0; i < 5; ++i) ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); // discard 2nd, 4th sections. ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE); ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE); ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE*3, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4, TEST_IO_SIZE, 0); for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); } else if (i % 3 == 1) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } else { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } } for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); } else if (i % 3 == 1) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } else { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } } rbd_image_info_t info; rbd_completion_t comp; ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); // can't read or write starting past end ASSERT_EQ(-EINVAL, rbd_write(image, info.size, 1, test_data)); ASSERT_EQ(-EINVAL, rbd_read(image, info.size, 1, test_data)); // reading through end returns amount up to end ASSERT_EQ(10, rbd_read(image, info.size - 10, 100, test_data)); // writing through end returns amount up to end ASSERT_EQ(10, rbd_write(image, info.size - 10, 100, test_data)); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); ASSERT_EQ(0, rbd_aio_write(image, info.size, 1, test_data, comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(comp)); ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp)); rbd_aio_release(comp); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); ASSERT_EQ(0, rbd_aio_read(image, info.size, 1, test_data, comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(comp)); ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp)); rbd_aio_release(comp); ASSERT_PASSED(write_test_data, image, zero_data, 0, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_EQ(-EILSEQ, rbd_compare_and_write(image, 0, TEST_IO_SIZE, mismatch_data, mismatch_data, &mismatch_offset, 0)); ASSERT_EQ(0U, mismatch_offset); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); ASSERT_EQ(0, rbd_aio_compare_and_write(image, 0, TEST_IO_SIZE, mismatch_data, mismatch_data, comp, &mismatch_offset, 0)); ASSERT_EQ(0, rbd_aio_wait_for_complete(comp)); ASSERT_EQ(0U, mismatch_offset); rbd_aio_release(comp); ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, TestIOWithIOHint) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); bool skip_discard = is_skip_partial_discard_enabled(); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char test_data[TEST_IO_SIZE + 1]; char zero_data[TEST_IO_SIZE + 1]; char mismatch_data[TEST_IO_SIZE + 1]; int i; uint64_t mismatch_offset; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } test_data[TEST_IO_SIZE] = '\0'; memset(zero_data, 0, sizeof(zero_data)); memset(mismatch_data, 9, sizeof(mismatch_data)); for (i = 0; i < 5; ++i) ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); for (i = 0; i < 5; ++i) ASSERT_PASSED(compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, &mismatch_offset, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); for (i = 0; i < 5; ++i) ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL|LIBRADOS_OP_FLAG_FADVISE_DONTNEED); // discard 2nd, 4th sections. ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE); ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE); ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE*3, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4, TEST_IO_SIZE, 0); for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); } else if (i % 3 == 1) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); } else { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); } } for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); } else if (i % 3 == 1) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); } else { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); } } rbd_image_info_t info; rbd_completion_t comp; ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); // can't read or write starting past end ASSERT_EQ(-EINVAL, rbd_write(image, info.size, 1, test_data)); ASSERT_EQ(-EINVAL, rbd_read(image, info.size, 1, test_data)); // reading through end returns amount up to end ASSERT_EQ(10, rbd_read2(image, info.size - 10, 100, test_data, LIBRADOS_OP_FLAG_FADVISE_NOCACHE)); // writing through end returns amount up to end ASSERT_EQ(10, rbd_write2(image, info.size - 10, 100, test_data, LIBRADOS_OP_FLAG_FADVISE_DONTNEED)); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); ASSERT_EQ(0, rbd_aio_read2(image, info.size, 1, test_data, comp, LIBRADOS_OP_FLAG_FADVISE_DONTNEED)); ASSERT_EQ(0, rbd_aio_wait_for_complete(comp)); ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp)); rbd_aio_release(comp); ASSERT_PASSED(write_test_data, image, zero_data, 0, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_EQ(-EILSEQ, rbd_compare_and_write(image, 0, TEST_IO_SIZE, mismatch_data, mismatch_data, &mismatch_offset, LIBRADOS_OP_FLAG_FADVISE_DONTNEED)); ASSERT_EQ(0U, mismatch_offset); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); ASSERT_EQ(0, rbd_aio_compare_and_write(image, 0, TEST_IO_SIZE, mismatch_data, mismatch_data, comp, &mismatch_offset, LIBRADOS_OP_FLAG_FADVISE_DONTNEED)); ASSERT_EQ(0, rbd_aio_wait_for_complete(comp)); ASSERT_EQ(0U, mismatch_offset); rbd_aio_release(comp); ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, TestDataPoolIO) { REQUIRE_FORMAT_V2(); rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); std::string data_pool_name = create_pool(true); bool skip_discard = is_skip_partial_discard_enabled(); rbd_image_t image; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; bool old_format; uint64_t features; ASSERT_EQ(0, get_features(&old_format, &features)); ASSERT_FALSE(old_format); rbd_image_options_t image_options; rbd_image_options_create(&image_options); BOOST_SCOPE_EXIT( (&image_options) ) { rbd_image_options_destroy(image_options); } BOOST_SCOPE_EXIT_END; ASSERT_EQ(0, rbd_image_options_set_uint64(image_options, RBD_IMAGE_OPTION_FEATURES, features)); ASSERT_EQ(0, rbd_image_options_set_string(image_options, RBD_IMAGE_OPTION_DATA_POOL, data_pool_name.c_str())); ASSERT_EQ(0, rbd_create4(ioctx, name.c_str(), size, image_options)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_NE(-1, rbd_get_data_pool_id(image)); char test_data[TEST_IO_SIZE + 1]; char zero_data[TEST_IO_SIZE + 1]; int i; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } test_data[TEST_IO_SIZE] = '\0'; memset(zero_data, 0, sizeof(zero_data)); for (i = 0; i < 5; ++i) ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 0; i < 5; ++i) ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); // discard 2nd, 4th sections. ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE); ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE); ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE*3, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4, TEST_IO_SIZE, 0); rbd_image_info_t info; rbd_completion_t comp; ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info))); // can't read or write starting past end ASSERT_EQ(-EINVAL, rbd_write(image, info.size, 1, test_data)); ASSERT_EQ(-EINVAL, rbd_read(image, info.size, 1, test_data)); // reading through end returns amount up to end ASSERT_EQ(10, rbd_read(image, info.size - 10, 100, test_data)); // writing through end returns amount up to end ASSERT_EQ(10, rbd_write(image, info.size - 10, 100, test_data)); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); ASSERT_EQ(0, rbd_aio_write(image, info.size, 1, test_data, comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(comp)); ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp)); rbd_aio_release(comp); rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp); ASSERT_EQ(0, rbd_aio_read(image, info.size, 1, test_data, comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(comp)); ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp)); rbd_aio_release(comp); ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, TestScatterGatherIO) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 20 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); std::string write_buffer("This is a test"); struct iovec bad_iovs[] = { {.iov_base = NULL, .iov_len = static_cast(-1)} }; struct iovec write_iovs[] = { {.iov_base = &write_buffer[0], .iov_len = 5}, {.iov_base = &write_buffer[5], .iov_len = 3}, {.iov_base = &write_buffer[8], .iov_len = 2}, {.iov_base = &write_buffer[10], .iov_len = 4} }; rbd_completion_t comp; rbd_aio_create_completion(NULL, NULL, &comp); ASSERT_EQ(-EINVAL, rbd_aio_writev(image, write_iovs, 0, 0, comp)); ASSERT_EQ(-EINVAL, rbd_aio_writev(image, bad_iovs, 1, 0, comp)); ASSERT_EQ(0, rbd_aio_writev(image, write_iovs, sizeof(write_iovs) / sizeof(struct iovec), 1<wait_for_complete(); int r = comp->get_return_value(); printf("return value is: %d\n", r); ASSERT_EQ(0, r); printf("finished write\n"); comp->release(); *passed = true; } void aio_discard_test_data(librbd::Image& image, off_t off, size_t len, bool *passed) { librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_write_cb_pp); image.aio_discard(off, len, comp); comp->wait_for_complete(); int r = comp->get_return_value(); ASSERT_EQ(0, r); comp->release(); *passed = true; } void write_test_data(librbd::Image& image, const char *test_data, off_t off, uint32_t iohint, bool *passed) { size_t written; size_t len = strlen(test_data); ceph::bufferlist bl; bl.append(test_data, len); if (iohint) written = image.write2(off, len, bl, iohint); else written = image.write(off, len, bl); printf("wrote: %u\n", (unsigned int) written); ASSERT_EQ(bl.length(), written); *passed = true; } void discard_test_data(librbd::Image& image, off_t off, size_t len, bool *passed) { size_t written; written = image.discard(off, len); printf("discard: %u~%u\n", (unsigned)off, (unsigned)len); ASSERT_EQ(len, written); *passed = true; } void aio_read_test_data(librbd::Image& image, const char *expected, off_t off, size_t expected_len, uint32_t iohint, bool *passed) { librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_read_cb_pp); ceph::bufferlist bl; printf("created completion\n"); if (iohint) image.aio_read2(off, expected_len, bl, comp, iohint); else image.aio_read(off, expected_len, bl, comp); printf("started read\n"); comp->wait_for_complete(); int r = comp->get_return_value(); printf("return value is: %d\n", r); ASSERT_EQ(TEST_IO_SIZE, r); ASSERT_EQ(0, memcmp(expected, bl.c_str(), TEST_IO_SIZE)); printf("finished read\n"); comp->release(); *passed = true; } void read_test_data(librbd::Image& image, const char *expected, off_t off, size_t expected_len, uint32_t iohint, bool *passed) { int read; size_t len = expected_len; ceph::bufferlist bl; if (iohint) read = image.read2(off, len, bl, iohint); else read = image.read(off, len, bl); ASSERT_TRUE(read >= 0); std::string bl_str(bl.c_str(), read); printf("read: %u\n", (unsigned int) read); int result = memcmp(bl_str.c_str(), expected, expected_len); if (result != 0) { printf("read: %s\nexpected: %s\n", bl_str.c_str(), expected); ASSERT_EQ(0, result); } *passed = true; } void aio_writesame_test_data(librbd::Image& image, const char *test_data, off_t off, size_t len, size_t data_len, uint32_t iohint, bool *passed) { ceph::bufferlist bl; bl.append(test_data, data_len); librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_write_cb_pp); printf("created completion\n"); int r; r = image.aio_writesame(off, len, bl, comp, iohint); printf("started writesame\n"); if (len % data_len) { ASSERT_EQ(-EINVAL, r); printf("expected fail, finished writesame\n"); comp->release(); *passed = true; return; } comp->wait_for_complete(); r = comp->get_return_value(); printf("return value is: %d\n", r); ASSERT_EQ(0, r); printf("finished writesame\n"); comp->release(); //verify data printf("to verify the data\n"); int read; uint64_t left = len; while (left > 0) { ceph::bufferlist bl; read = image.read(off, data_len, bl); ASSERT_EQ(data_len, static_cast(read)); std::string bl_str(bl.c_str(), read); int result = memcmp(bl_str.c_str(), test_data, data_len); if (result !=0 ) { printf("read: %u ~ %u\n", (unsigned int) off, (unsigned int) read); printf("read: %s\nexpected: %s\n", bl_str.c_str(), test_data); ASSERT_EQ(0, result); } off += data_len; left -= data_len; } ASSERT_EQ(0U, left); printf("verified\n"); *passed = true; } void writesame_test_data(librbd::Image& image, const char *test_data, off_t off, ssize_t len, size_t data_len, uint32_t iohint, bool *passed) { ssize_t written; ceph::bufferlist bl; bl.append(test_data, data_len); written = image.writesame(off, len, bl, iohint); if (len % data_len) { ASSERT_EQ(-EINVAL, written); printf("expected fail, finished writesame\n"); *passed = true; return; } ASSERT_EQ(len, written); printf("wrote: %u\n", (unsigned int) written); *passed = true; //verify data printf("to verify the data\n"); int read; uint64_t left = len; while (left > 0) { ceph::bufferlist bl; read = image.read(off, data_len, bl); ASSERT_EQ(data_len, static_cast(read)); std::string bl_str(bl.c_str(), read); int result = memcmp(bl_str.c_str(), test_data, data_len); if (result !=0 ) { printf("read: %u ~ %u\n", (unsigned int) off, (unsigned int) read); printf("read: %s\nexpected: %s\n", bl_str.c_str(), test_data); ASSERT_EQ(0, result); } off += data_len; left -= data_len; } ASSERT_EQ(0U, left); printf("verified\n"); *passed = true; } void aio_compare_and_write_test_data(librbd::Image& image, const char *cmp_data, const char *test_data, off_t off, ssize_t len, uint32_t iohint, bool *passed) { ceph::bufferlist cmp_bl; cmp_bl.append(cmp_data, strlen(cmp_data)); ceph::bufferlist test_bl; test_bl.append(test_data, strlen(test_data)); librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_write_cb_pp); printf("created completion\n"); uint64_t mismatch_offset; image.aio_compare_and_write(off, len, cmp_bl, test_bl, comp, &mismatch_offset, iohint); printf("started aio compare and write\n"); comp->wait_for_complete(); int r = comp->get_return_value(); printf("return value is: %d\n", r); ASSERT_EQ(0, r); printf("finished aio compare and write\n"); comp->release(); *passed = true; } void compare_and_write_test_data(librbd::Image& image, const char *cmp_data, const char *test_data, off_t off, ssize_t len, uint64_t *mismatch_off, uint32_t iohint, bool *passed) { size_t written; ceph::bufferlist cmp_bl; cmp_bl.append(cmp_data, strlen(cmp_data)); ceph::bufferlist test_bl; test_bl.append(test_data, strlen(test_data)); printf("start compare and write\n"); written = image.compare_and_write(off, len, cmp_bl, test_bl, mismatch_off, iohint); printf("compare and wrote: %d\n", (int) written); ASSERT_EQ(len, static_cast(written)); *passed = true; } TEST_F(TestLibRBD, TestIOPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); bool skip_discard = is_skip_partial_discard_enabled(); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); char test_data[TEST_IO_SIZE + 1]; char zero_data[TEST_IO_SIZE + 1]; int i; uint64_t mismatch_offset; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } test_data[TEST_IO_SIZE] = '\0'; memset(zero_data, 0, sizeof(zero_data)); for (i = 0; i < 5; ++i) ASSERT_PASSED(write_test_data, image, test_data, strlen(test_data) * i, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_write_test_data, image, test_data, strlen(test_data) * i, 0); for (i = 0; i < 5; ++i) ASSERT_PASSED(compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, &mismatch_offset, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 0; i < 5; ++i) ASSERT_PASSED(read_test_data, image, test_data, strlen(test_data) * i, TEST_IO_SIZE, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_read_test_data, image, test_data, strlen(test_data) * i, TEST_IO_SIZE, 0); // discard 2nd, 4th sections. ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE); ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE); ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data, TEST_IO_SIZE*3, TEST_IO_SIZE, 0); ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4, TEST_IO_SIZE, 0); for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); } else if (i % 3 == 1) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } else { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } } for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0); } else if (i % 3 == 1) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } else { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0); } } ASSERT_PASSED(validate_object_map, image); } ioctx.close(); } TEST_F(TestLibRBD, TestIOPPWithIOHint) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); char test_data[TEST_IO_SIZE + 1]; char zero_data[TEST_IO_SIZE + 1]; test_data[TEST_IO_SIZE] = '\0'; int i; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } memset(zero_data, 0, sizeof(zero_data)); for (i = 0; i < 5; ++i) ASSERT_PASSED(write_test_data, image, test_data, strlen(test_data) * i, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_write_test_data, image, test_data, strlen(test_data) * i, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); ASSERT_PASSED(read_test_data, image, test_data, strlen(test_data), TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_RANDOM); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_read_test_data, image, test_data, strlen(test_data) * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL|LIBRADOS_OP_FLAG_FADVISE_DONTNEED); for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); } else if (i % 3 == 1) { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); } else { ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE); } } for (i = 0; i < 15; ++i) { if (i % 3 == 2) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); } else if (i % 3 == 1) { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); } else { ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED); } } ASSERT_PASSED(validate_object_map, image); } ioctx.close(); } TEST_F(TestLibRBD, TestIOToSnapshot) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t isize = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), isize, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); int i, r; rbd_image_t image_at_snap; char orig_data[TEST_IO_TO_SNAP_SIZE + 1]; char test_data[TEST_IO_TO_SNAP_SIZE + 1]; for (i = 0; i < TEST_IO_TO_SNAP_SIZE; ++i) test_data[i] = (char) (i + 48); test_data[TEST_IO_TO_SNAP_SIZE] = '\0'; orig_data[TEST_IO_TO_SNAP_SIZE] = '\0'; r = rbd_read(image, 0, TEST_IO_TO_SNAP_SIZE, orig_data); ASSERT_EQ(r, TEST_IO_TO_SNAP_SIZE); ASSERT_EQ(0, test_ls_snaps(image, 0)); ASSERT_EQ(0, rbd_snap_create(image, "orig")); ASSERT_EQ(1, test_ls_snaps(image, 1, "orig", isize)); ASSERT_PASSED(read_test_data, image, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0); printf("write test data!\n"); ASSERT_PASSED(write_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0); ASSERT_EQ(0, rbd_snap_create(image, "written")); ASSERT_EQ(2, test_ls_snaps(image, 2, "orig", isize, "written", isize)); ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0); rbd_snap_set(image, "orig"); ASSERT_PASSED(read_test_data, image, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0); rbd_snap_set(image, "written"); ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0); rbd_snap_set(image, "orig"); r = rbd_write(image, 0, TEST_IO_TO_SNAP_SIZE, test_data); printf("write to snapshot returned %d\n", r); ASSERT_LT(r, 0); cout << strerror(-r) << std::endl; ASSERT_PASSED(read_test_data, image, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0); rbd_snap_set(image, "written"); ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0); r = rbd_snap_rollback(image, "orig"); ASSERT_EQ(r, -EROFS); r = rbd_snap_set(image, NULL); ASSERT_EQ(r, 0); r = rbd_snap_rollback(image, "orig"); ASSERT_EQ(r, 0); ASSERT_PASSED(write_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0); rbd_flush(image); printf("opening testimg@orig\n"); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image_at_snap, "orig")); ASSERT_PASSED(read_test_data, image_at_snap, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0); r = rbd_write(image_at_snap, 0, TEST_IO_TO_SNAP_SIZE, test_data); printf("write to snapshot returned %d\n", r); ASSERT_LT(r, 0); cout << strerror(-r) << std::endl; ASSERT_EQ(0, rbd_close(image_at_snap)); ASSERT_EQ(2, test_ls_snaps(image, 2, "orig", isize, "written", isize)); ASSERT_EQ(0, rbd_snap_remove(image, "written")); ASSERT_EQ(1, test_ls_snaps(image, 1, "orig", isize)); ASSERT_EQ(0, rbd_snap_remove(image, "orig")); ASSERT_EQ(0, test_ls_snaps(image, 0)); ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, TestClone) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); rados_ioctx_t ioctx; rbd_image_info_t pinfo, cinfo; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); bool old_format; uint64_t features; rbd_image_t parent, child; int order = 0; ASSERT_EQ(0, get_features(&old_format, &features)); ASSERT_FALSE(old_format); std::string parent_name = get_temp_image_name(); std::string child_name = get_temp_image_name(); // make a parent to clone from ASSERT_EQ(0, create_image_full(ioctx, parent_name.c_str(), 4<<20, &order, false, features)); ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, NULL)); printf("made parent image \"parent\"\n"); char *data = (char *)"testdata"; ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 0, strlen(data), data)); // can't clone a non-snapshot, expect failure EXPECT_NE(0, clone_image(ioctx, parent, parent_name.c_str(), NULL, ioctx, child_name.c_str(), features, &order)); // verify that there is no parent info on "parent" ASSERT_EQ(-ENOENT, rbd_get_parent_info(parent, NULL, 0, NULL, 0, NULL, 0)); printf("parent has no parent info\n"); // create a snapshot, reopen as the parent we're interested in ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap")); printf("made snapshot \"parent@parent_snap\"\n"); ASSERT_EQ(0, rbd_close(parent)); ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, "parent_snap")); ASSERT_EQ(-EINVAL, clone_image(ioctx, parent, parent_name.c_str(), "parent_snap", ioctx, child_name.c_str(), features, &order)); // unprotected image should fail unprotect ASSERT_EQ(-EINVAL, rbd_snap_unprotect(parent, "parent_snap")); printf("can't unprotect an unprotected snap\n"); ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap")); // protecting again should fail ASSERT_EQ(-EBUSY, rbd_snap_protect(parent, "parent_snap")); printf("can't protect a protected snap\n"); // This clone and open should work ASSERT_EQ(0, clone_image(ioctx, parent, parent_name.c_str(), "parent_snap", ioctx, child_name.c_str(), features, &order)); ASSERT_EQ(0, rbd_open(ioctx, child_name.c_str(), &child, NULL)); printf("made and opened clone \"child\"\n"); // check read ASSERT_PASSED(read_test_data, child, data, 0, strlen(data), 0); // check write ASSERT_EQ((ssize_t)strlen(data), rbd_write(child, 20, strlen(data), data)); ASSERT_PASSED(read_test_data, child, data, 20, strlen(data), 0); ASSERT_PASSED(read_test_data, child, data, 0, strlen(data), 0); // check attributes ASSERT_EQ(0, rbd_stat(parent, &pinfo, sizeof(pinfo))); ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo))); EXPECT_EQ(cinfo.size, pinfo.size); uint64_t overlap; rbd_get_overlap(child, &overlap); EXPECT_EQ(overlap, pinfo.size); EXPECT_EQ(cinfo.obj_size, pinfo.obj_size); EXPECT_EQ(cinfo.order, pinfo.order); printf("sizes and overlaps are good between parent and child\n"); // sizing down child results in changing overlap and size, not parent size ASSERT_EQ(0, rbd_resize(child, 2UL<<20)); ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo))); rbd_get_overlap(child, &overlap); ASSERT_EQ(overlap, 2UL<<20); ASSERT_EQ(cinfo.size, 2UL<<20); ASSERT_EQ(0, rbd_resize(child, 4UL<<20)); ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo))); rbd_get_overlap(child, &overlap); ASSERT_EQ(overlap, 2UL<<20); ASSERT_EQ(cinfo.size, 4UL<<20); printf("sized down clone, changed overlap\n"); // sizing back up doesn't change that ASSERT_EQ(0, rbd_resize(child, 5UL<<20)); ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo))); rbd_get_overlap(child, &overlap); ASSERT_EQ(overlap, 2UL<<20); ASSERT_EQ(cinfo.size, 5UL<<20); ASSERT_EQ(0, rbd_stat(parent, &pinfo, sizeof(pinfo))); printf("parent info: size %lld obj_size %lld parent_pool %lld\n", (unsigned long long)pinfo.size, (unsigned long long)pinfo.obj_size, (unsigned long long)pinfo.parent_pool); ASSERT_EQ(pinfo.size, 4UL<<20); printf("sized up clone, changed size but not overlap or parent's size\n"); ASSERT_PASSED(validate_object_map, child); ASSERT_EQ(0, rbd_close(child)); ASSERT_PASSED(validate_object_map, parent); ASSERT_EQ(-EBUSY, rbd_snap_remove(parent, "parent_snap")); printf("can't remove parent while child still exists\n"); ASSERT_EQ(0, rbd_remove(ioctx, child_name.c_str())); ASSERT_EQ(-EBUSY, rbd_snap_remove(parent, "parent_snap")); printf("can't remove parent while still protected\n"); ASSERT_EQ(0, rbd_snap_unprotect(parent, "parent_snap")); ASSERT_EQ(0, rbd_snap_remove(parent, "parent_snap")); printf("removed parent snap after unprotecting\n"); ASSERT_EQ(0, rbd_close(parent)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, TestClone2) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); bool old_format; uint64_t features; rbd_image_t parent, child; int order = 0; ASSERT_EQ(0, get_features(&old_format, &features)); ASSERT_FALSE(old_format); std::string parent_name = get_temp_image_name(); std::string child_name = get_temp_image_name(); // make a parent to clone from ASSERT_EQ(0, create_image_full(ioctx, parent_name.c_str(), 4<<20, &order, false, features)); ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, NULL)); printf("made parent image \"parent\"\n"); char *data = (char *)"testdata"; char *childata = (char *)"childata"; ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 0, strlen(data), data)); ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 12, strlen(data), data)); // can't clone a non-snapshot, expect failure EXPECT_NE(0, clone_image(ioctx, parent, parent_name.c_str(), NULL, ioctx, child_name.c_str(), features, &order)); // verify that there is no parent info on "parent" ASSERT_EQ(-ENOENT, rbd_get_parent_info(parent, NULL, 0, NULL, 0, NULL, 0)); printf("parent has no parent info\n"); // create a snapshot, reopen as the parent we're interested in ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap")); printf("made snapshot \"parent@parent_snap\"\n"); ASSERT_EQ(0, rbd_close(parent)); ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, "parent_snap")); ASSERT_EQ(-EINVAL, clone_image(ioctx, parent, parent_name.c_str(), "parent_snap", ioctx, child_name.c_str(), features, &order)); // unprotected image should fail unprotect ASSERT_EQ(-EINVAL, rbd_snap_unprotect(parent, "parent_snap")); printf("can't unprotect an unprotected snap\n"); ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap")); // protecting again should fail ASSERT_EQ(-EBUSY, rbd_snap_protect(parent, "parent_snap")); printf("can't protect a protected snap\n"); // This clone and open should work ASSERT_EQ(0, clone_image(ioctx, parent, parent_name.c_str(), "parent_snap", ioctx, child_name.c_str(), features, &order)); ASSERT_EQ(0, rbd_open(ioctx, child_name.c_str(), &child, NULL)); printf("made and opened clone \"child\"\n"); // write something in ASSERT_EQ((ssize_t)strlen(childata), rbd_write(child, 20, strlen(childata), childata)); char test[strlen(data) * 2]; ASSERT_EQ((ssize_t)strlen(data), rbd_read(child, 20, strlen(data), test)); ASSERT_EQ(0, memcmp(test, childata, strlen(childata))); // overlap ASSERT_EQ((ssize_t)sizeof(test), rbd_read(child, 20 - strlen(data), sizeof(test), test)); ASSERT_EQ(0, memcmp(test, data, strlen(data))); ASSERT_EQ(0, memcmp(test + strlen(data), childata, strlen(childata))); // all parent ASSERT_EQ((ssize_t)sizeof(test), rbd_read(child, 0, sizeof(test), test)); ASSERT_EQ(0, memcmp(test, data, strlen(data))); ASSERT_PASSED(validate_object_map, child); ASSERT_PASSED(validate_object_map, parent); ASSERT_EQ(0, rbd_close(child)); ASSERT_EQ(0, rbd_close(parent)); rados_ioctx_destroy(ioctx); } static void test_list_children(rbd_image_t image, ssize_t num_expected, ...) { va_list ap; va_start(ap, num_expected); size_t pools_len = 100; size_t children_len = 100; char *pools = NULL; char *children = NULL; ssize_t num_children; do { free(pools); free(children); pools = (char *) malloc(pools_len); children = (char *) malloc(children_len); num_children = rbd_list_children(image, pools, &pools_len, children, &children_len); } while (num_children == -ERANGE); ASSERT_EQ(num_expected, num_children); for (ssize_t i = num_expected; i > 0; --i) { char *expected_pool = va_arg(ap, char *); char *expected_image = va_arg(ap, char *); char *pool = pools; char *image = children; bool found = 0; printf("\ntrying to find %s/%s\n", expected_pool, expected_image); for (ssize_t j = 0; j < num_children; ++j) { printf("checking %s/%s\n", pool, image); if (strcmp(expected_pool, pool) == 0 && strcmp(expected_image, image) == 0) { printf("found child %s/%s\n\n", pool, image); found = 1; break; } pool += strlen(pool) + 1; image += strlen(image) + 1; if (j == num_children - 1) { ASSERT_EQ(pool - pools - 1, (ssize_t) pools_len); ASSERT_EQ(image - children - 1, (ssize_t) children_len); } } ASSERT_TRUE(found); } va_end(ap); if (pools) free(pools); if (children) free(children); } TEST_F(TestLibRBD, ListChildren) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); rados_ioctx_t ioctx1, ioctx2; string pool_name1 = create_pool(true); string pool_name2 = create_pool(true); ASSERT_NE("", pool_name2); rados_ioctx_create(_cluster, pool_name1.c_str(), &ioctx1); rados_ioctx_create(_cluster, pool_name2.c_str(), &ioctx2); bool old_format; uint64_t features; rbd_image_t parent; int order = 0; ASSERT_EQ(0, get_features(&old_format, &features)); ASSERT_FALSE(old_format); std::string parent_name = get_temp_image_name(); std::string child_name1 = get_temp_image_name(); std::string child_name2 = get_temp_image_name(); std::string child_name3 = get_temp_image_name(); std::string child_name4 = get_temp_image_name(); // make a parent to clone from ASSERT_EQ(0, create_image_full(ioctx1, parent_name.c_str(), 4<<20, &order, false, features)); ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, NULL)); // create a snapshot, reopen as the parent we're interested in ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap")); ASSERT_EQ(0, rbd_snap_set(parent, "parent_snap")); ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap")); ASSERT_EQ(0, rbd_close(parent)); ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, "parent_snap")); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx2, child_name1.c_str(), features, &order)); test_list_children(parent, 1, pool_name2.c_str(), child_name1.c_str()); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx1, child_name2.c_str(), features, &order)); test_list_children(parent, 2, pool_name2.c_str(), child_name1.c_str(), pool_name1.c_str(), child_name2.c_str()); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx2, child_name3.c_str(), features, &order)); test_list_children(parent, 3, pool_name2.c_str(), child_name1.c_str(), pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name3.c_str()); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx2, child_name4.c_str(), features, &order)); test_list_children(parent, 4, pool_name2.c_str(), child_name1.c_str(), pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name3.c_str(), pool_name2.c_str(), child_name4.c_str()); ASSERT_EQ(0, rbd_remove(ioctx2, child_name1.c_str())); test_list_children(parent, 3, pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name3.c_str(), pool_name2.c_str(), child_name4.c_str()); ASSERT_EQ(0, rbd_remove(ioctx2, child_name3.c_str())); test_list_children(parent, 2, pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name4.c_str()); ASSERT_EQ(0, rbd_remove(ioctx2, child_name4.c_str())); test_list_children(parent, 1, pool_name1.c_str(), child_name2.c_str()); ASSERT_EQ(0, rbd_remove(ioctx1, child_name2.c_str())); test_list_children(parent, 0); ASSERT_EQ(0, rbd_snap_unprotect(parent, "parent_snap")); ASSERT_EQ(0, rbd_snap_remove(parent, "parent_snap")); ASSERT_EQ(0, rbd_close(parent)); ASSERT_EQ(0, rbd_remove(ioctx1, parent_name.c_str())); rados_ioctx_destroy(ioctx1); rados_ioctx_destroy(ioctx2); } TEST_F(TestLibRBD, ListChildrenTiered) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); string pool_name1 = m_pool_name; string pool_name2 = create_pool(true); string pool_name3 = create_pool(true); ASSERT_NE("", pool_name2); ASSERT_NE("", pool_name3); std::string cmdstr = "{\"prefix\": \"osd tier add\", \"pool\": \"" + pool_name1 + "\", \"tierpool\":\"" + pool_name3 + "\", \"force_nonempty\":\"\"}"; char *cmd[1]; cmd[0] = (char *)cmdstr.c_str(); ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0)); cmdstr = "{\"prefix\": \"osd tier cache-mode\", \"pool\": \"" + pool_name3 + "\", \"mode\":\"writeback\"}"; cmd[0] = (char *)cmdstr.c_str(); ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0)); cmdstr = "{\"prefix\": \"osd tier set-overlay\", \"pool\": \"" + pool_name1 + "\", \"overlaypool\":\"" + pool_name3 + "\"}"; cmd[0] = (char *)cmdstr.c_str(); ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0)); EXPECT_EQ(0, rados_wait_for_latest_osdmap(_cluster)); string parent_name = get_temp_image_name(); string child_name1 = get_temp_image_name(); string child_name2 = get_temp_image_name(); string child_name3 = get_temp_image_name(); string child_name4 = get_temp_image_name(); rados_ioctx_t ioctx1, ioctx2; rados_ioctx_create(_cluster, pool_name1.c_str(), &ioctx1); rados_ioctx_create(_cluster, pool_name2.c_str(), &ioctx2); bool old_format; uint64_t features; rbd_image_t parent; int order = 0; ASSERT_EQ(0, get_features(&old_format, &features)); ASSERT_FALSE(old_format); // make a parent to clone from ASSERT_EQ(0, create_image_full(ioctx1, parent_name.c_str(), 4<<20, &order, false, features)); ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, NULL)); // create a snapshot, reopen as the parent we're interested in ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap")); ASSERT_EQ(0, rbd_snap_set(parent, "parent_snap")); ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap")); ASSERT_EQ(0, rbd_close(parent)); ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, "parent_snap")); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx2, child_name1.c_str(), features, &order)); test_list_children(parent, 1, pool_name2.c_str(), child_name1.c_str()); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx1, child_name2.c_str(), features, &order)); test_list_children(parent, 2, pool_name2.c_str(), child_name1.c_str(), pool_name1.c_str(), child_name2.c_str()); // read from the cache to populate it rbd_image_t tier_image; ASSERT_EQ(0, rbd_open(ioctx1, child_name2.c_str(), &tier_image, NULL)); size_t len = 4 * 1024 * 1024; char* buf = (char*)malloc(len); ssize_t size = rbd_read(tier_image, 0, len, buf); ASSERT_GT(size, 0); free(buf); ASSERT_EQ(0, rbd_close(tier_image)); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx2, child_name3.c_str(), features, &order)); test_list_children(parent, 3, pool_name2.c_str(), child_name1.c_str(), pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name3.c_str()); ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap", ioctx2, child_name4.c_str(), features, &order)); test_list_children(parent, 4, pool_name2.c_str(), child_name1.c_str(), pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name3.c_str(), pool_name2.c_str(), child_name4.c_str()); ASSERT_EQ(0, rbd_remove(ioctx2, child_name1.c_str())); test_list_children(parent, 3, pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name3.c_str(), pool_name2.c_str(), child_name4.c_str()); ASSERT_EQ(0, rbd_remove(ioctx2, child_name3.c_str())); test_list_children(parent, 2, pool_name1.c_str(), child_name2.c_str(), pool_name2.c_str(), child_name4.c_str()); ASSERT_EQ(0, rbd_remove(ioctx2, child_name4.c_str())); test_list_children(parent, 1, pool_name1.c_str(), child_name2.c_str()); ASSERT_EQ(0, rbd_remove(ioctx1, child_name2.c_str())); test_list_children(parent, 0); ASSERT_EQ(0, rbd_snap_unprotect(parent, "parent_snap")); ASSERT_EQ(0, rbd_snap_remove(parent, "parent_snap")); ASSERT_EQ(0, rbd_close(parent)); ASSERT_EQ(0, rbd_remove(ioctx1, parent_name.c_str())); rados_ioctx_destroy(ioctx1); rados_ioctx_destroy(ioctx2); cmdstr = "{\"prefix\": \"osd tier remove-overlay\", \"pool\": \"" + pool_name1 + "\"}"; cmd[0] = (char *)cmdstr.c_str(); ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0)); cmdstr = "{\"prefix\": \"osd tier remove\", \"pool\": \"" + pool_name1 + "\", \"tierpool\":\"" + pool_name3 + "\"}"; cmd[0] = (char *)cmdstr.c_str(); ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0)); } TEST_F(TestLibRBD, LockingPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; std::string cookie1 = "foo"; std::string cookie2 = "bar"; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); // no lockers initially std::list lockers; std::string tag; bool exclusive; ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag)); ASSERT_EQ(0u, lockers.size()); ASSERT_EQ("", tag); // exclusive lock is exclusive ASSERT_EQ(0, image.lock_exclusive(cookie1)); ASSERT_EQ(-EEXIST, image.lock_exclusive(cookie1)); ASSERT_EQ(-EBUSY, image.lock_exclusive("")); ASSERT_EQ(-EEXIST, image.lock_shared(cookie1, "")); ASSERT_EQ(-EBUSY, image.lock_shared(cookie1, "test")); ASSERT_EQ(-EBUSY, image.lock_shared("", "test")); ASSERT_EQ(-EBUSY, image.lock_shared("", "")); // list exclusive ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag)); ASSERT_TRUE(exclusive); ASSERT_EQ("", tag); ASSERT_EQ(1u, lockers.size()); ASSERT_EQ(cookie1, lockers.front().cookie); // unlock ASSERT_EQ(-ENOENT, image.unlock("")); ASSERT_EQ(-ENOENT, image.unlock(cookie2)); ASSERT_EQ(0, image.unlock(cookie1)); ASSERT_EQ(-ENOENT, image.unlock(cookie1)); ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag)); ASSERT_EQ(0u, lockers.size()); ASSERT_EQ(0, image.lock_shared(cookie1, "")); ASSERT_EQ(-EEXIST, image.lock_shared(cookie1, "")); ASSERT_EQ(0, image.lock_shared(cookie2, "")); ASSERT_EQ(-EEXIST, image.lock_shared(cookie2, "")); ASSERT_EQ(-EEXIST, image.lock_exclusive(cookie1)); ASSERT_EQ(-EEXIST, image.lock_exclusive(cookie2)); ASSERT_EQ(-EBUSY, image.lock_exclusive("")); ASSERT_EQ(-EBUSY, image.lock_exclusive("test")); // list shared ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag)); ASSERT_EQ(2u, lockers.size()); } ioctx.close(); } TEST_F(TestLibRBD, FlushAio) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; size_t num_aios = 256; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char test_data[TEST_IO_SIZE + 1]; size_t i; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } rbd_completion_t write_comps[num_aios]; for (i = 0; i < num_aios; ++i) { ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &write_comps[i])); uint64_t offset = rand() % (size - TEST_IO_SIZE); ASSERT_EQ(0, rbd_aio_write(image, offset, TEST_IO_SIZE, test_data, write_comps[i])); } rbd_completion_t flush_comp; ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &flush_comp)); ASSERT_EQ(0, rbd_aio_flush(image, flush_comp)); ASSERT_EQ(0, rbd_aio_wait_for_complete(flush_comp)); ASSERT_EQ(1, rbd_aio_is_complete(flush_comp)); rbd_aio_release(flush_comp); for (i = 0; i < num_aios; ++i) { ASSERT_EQ(1, rbd_aio_is_complete(write_comps[i])); rbd_aio_release(write_comps[i]); } ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); ASSERT_EQ(0, rbd_remove(ioctx, name.c_str())); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, FlushAioPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; const size_t num_aios = 256; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); char test_data[TEST_IO_SIZE + 1]; size_t i; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } test_data[TEST_IO_SIZE] = '\0'; librbd::RBD::AioCompletion *write_comps[num_aios]; ceph::bufferlist bls[num_aios]; for (i = 0; i < num_aios; ++i) { bls[i].append(test_data, strlen(test_data)); write_comps[i] = new librbd::RBD::AioCompletion(NULL, NULL); uint64_t offset = rand() % (size - TEST_IO_SIZE); ASSERT_EQ(0, image.aio_write(offset, TEST_IO_SIZE, bls[i], write_comps[i])); } librbd::RBD::AioCompletion *flush_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, image.aio_flush(flush_comp)); ASSERT_EQ(0, flush_comp->wait_for_complete()); ASSERT_EQ(1, flush_comp->is_complete()); flush_comp->release(); for (i = 0; i < num_aios; ++i) { librbd::RBD::AioCompletion *comp = write_comps[i]; ASSERT_EQ(1, comp->is_complete()); comp->release(); } ASSERT_PASSED(validate_object_map, image); } ioctx.close(); } int iterate_cb(uint64_t off, size_t len, int exists, void *arg) { //cout << "iterate_cb " << off << "~" << len << std::endl; interval_set *diff = static_cast *>(arg); diff->insert(off, len); return 0; } static int iterate_error_cb(uint64_t off, size_t len, int exists, void *arg) { return -EINVAL; } void scribble(librbd::Image& image, int n, int max, bool skip_discard, interval_set *exists, interval_set *what) { uint64_t size; image.size(&size); interval_set exists_at_start = *exists; for (int i=0; i w; w.insert(off, len); // the zeroed bit no longer exists... w.intersection_of(*exists); exists->subtract(w); // the bits we discarded are no long written... interval_set w2 = w; w2.intersection_of(*what); what->subtract(w2); // except for the extents that existed at the start that we overwrote. interval_set w3; w3.insert(off, len); w3.intersection_of(exists_at_start); what->union_of(w3); } else { bufferlist bl; bl.append(buffer::create(len)); bl.zero(); ASSERT_EQ((int)len, image.write(off, len, bl)); interval_set w; w.insert(off, len); what->union_of(w); exists->union_of(w); } } } interval_set round_diff_interval(const interval_set& diff, uint64_t object_size) { if (object_size == 0) { return diff; } interval_set rounded_diff; for (interval_set::const_iterator it = diff.begin(); it != diff.end(); ++it) { uint64_t off = it.get_start(); uint64_t len = it.get_len(); off -= off % object_size; len += (object_size - (len % object_size)); interval_set interval; interval.insert(off, len); rounded_diff.union_of(interval); } return rounded_diff; } template class DiffIterateTest : public TestLibRBD { public: static const uint8_t whole_object = T::whole_object; }; template class DiffIterateParams { public: static const uint8_t whole_object = _whole_object; }; typedef ::testing::Types, DiffIterateParams > DiffIterateTypes; TYPED_TEST_CASE(DiffIterateTest, DiffIterateTypes); TYPED_TEST(DiffIterateTest, DiffIterate) { librados::IoCtx ioctx; ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx)); bool skip_discard = this->is_skip_partial_discard_enabled(); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = this->get_temp_image_name(); uint64_t size = 20 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint64_t object_size = 0; if (this->whole_object) { object_size = 1 << order; } interval_set exists; interval_set one, two; scribble(image, 10, 102400, skip_discard, &exists, &one); cout << " wrote " << one << std::endl; ASSERT_EQ(0, image.snap_create("one")); scribble(image, 10, 102400, skip_discard, &exists, &two); two = round_diff_interval(two, object_size); cout << " wrote " << two << std::endl; interval_set diff; ASSERT_EQ(0, image.diff_iterate2("one", 0, size, true, this->whole_object, iterate_cb, (void *)&diff)); cout << " diff was " << diff << std::endl; if (!two.subset_of(diff)) { interval_set i; i.intersection_of(two, diff); interval_set l = two; l.subtract(i); cout << " ... two - (two*diff) = " << l << std::endl; } ASSERT_TRUE(two.subset_of(diff)); } ioctx.close(); } struct diff_extent { diff_extent(uint64_t _offset, uint64_t _length, bool _exists, uint64_t object_size) : offset(_offset), length(_length), exists(_exists) { if (object_size != 0) { offset -= offset % object_size; length = object_size; } } uint64_t offset; uint64_t length; bool exists; bool operator==(const diff_extent& o) const { return offset == o.offset && length == o.length && exists == o.exists; } }; ostream& operator<<(ostream & o, const diff_extent& e) { return o << '(' << e.offset << '~' << e.length << ' ' << (e.exists ? "true" : "false") << ')'; } int vector_iterate_cb(uint64_t off, size_t len, int exists, void *arg) { cout << "iterate_cb " << off << "~" << len << std::endl; vector *diff = static_cast *>(arg); diff->push_back(diff_extent(off, len, exists, 0)); return 0; } TYPED_TEST(DiffIterateTest, DiffIterateDiscard) { librados::IoCtx ioctx; ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx)); librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = this->get_temp_image_name(); uint64_t size = 20 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint64_t object_size = 0; if (this->whole_object) { object_size = 1 << order; } vector extents; ceph::bufferlist bl; ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(0u, extents.size()); char data[256]; memset(data, 1, sizeof(data)); bl.append(data, 256); ASSERT_EQ(256, image.write(0, 256, bl)); ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(1u, extents.size()); ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]); int obj_ofs = 256; ASSERT_EQ(1 << order, image.discard(0, 1 << order)); extents.clear(); ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(0u, extents.size()); ASSERT_EQ(0, image.snap_create("snap1")); ASSERT_EQ(256, image.write(0, 256, bl)); ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(1u, extents.size()); ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]); ASSERT_EQ(0, image.snap_create("snap2")); ASSERT_EQ(obj_ofs, image.discard(0, obj_ofs)); extents.clear(); ASSERT_EQ(0, image.snap_set("snap2")); ASSERT_EQ(0, image.diff_iterate2("snap1", 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(1u, extents.size()); ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]); ASSERT_EQ(0, image.snap_set(NULL)); ASSERT_EQ(1 << order, image.discard(0, 1 << order)); ASSERT_EQ(0, image.snap_create("snap3")); ASSERT_EQ(0, image.snap_set("snap3")); extents.clear(); ASSERT_EQ(0, image.diff_iterate2("snap1", 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(1u, extents.size()); ASSERT_EQ(diff_extent(0, 256, false, object_size), extents[0]); ASSERT_PASSED(this->validate_object_map, image); } TYPED_TEST(DiffIterateTest, DiffIterateStress) { librados::IoCtx ioctx; ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx)); bool skip_discard = this->is_skip_partial_discard_enabled(); librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = this->get_temp_image_name(); uint64_t size = 400 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint64_t object_size = 0; if (this->whole_object) { object_size = 1 << order; } interval_set curexists; vector > wrote; vector > exists; vector snap; int n = 20; for (int i=0; i w; scribble(image, 10, 8192000, skip_discard, &curexists, &w); cout << " i=" << i << " exists " << curexists << " wrote " << w << std::endl; string s = "snap" + stringify(i); ASSERT_EQ(0, image.snap_create(s.c_str())); wrote.push_back(w); exists.push_back(curexists); snap.push_back(s); } for (int h=0; h diff, actual, uex; for (int k=i+1; k<=j; k++) diff.union_of(wrote[k]); cout << "from " << i << " to " << (h != 0 ? string("HEAD") : stringify(j)) << " diff " << round_diff_interval(diff, object_size) << std::endl; // limit to extents that exists both at the beginning and at the end uex.union_of(exists[i], exists[j]); diff.intersection_of(uex); diff = round_diff_interval(diff, object_size); cout << " limited diff " << diff << std::endl; ASSERT_EQ(0, image.snap_set(h==0 ? snap[j].c_str() : NULL)); ASSERT_EQ(0, image.diff_iterate2(snap[i].c_str(), 0, size, true, this->whole_object, iterate_cb, (void *)&actual)); cout << " actual was " << actual << std::endl; if (!diff.subset_of(actual)) { interval_set i; i.intersection_of(diff, actual); interval_set l = diff; l.subtract(i); cout << " ... diff - (actual*diff) = " << l << std::endl; } ASSERT_TRUE(diff.subset_of(actual)); } } ASSERT_EQ(0, image.snap_set(NULL)); ASSERT_EQ(0, image.snap_remove(snap[n-h-1].c_str())); } ASSERT_PASSED(this->validate_object_map, image); } TYPED_TEST(DiffIterateTest, DiffIterateRegression6926) { librados::IoCtx ioctx; ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx)); librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = this->get_temp_image_name(); uint64_t size = 20 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint64_t object_size = 0; if (this->whole_object) { object_size = 1 << order; } vector extents; ceph::bufferlist bl; ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(0u, extents.size()); ASSERT_EQ(0, image.snap_create("snap1")); char data[256]; memset(data, 1, sizeof(data)); bl.append(data, 256); ASSERT_EQ(256, image.write(0, 256, bl)); extents.clear(); ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(1u, extents.size()); ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]); ASSERT_EQ(0, image.snap_set("snap1")); extents.clear(); ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, vector_iterate_cb, (void *) &extents)); ASSERT_EQ(static_cast(0), extents.size()); } TYPED_TEST(DiffIterateTest, DiffIterateIgnoreParent) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx)); bool skip_discard = this->is_skip_partial_discard_enabled(); librbd::RBD rbd; librbd::Image image; std::string name = this->get_temp_image_name(); uint64_t size = 20 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint64_t object_size = 0; if (this->whole_object) { object_size = 1 << order; } bufferlist bl; bl.append(buffer::create(size)); bl.zero(); interval_set one; one.insert(0, size); ASSERT_EQ((int)size, image.write(0, size, bl)); ASSERT_EQ(0, image.snap_create("one")); ASSERT_EQ(0, image.snap_protect("one")); std::string clone_name = this->get_temp_image_name(); ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "one", ioctx, clone_name.c_str(), RBD_FEATURE_LAYERING, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, clone_name.c_str(), NULL)); interval_set exists; interval_set two; scribble(image, 10, 102400, skip_discard, &exists, &two); two = round_diff_interval(two, object_size); cout << " wrote " << two << " to clone" << std::endl; interval_set diff; ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, false, this->whole_object, iterate_cb, (void *)&diff)); cout << " diff was " << diff << std::endl; if (!this->whole_object) { ASSERT_FALSE(one.subset_of(diff)); } ASSERT_TRUE(two.subset_of(diff)); } TYPED_TEST(DiffIterateTest, DiffIterateCallbackError) { librados::IoCtx ioctx; ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx)); bool skip_discard = this->is_skip_partial_discard_enabled(); { librbd::RBD rbd; librbd::Image image; int order = 0; std::string name = this->get_temp_image_name(); uint64_t size = 20 << 20; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); interval_set exists; interval_set one; scribble(image, 10, 102400, skip_discard, &exists, &one); cout << " wrote " << one << std::endl; interval_set diff; ASSERT_EQ(-EINVAL, image.diff_iterate2(NULL, 0, size, true, this->whole_object, iterate_error_cb, NULL)); } ioctx.close(); } TYPED_TEST(DiffIterateTest, DiffIterateParentDiscard) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx)); bool skip_discard = this->is_skip_partial_discard_enabled(); librbd::RBD rbd; librbd::Image image; std::string name = this->get_temp_image_name(); uint64_t size = 20 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint64_t object_size = 0; if (this->whole_object) { object_size = 1 << order; } interval_set exists; interval_set one; scribble(image, 10, 102400, skip_discard, &exists, &one); ASSERT_EQ(0, image.snap_create("one")); ASSERT_EQ(1 << order, image.discard(0, 1 << order)); ASSERT_EQ(0, image.snap_create("two")); ASSERT_EQ(0, image.snap_protect("two")); exists.clear(); one.clear(); std::string clone_name = this->get_temp_image_name(); ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "two", ioctx, clone_name.c_str(), RBD_FEATURE_LAYERING, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, clone_name.c_str(), NULL)); interval_set two; scribble(image, 10, 102400, skip_discard, &exists, &two); two = round_diff_interval(two, object_size); interval_set diff; ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object, iterate_cb, (void *)&diff)); ASSERT_TRUE(two.subset_of(diff)); } TEST_F(TestLibRBD, ZeroLengthWrite) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char read_data[1]; ASSERT_EQ(0, rbd_write(image, 0, 0, NULL)); ASSERT_EQ(1, rbd_read(image, 0, 1, read_data)); ASSERT_EQ('\0', read_data[0]); ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, ZeroLengthDiscard) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); const char data[] = "blah"; char read_data[sizeof(data)]; ASSERT_EQ((int)strlen(data), rbd_write(image, 0, strlen(data), data)); ASSERT_EQ(0, rbd_discard(image, 0, 0)); ASSERT_EQ((int)strlen(data), rbd_read(image, 0, strlen(data), read_data)); ASSERT_EQ(0, memcmp(data, read_data, strlen(data))); ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, ZeroLengthRead) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char read_data[1]; ASSERT_EQ(0, rbd_read(image, 0, 0, read_data)); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, LargeCacheRead) { std::string config_value; ASSERT_EQ(0, _rados.conf_get("rbd_cache", config_value)); if (config_value == "false") { std::cout << "SKIPPING due to disabled cache" << std::endl; return; } rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); uint32_t new_cache_size = 1 << 20; std::string orig_cache_size; ASSERT_EQ(0, _rados.conf_get("rbd_cache_size", orig_cache_size)); ASSERT_EQ(0, _rados.conf_set("rbd_cache_size", stringify(new_cache_size).c_str())); ASSERT_EQ(0, _rados.conf_get("rbd_cache_size", config_value)); ASSERT_EQ(stringify(new_cache_size), config_value); BOOST_SCOPE_EXIT( (orig_cache_size) ) { ASSERT_EQ(0, _rados.conf_set("rbd_cache_size", orig_cache_size.c_str())); } BOOST_SCOPE_EXIT_END; rbd_image_t image; int order = 21; std::string name = get_temp_image_name(); uint64_t size = 1 << order; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); std::string buffer(1 << order, '1'); ASSERT_EQ(static_cast(buffer.size()), rbd_write(image, 0, buffer.size(), buffer.c_str())); ASSERT_EQ(0, rbd_invalidate_cache(image)); ASSERT_EQ(static_cast(buffer.size()), rbd_read(image, 0, buffer.size(), &buffer[0])); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, TestPendingAio) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); bool old_format; uint64_t features; rbd_image_t image; int order = 0; ASSERT_EQ(0, get_features(&old_format, &features)); ASSERT_FALSE(old_format); std::string name = get_temp_image_name(); uint64_t size = 4 << 20; ASSERT_EQ(0, create_image_full(ioctx, name.c_str(), size, &order, false, features)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); char test_data[TEST_IO_SIZE]; for (size_t i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } size_t num_aios = 256; rbd_completion_t comps[num_aios]; for (size_t i = 0; i < num_aios; ++i) { ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &comps[i])); uint64_t offset = rand() % (size - TEST_IO_SIZE); ASSERT_EQ(0, rbd_aio_write(image, offset, TEST_IO_SIZE, test_data, comps[i])); } for (size_t i = 0; i < num_aios; ++i) { ASSERT_EQ(0, rbd_aio_wait_for_complete(comps[i])); rbd_aio_release(comps[i]); } ASSERT_EQ(0, rbd_invalidate_cache(image)); for (size_t i = 0; i < num_aios; ++i) { ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &comps[i])); uint64_t offset = rand() % (size - TEST_IO_SIZE); ASSERT_LE(0, rbd_aio_read(image, offset, TEST_IO_SIZE, test_data, comps[i])); } ASSERT_PASSED(validate_object_map, image); ASSERT_EQ(0, rbd_close(image)); for (size_t i = 0; i < num_aios; ++i) { ASSERT_EQ(1, rbd_aio_is_complete(comps[i])); rbd_aio_release(comps[i]); } rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, Flatten) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string parent_name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), size, &order)); librbd::Image parent_image; ASSERT_EQ(0, rbd.open(ioctx, parent_image, parent_name.c_str(), NULL)); bufferlist bl; bl.append(std::string(4096, '1')); ASSERT_EQ((ssize_t)bl.length(), parent_image.write(0, bl.length(), bl)); ASSERT_EQ(0, parent_image.snap_create("snap1")); ASSERT_EQ(0, parent_image.snap_protect("snap1")); uint64_t features; ASSERT_EQ(0, parent_image.features(&features)); std::string clone_name = get_temp_image_name(); EXPECT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap1", ioctx, clone_name.c_str(), features, &order)); librbd::Image clone_image; ASSERT_EQ(0, rbd.open(ioctx, clone_image, clone_name.c_str(), NULL)); ASSERT_EQ(0, clone_image.flatten()); librbd::RBD::AioCompletion *read_comp = new librbd::RBD::AioCompletion(NULL, NULL); bufferlist read_bl; clone_image.aio_read(0, bl.length(), read_bl, read_comp); ASSERT_EQ(0, read_comp->wait_for_complete()); ASSERT_EQ((ssize_t)bl.length(), read_comp->get_return_value()); read_comp->release(); ASSERT_TRUE(bl.contents_equal(read_bl)); ASSERT_PASSED(validate_object_map, clone_image); } TEST_F(TestLibRBD, SnapshotLimit) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; uint64_t limit; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_snap_get_limit(image, &limit)); ASSERT_EQ(UINT64_MAX, limit); ASSERT_EQ(0, rbd_snap_set_limit(image, 2)); ASSERT_EQ(0, rbd_snap_get_limit(image, &limit)); ASSERT_EQ(2U, limit); ASSERT_EQ(0, rbd_snap_create(image, "snap1")); ASSERT_EQ(0, rbd_snap_create(image, "snap2")); ASSERT_EQ(-EDQUOT, rbd_snap_create(image, "snap3")); ASSERT_EQ(0, rbd_snap_set_limit(image, UINT64_MAX)); ASSERT_EQ(0, rbd_snap_create(image, "snap3")); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, SnapshotLimitPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); { librbd::RBD rbd; librbd::Image image; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; uint64_t limit; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); ASSERT_EQ(0, image.snap_get_limit(&limit)); ASSERT_EQ(UINT64_MAX, limit); ASSERT_EQ(0, image.snap_set_limit(2)); ASSERT_EQ(0, image.snap_get_limit(&limit)); ASSERT_EQ(2U, limit); ASSERT_EQ(0, image.snap_create("snap1")); ASSERT_EQ(0, image.snap_create("snap2")); ASSERT_EQ(-EDQUOT, image.snap_create("snap3")); ASSERT_EQ(0, image.snap_set_limit(UINT64_MAX)); ASSERT_EQ(0, image.snap_create("snap3")); } ioctx.close(); } TEST_F(TestLibRBD, RebuildObjectMapViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK | RBD_FEATURE_OBJECT_MAP); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); std::string object_map_oid; { librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); std::string image_id; ASSERT_EQ(0, get_image_id(image, &image_id)); object_map_oid = RBD_OBJECT_MAP_PREFIX + image_id; } // corrupt the object map bufferlist bl; bl.append("foo"); ASSERT_EQ(0, ioctx.write(object_map_oid, bl, bl.length(), 0)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bool lock_owner; bl.clear(); ASSERT_EQ(0, image1.write(0, 0, bl)); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); uint64_t flags; ASSERT_EQ(0, image1.get_flags(&flags)); ASSERT_TRUE((flags & RBD_FLAG_OBJECT_MAP_INVALID) != 0); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); PrintProgress prog_ctx; ASSERT_EQ(0, image2.rebuild_object_map(prog_ctx)); ASSERT_PASSED(validate_object_map, image1); ASSERT_PASSED(validate_object_map, image2); } TEST_F(TestLibRBD, RenameViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); std::string new_name = get_temp_image_name(); ASSERT_EQ(0, rbd.rename(ioctx, name.c_str(), new_name.c_str())); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, new_name.c_str(), NULL)); } TEST_F(TestLibRBD, SnapCreateViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); // switch to writeback cache ASSERT_EQ(0, image1.flush()); bufferlist bl; bl.append(std::string(4096, '1')); ASSERT_EQ((ssize_t)bl.length(), image1.write(0, bl.length(), bl)); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, image2.snap_create("snap1")); bool exists; ASSERT_EQ(0, image1.snap_exists2("snap1", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image2.snap_exists2("snap1", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); } TEST_F(TestLibRBD, SnapRemoveViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); ASSERT_EQ(0, image1.snap_create("snap1")); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, image2.snap_remove("snap1")); bool exists; ASSERT_EQ(0, image1.snap_exists2("snap1", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image2.snap_exists2("snap1", &exists)); ASSERT_FALSE(exists); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); } TEST_F(TestLibRBD, SnapRemove2) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); ASSERT_EQ(0, image1.snap_create("snap1")); bool exists; ASSERT_EQ(0, image1.snap_exists2("snap1", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image1.snap_protect("snap1")); bool is_protected; ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected)); ASSERT_TRUE(is_protected); uint64_t features; ASSERT_EQ(0, image1.features(&features)); std::string child_name = get_temp_image_name(); EXPECT_EQ(0, rbd.clone(ioctx, name.c_str(), "snap1", ioctx, child_name.c_str(), features, &order)); ASSERT_EQ(0, image1.snap_exists2("snap1", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected)); ASSERT_TRUE(is_protected); ASSERT_EQ(-EBUSY, image1.snap_remove("snap1")); PrintProgress pp; ASSERT_EQ(0, image1.snap_remove2("snap1", RBD_SNAP_REMOVE_FORCE, pp)); ASSERT_EQ(0, image1.snap_exists2("snap1", &exists)); ASSERT_FALSE(exists); } TEST_F(TestLibRBD, SnapRenameViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); ASSERT_EQ(0, image1.snap_create("snap1")); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, image2.snap_rename("snap1", "snap1-rename")); bool exists; ASSERT_EQ(0, image1.snap_exists2("snap1-rename", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image2.snap_exists2("snap1-rename", &exists)); ASSERT_TRUE(exists); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); } TEST_F(TestLibRBD, SnapProtectViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_EQ(0, image1.snap_create("snap1")); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, image2.snap_protect("snap1")); bool is_protected; ASSERT_EQ(0, image2.snap_is_protected("snap1", &is_protected)); ASSERT_TRUE(is_protected); ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected)); ASSERT_TRUE(is_protected); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); } TEST_F(TestLibRBD, SnapUnprotectViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_EQ(0, image1.snap_create("snap1")); ASSERT_EQ(0, image1.snap_protect("snap1")); bool is_protected; ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected)); ASSERT_TRUE(is_protected); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, image2.snap_unprotect("snap1")); ASSERT_EQ(0, image2.snap_is_protected("snap1", &is_protected)); ASSERT_FALSE(is_protected); ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected)); ASSERT_FALSE(is_protected); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); } TEST_F(TestLibRBD, FlattenViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string parent_name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), size, &order)); librbd::Image parent_image; ASSERT_EQ(0, rbd.open(ioctx, parent_image, parent_name.c_str(), NULL)); ASSERT_EQ(0, parent_image.snap_create("snap1")); ASSERT_EQ(0, parent_image.snap_protect("snap1")); uint64_t features; ASSERT_EQ(0, parent_image.features(&features)); std::string name = get_temp_image_name(); EXPECT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap1", ioctx, name.c_str(), features, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, image2.flatten()); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_PASSED(validate_object_map, image1); } TEST_F(TestLibRBD, ResizeViaLockOwner) { REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bufferlist bl; ASSERT_EQ(0, image1.write(0, 0, bl)); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, image2.resize(0)); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_PASSED(validate_object_map, image1); } TEST_F(TestLibRBD, ObjectMapConsistentSnap) { REQUIRE_FEATURE(RBD_FEATURE_OBJECT_MAP); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 20; int order = 12; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); int num_snaps = 10; for (int i = 0; i < num_snaps; ++i) { std::string snap_name = "snap" + stringify(i); ASSERT_EQ(0, image1.snap_create(snap_name.c_str())); } thread writer([&image1](){ librbd::image_info_t info; int r = image1.stat(info, sizeof(info)); assert(r == 0); bufferlist bl; bl.append("foo"); for (unsigned i = 0; i < info.num_objs; ++i) { r = image1.write((1 << info.order) * i, bl.length(), bl); assert(r == (int) bl.length()); } }); writer.join(); for (int i = 0; i < num_snaps; ++i) { std::string snap_name = "snap" + stringify(i); ASSERT_EQ(0, image1.snap_set(snap_name.c_str())); ASSERT_PASSED(validate_object_map, image1); } ASSERT_EQ(0, image1.snap_set(NULL)); ASSERT_PASSED(validate_object_map, image1); } void memset_rand(char *buf, size_t len) { for (size_t i = 0; i < len; ++i) { buf[i] = (char) (rand() % (126 - 33) + 33); } } TEST_F(TestLibRBD, Metadata) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); rbd_image_t image; ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); rbd_image_t image1; ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image1, NULL)); char keys[1024]; char vals[1024]; size_t keys_len = sizeof(keys); size_t vals_len = sizeof(vals); memset_rand(keys, keys_len); memset_rand(vals, vals_len); ASSERT_EQ(0, rbd_metadata_list(image, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(0U, keys_len); ASSERT_EQ(0U, vals_len); char value[1024]; size_t value_len = sizeof(value); memset_rand(value, value_len); ASSERT_EQ(0, rbd_metadata_set(image1, "key1", "value1")); ASSERT_EQ(0, rbd_metadata_set(image1, "key2", "value2")); ASSERT_EQ(0, rbd_metadata_get(image1, "key1", value, &value_len)); ASSERT_STREQ(value, "value1"); value_len = 1; ASSERT_EQ(-ERANGE, rbd_metadata_get(image1, "key1", value, &value_len)); ASSERT_EQ(value_len, strlen("value1") + 1); ASSERT_EQ(-ERANGE, rbd_metadata_list(image1, "", 0, keys, &keys_len, vals, &vals_len)); keys_len = sizeof(keys); vals_len = sizeof(vals); memset_rand(keys, keys_len); memset_rand(vals, vals_len); ASSERT_EQ(0, rbd_metadata_list(image1, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1); ASSERT_STREQ(keys, "key1"); ASSERT_STREQ(keys + strlen(keys) + 1, "key2"); ASSERT_STREQ(vals, "value1"); ASSERT_STREQ(vals + strlen(vals) + 1, "value2"); ASSERT_EQ(0, rbd_metadata_remove(image1, "key1")); ASSERT_EQ(-ENOENT, rbd_metadata_remove(image1, "key3")); value_len = sizeof(value); ASSERT_EQ(-ENOENT, rbd_metadata_get(image1, "key3", value, &value_len)); ASSERT_EQ(0, rbd_metadata_list(image1, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key2") + 1); ASSERT_EQ(vals_len, strlen("value2") + 1); ASSERT_STREQ(keys, "key2"); ASSERT_STREQ(vals, "value2"); // test config setting ASSERT_EQ(0, rbd_metadata_set(image1, "conf_rbd_cache", "false")); ASSERT_EQ(-EINVAL, rbd_metadata_set(image1, "conf_rbd_cache", "INVALID_VAL")); ASSERT_EQ(0, rbd_metadata_remove(image1, "conf_rbd_cache")); // test metadata with snapshot adding ASSERT_EQ(0, rbd_snap_create(image1, "snap1")); ASSERT_EQ(0, rbd_snap_protect(image1, "snap1")); ASSERT_EQ(0, rbd_snap_set(image1, "snap1")); ASSERT_EQ(0, rbd_metadata_set(image1, "key1", "value1")); ASSERT_EQ(0, rbd_metadata_set(image1, "key3", "value3")); keys_len = sizeof(keys); vals_len = sizeof(vals); memset_rand(keys, keys_len); memset_rand(vals, vals_len); ASSERT_EQ(0, rbd_metadata_list(image1, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1); ASSERT_STREQ(keys, "key1"); ASSERT_STREQ(keys + strlen("key1") + 1, "key2"); ASSERT_STREQ(keys + strlen("key1") + 1 + strlen("key2") + 1, "key3"); ASSERT_STREQ(vals, "value1"); ASSERT_STREQ(vals + strlen("value1") + 1, "value2"); ASSERT_STREQ(vals + strlen("value1") + 1 + strlen("value2") + 1, "value3"); ASSERT_EQ(0, rbd_snap_set(image1, NULL)); keys_len = sizeof(keys); vals_len = sizeof(vals); memset_rand(keys, keys_len); memset_rand(vals, vals_len); ASSERT_EQ(0, rbd_metadata_list(image1, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1); ASSERT_STREQ(keys, "key1"); ASSERT_STREQ(keys + strlen("key1") + 1, "key2"); ASSERT_STREQ(keys + strlen("key1") + 1 + strlen("key2") + 1, "key3"); ASSERT_STREQ(vals, "value1"); ASSERT_STREQ(vals + strlen("value1") + 1, "value2"); ASSERT_STREQ(vals + strlen("value1") + 1 + strlen("value2") + 1, "value3"); // test metadata with cloning uint64_t features; ASSERT_EQ(0, rbd_get_features(image1, &features)); string cname = get_temp_image_name(); EXPECT_EQ(0, rbd_clone(ioctx, name.c_str(), "snap1", ioctx, cname.c_str(), features, &order)); rbd_image_t image2; ASSERT_EQ(0, rbd_open(ioctx, cname.c_str(), &image2, NULL)); ASSERT_EQ(0, rbd_metadata_set(image2, "key4", "value4")); keys_len = sizeof(keys); vals_len = sizeof(vals); memset_rand(keys, keys_len); memset_rand(vals, vals_len); ASSERT_EQ(0, rbd_metadata_list(image2, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1 + strlen("key4") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1 + strlen("value4") + 1); ASSERT_STREQ(keys + strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1, "key4"); ASSERT_STREQ(vals + strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1, "value4"); ASSERT_EQ(0, rbd_metadata_list(image1, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1); ASSERT_EQ(-ENOENT, rbd_metadata_get(image1, "key4", value, &value_len)); // test short buffer cases keys_len = strlen("key1") + 1; vals_len = strlen("value1") + 1; memset_rand(keys, keys_len); memset_rand(vals, vals_len); ASSERT_EQ(0, rbd_metadata_list(image2, "", 1, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1); ASSERT_STREQ(keys, "key1"); ASSERT_STREQ(vals, "value1"); ASSERT_EQ(-ERANGE, rbd_metadata_list(image2, "", 2, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1); ASSERT_EQ(-ERANGE, rbd_metadata_list(image2, "", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1 + strlen("key4") + 1); ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1 + strlen("value4") + 1); // test `start` param keys_len = sizeof(keys); vals_len = sizeof(vals); memset_rand(keys, keys_len); memset_rand(vals, vals_len); ASSERT_EQ(0, rbd_metadata_list(image2, "key2", 0, keys, &keys_len, vals, &vals_len)); ASSERT_EQ(keys_len, strlen("key3") + 1 + strlen("key4") + 1); ASSERT_EQ(vals_len, strlen("value3") + 1 + strlen("value4") + 1); ASSERT_STREQ(keys, "key3"); ASSERT_STREQ(vals, "value3"); ASSERT_EQ(0, rbd_close(image)); ASSERT_EQ(0, rbd_close(image1)); ASSERT_EQ(0, rbd_close(image2)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, MetadataPP) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; uint64_t features; string value; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); map pairs; ASSERT_EQ(0, image1.metadata_list("", 0, &pairs)); ASSERT_TRUE(pairs.empty()); ASSERT_EQ(0, image1.metadata_set("key1", "value1")); ASSERT_EQ(0, image1.metadata_set("key2", "value2")); ASSERT_EQ(0, image1.metadata_get("key1", &value)); ASSERT_EQ(0, strcmp("value1", value.c_str())); ASSERT_EQ(0, image1.metadata_list("", 0, &pairs)); ASSERT_EQ(2U, pairs.size()); ASSERT_EQ(0, strncmp("value1", pairs["key1"].c_str(), 6)); ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6)); pairs.clear(); ASSERT_EQ(0, image1.metadata_remove("key1")); ASSERT_EQ(-ENOENT, image1.metadata_remove("key3")); ASSERT_TRUE(image1.metadata_get("key3", &value) < 0); ASSERT_EQ(0, image1.metadata_list("", 0, &pairs)); ASSERT_EQ(1U, pairs.size()); ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6)); // test config setting ASSERT_EQ(0, image1.metadata_set("conf_rbd_cache", "false")); ASSERT_EQ(-EINVAL, image1.metadata_set("conf_rbd_cache", "INVALID_VALUE")); ASSERT_EQ(0, image1.metadata_remove("conf_rbd_cache")); // test metadata with snapshot adding ASSERT_EQ(0, image1.snap_create("snap1")); ASSERT_EQ(0, image1.snap_protect("snap1")); ASSERT_EQ(0, image1.snap_set("snap1")); pairs.clear(); ASSERT_EQ(0, image1.metadata_set("key1", "value1")); ASSERT_EQ(0, image1.metadata_set("key3", "value3")); ASSERT_EQ(0, image1.metadata_list("", 0, &pairs)); ASSERT_EQ(3U, pairs.size()); ASSERT_EQ(0, strncmp("value1", pairs["key1"].c_str(), 6)); ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6)); ASSERT_EQ(0, strncmp("value3", pairs["key3"].c_str(), 6)); ASSERT_EQ(0, image1.snap_set(NULL)); ASSERT_EQ(0, image1.metadata_list("", 0, &pairs)); ASSERT_EQ(3U, pairs.size()); ASSERT_EQ(0, strncmp("value1", pairs["key1"].c_str(), 6)); ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6)); ASSERT_EQ(0, strncmp("value3", pairs["key3"].c_str(), 6)); // test metadata with cloning string cname = get_temp_image_name(); librbd::Image image2; ASSERT_EQ(0, image1.features(&features)); EXPECT_EQ(0, rbd.clone(ioctx, name.c_str(), "snap1", ioctx, cname.c_str(), features, &order)); ASSERT_EQ(0, rbd.open(ioctx, image2, cname.c_str(), NULL)); ASSERT_EQ(0, image2.metadata_set("key4", "value4")); pairs.clear(); ASSERT_EQ(0, image2.metadata_list("", 0, &pairs)); ASSERT_EQ(4U, pairs.size()); pairs.clear(); ASSERT_EQ(0, image1.metadata_list("", 0, &pairs)); ASSERT_EQ(3U, pairs.size()); ASSERT_EQ(-ENOENT, image1.metadata_get("key4", &value)); } TEST_F(TestLibRBD, UpdateFeatures) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 20; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint8_t old_format; ASSERT_EQ(0, image.old_format(&old_format)); if (old_format) { ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, true)); return; } uint64_t features; ASSERT_EQ(0, image.features(&features)); // must provide a single feature ASSERT_EQ(-EINVAL, image.update_features(0, true)); uint64_t disable_features; disable_features = features & (RBD_FEATURE_EXCLUSIVE_LOCK | RBD_FEATURE_OBJECT_MAP | RBD_FEATURE_FAST_DIFF | RBD_FEATURE_JOURNALING); if (disable_features != 0) { ASSERT_EQ(0, image.update_features(disable_features, false)); } ASSERT_EQ(0, image.features(&features)); ASSERT_EQ(0U, features & disable_features); // cannot enable object map nor journaling w/o exclusive lock ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_OBJECT_MAP, true)); ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_JOURNALING, true)); ASSERT_EQ(0, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, true)); ASSERT_EQ(0, image.features(&features)); ASSERT_NE(0U, features & RBD_FEATURE_EXCLUSIVE_LOCK); // cannot enable fast diff w/o object map ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_FAST_DIFF, true)); ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, true)); ASSERT_EQ(0, image.features(&features)); ASSERT_NE(0U, features & RBD_FEATURE_OBJECT_MAP); uint64_t expected_flags = RBD_FLAG_OBJECT_MAP_INVALID; uint64_t flags; ASSERT_EQ(0, image.get_flags(&flags)); ASSERT_EQ(expected_flags, flags); ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, false)); ASSERT_EQ(0, image.features(&features)); ASSERT_EQ(0U, features & RBD_FEATURE_OBJECT_MAP); ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP | RBD_FEATURE_FAST_DIFF | RBD_FEATURE_JOURNALING, true)); expected_flags = RBD_FLAG_OBJECT_MAP_INVALID | RBD_FLAG_FAST_DIFF_INVALID; ASSERT_EQ(0, image.get_flags(&flags)); ASSERT_EQ(expected_flags, flags); // cannot disable object map w/ fast diff ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_OBJECT_MAP, false)); ASSERT_EQ(0, image.update_features(RBD_FEATURE_FAST_DIFF, false)); ASSERT_EQ(0, image.features(&features)); ASSERT_EQ(0U, features & RBD_FEATURE_FAST_DIFF); expected_flags = RBD_FLAG_OBJECT_MAP_INVALID; ASSERT_EQ(0, image.get_flags(&flags)); ASSERT_EQ(expected_flags, flags); // cannot disable exclusive lock w/ object map ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, false)); ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, false)); // cannot disable exclusive lock w/ journaling ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, false)); ASSERT_EQ(0, image.update_features(RBD_FEATURE_JOURNALING, false)); ASSERT_EQ(0, image.get_flags(&flags)); ASSERT_EQ(0U, flags); ASSERT_EQ(0, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, false)); ASSERT_EQ(0, image.features(&features)); if ((features & RBD_FEATURE_DEEP_FLATTEN) != 0) { ASSERT_EQ(0, image.update_features(RBD_FEATURE_DEEP_FLATTEN, false)); } ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_DEEP_FLATTEN, true)); } TEST_F(TestLibRBD, RebuildObjectMap) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 20; int order = 18; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); PrintProgress prog_ctx; std::string object_map_oid; bufferlist bl; bl.append("foo"); { librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); uint64_t features; ASSERT_EQ(0, image.features(&features)); if ((features & RBD_FEATURE_OBJECT_MAP) == 0) { ASSERT_EQ(-EINVAL, image.rebuild_object_map(prog_ctx)); return; } ASSERT_EQ((ssize_t)bl.length(), image.write(0, bl.length(), bl)); ASSERT_EQ(0, image.snap_create("snap1")); ASSERT_EQ((ssize_t)bl.length(), image.write(1<wait_for_complete()); ASSERT_EQ(0, flush_comp->get_return_value()); flush_comp->release(); ASSERT_EQ(1, write_comp->is_complete()); ASSERT_EQ(0, write_comp->get_return_value()); write_comp->release(); librbd::RBD::AioCompletion *discard_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, image.aio_discard(128, 128, discard_comp)); ASSERT_EQ(0, discard_comp->wait_for_complete()); discard_comp->release(); librbd::RBD::AioCompletion *read_comp = new librbd::RBD::AioCompletion(NULL, NULL); bufferlist read_bl; image.aio_read(0, bl.length(), read_bl, read_comp); ASSERT_EQ(0, read_comp->wait_for_complete()); ASSERT_EQ((ssize_t)bl.length(), read_comp->get_return_value()); read_comp->release(); bufferlist expected_bl; expected_bl.append(std::string(128, '1')); expected_bl.append(std::string(128, skip_discard ? '1' : '\0')); ASSERT_TRUE(expected_bl.contents_equal(read_bl)); } TEST_F(TestLibRBD, ExclusiveLockTransition) { REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 12; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); std::list comps; ceph::bufferlist bl; bl.append(std::string(1 << order, '1')); for (size_t object_no = 0; object_no < (size >> 12); ++object_no) { librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, NULL); comps.push_back(comp); if (object_no % 2 == 0) { ASSERT_EQ(0, image1.aio_write(object_no << order, bl.length(), bl, comp)); } else { ASSERT_EQ(0, image2.aio_write(object_no << order, bl.length(), bl, comp)); } } while (!comps.empty()) { librbd::RBD::AioCompletion *comp = comps.front(); comps.pop_front(); ASSERT_EQ(0, comp->wait_for_complete()); ASSERT_EQ(1, comp->is_complete()); comp->release(); } librbd::Image image3; ASSERT_EQ(0, rbd.open(ioctx, image3, name.c_str(), NULL)); for (size_t object_no = 0; object_no < (size >> 12); ++object_no) { bufferlist read_bl; ASSERT_EQ((ssize_t)bl.length(), image3.read(object_no << order, bl.length(), read_bl)); ASSERT_TRUE(bl.contents_equal(read_bl)); } ASSERT_PASSED(validate_object_map, image1); ASSERT_PASSED(validate_object_map, image2); ASSERT_PASSED(validate_object_map, image3); } TEST_F(TestLibRBD, ExclusiveLockReadTransition) { REQUIRE_FEATURE(RBD_FEATURE_JOURNALING); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 12; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); bool lock_owner; ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_FALSE(lock_owner); // journaling should force read ops to acquire the lock bufferlist read_bl; ASSERT_EQ(0, image1.read(0, 0, read_bl)); ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner)); ASSERT_TRUE(lock_owner); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); std::list comps; std::list read_bls; for (size_t object_no = 0; object_no < (size >> 12); ++object_no) { librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, NULL); comps.push_back(comp); read_bls.emplace_back(); if (object_no % 2 == 0) { ASSERT_EQ(0, image1.aio_read(object_no << order, 1 << order, read_bls.back(), comp)); } else { ASSERT_EQ(0, image2.aio_read(object_no << order, 1 << order, read_bls.back(), comp)); } } while (!comps.empty()) { librbd::RBD::AioCompletion *comp = comps.front(); comps.pop_front(); ASSERT_EQ(0, comp->wait_for_complete()); ASSERT_EQ(1, comp->is_complete()); comp->release(); } } TEST_F(TestLibRBD, CacheMayCopyOnWrite) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 12; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); ASSERT_EQ(0, image.snap_create("one")); ASSERT_EQ(0, image.snap_protect("one")); std::string clone_name = this->get_temp_image_name(); ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "one", ioctx, clone_name.c_str(), RBD_FEATURE_LAYERING, &order)); librbd::Image clone; ASSERT_EQ(0, rbd.open(ioctx, clone, clone_name.c_str(), NULL)); ASSERT_EQ(0, clone.flush()); bufferlist expect_bl; expect_bl.append(std::string(1024, '\0')); // test double read path bufferlist read_bl; uint64_t offset = 0; ASSERT_EQ(1024, clone.read(offset + 2048, 1024, read_bl)); ASSERT_TRUE(expect_bl.contents_equal(read_bl)); bufferlist write_bl; write_bl.append(std::string(1024, '1')); ASSERT_EQ(1024, clone.write(offset, write_bl.length(), write_bl)); read_bl.clear(); ASSERT_EQ(1024, clone.read(offset + 2048, 1024, read_bl)); ASSERT_TRUE(expect_bl.contents_equal(read_bl)); // test read retry path offset = 1 << order; ASSERT_EQ(1024, clone.write(offset, write_bl.length(), write_bl)); read_bl.clear(); ASSERT_EQ(1024, clone.read(offset + 2048, 1024, read_bl)); ASSERT_TRUE(expect_bl.contents_equal(read_bl)); } TEST_F(TestLibRBD, FlushEmptyOpsOnExternalSnapshot) { std::string cache_enabled; ASSERT_EQ(0, _rados.conf_get("rbd_cache", cache_enabled)); ASSERT_EQ(0, _rados.conf_set("rbd_cache", "false")); BOOST_SCOPE_EXIT( (cache_enabled) ) { ASSERT_EQ(0, _rados.conf_set("rbd_cache", cache_enabled.c_str())); } BOOST_SCOPE_EXIT_END; librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image1; librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL)); ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL)); ASSERT_EQ(0, image1.snap_create("snap1")); librbd::RBD::AioCompletion *read_comp = new librbd::RBD::AioCompletion(NULL, NULL); bufferlist read_bl; image2.aio_read(0, 1024, read_bl, read_comp); ASSERT_EQ(0, read_comp->wait_for_complete()); read_comp->release(); } TEST_F(TestLibRBD, TestImageOptions) { rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); //make create image options uint64_t features = RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2 ; uint64_t order = 0; uint64_t stripe_unit = IMAGE_STRIPE_UNIT; uint64_t stripe_count = IMAGE_STRIPE_COUNT; rbd_image_options_t opts; rbd_image_options_create(&opts); bool is_set; ASSERT_EQ(-EINVAL, rbd_image_options_is_set(opts, 12345, &is_set)); ASSERT_EQ(0, rbd_image_options_is_set(opts, RBD_IMAGE_OPTION_FORMAT, &is_set)); ASSERT_FALSE(is_set); ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_FORMAT, 2)); ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_FEATURES, features)); ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_ORDER, order)); ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_STRIPE_UNIT, stripe_unit)); ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_STRIPE_COUNT, stripe_count)); ASSERT_EQ(0, rbd_image_options_is_set(opts, RBD_IMAGE_OPTION_FORMAT, &is_set)); ASSERT_TRUE(is_set); std::string parent_name = get_temp_image_name(); // make parent ASSERT_EQ(0, rbd_create4(ioctx, parent_name.c_str(), 4<<20, opts)); // check order is returned in opts ASSERT_EQ(0, rbd_image_options_get_uint64(opts, RBD_IMAGE_OPTION_ORDER, &order)); ASSERT_NE((uint64_t)0, order); // write some data to parent rbd_image_t parent; ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, NULL)); char *data = (char *)"testdata"; ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 0, strlen(data), data)); ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 12, strlen(data), data)); // create a snapshot, reopen as the parent we're interested in ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap")); ASSERT_EQ(0, rbd_close(parent)); ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, "parent_snap")); // clone std::string child_name = get_temp_image_name(); ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap")); ASSERT_EQ(0, rbd_clone3(ioctx, parent_name.c_str(), "parent_snap", ioctx, child_name.c_str(), opts)); // copy std::string copy1_name = get_temp_image_name(); ASSERT_EQ(0, rbd_copy3(parent, ioctx, copy1_name.c_str(), opts)); std::string copy2_name = get_temp_image_name(); ASSERT_EQ(0, rbd_copy_with_progress3(parent, ioctx, copy2_name.c_str(), opts, print_progress_percent, NULL)); ASSERT_EQ(0, rbd_close(parent)); rbd_image_options_destroy(opts); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, TestImageOptionsPP) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); //make create image options uint64_t features = RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2 ; uint64_t order = 0; uint64_t stripe_unit = IMAGE_STRIPE_UNIT; uint64_t stripe_count = IMAGE_STRIPE_COUNT; librbd::ImageOptions opts; ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_FORMAT, static_cast(2))); ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_FEATURES, features)); ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_ORDER, order)); ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_STRIPE_UNIT, stripe_unit)); ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_STRIPE_COUNT, stripe_count)); librbd::RBD rbd; std::string parent_name = get_temp_image_name(); // make parent ASSERT_EQ(0, rbd.create4(ioctx, parent_name.c_str(), 4<<20, opts)); // check order is returned in opts ASSERT_EQ(0, opts.get(RBD_IMAGE_OPTION_ORDER, &order)); ASSERT_NE((uint64_t)0, order); // write some data to parent librbd::Image parent; ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), NULL)); ssize_t len = 1024; bufferlist bl; bl.append(buffer::create(len)); bl.zero(); ASSERT_EQ(len, parent.write(0, len, bl)); ASSERT_EQ(len, parent.write(len, len, bl)); // create a snapshot, reopen as the parent we're interested in ASSERT_EQ(0, parent.snap_create("parent_snap")); ASSERT_EQ(0, parent.close()); ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), "parent_snap")); // clone std::string child_name = get_temp_image_name(); ASSERT_EQ(0, parent.snap_protect("parent_snap")); ASSERT_EQ(0, rbd.clone3(ioctx, parent_name.c_str(), "parent_snap", ioctx, child_name.c_str(), opts)); // copy std::string copy1_name = get_temp_image_name(); ASSERT_EQ(0, parent.copy3(ioctx, copy1_name.c_str(), opts)); std::string copy2_name = get_temp_image_name(); PrintProgress pp; ASSERT_EQ(0, parent.copy_with_progress3(ioctx, copy2_name.c_str(), opts, pp)); ASSERT_EQ(0, parent.close()); } TEST_F(TestLibRBD, EventSocketPipe) { EventSocket event_sock; int pipe_fd[2]; // read and write fd char buf[32]; ASSERT_EQ(0, pipe(pipe_fd)); ASSERT_FALSE(event_sock.is_valid()); ASSERT_EQ(-EINVAL, event_sock.init(pipe_fd[1], EVENT_SOCKET_TYPE_NONE)); ASSERT_FALSE(event_sock.is_valid()); ASSERT_EQ(-EINVAL, event_sock.init(pipe_fd[1], 44)); ASSERT_FALSE(event_sock.is_valid()); #ifndef HAVE_EVENTFD ASSERT_EQ(-EINVAL, event_sock.init(pipe_fd[1], EVENT_SOCKET_TYPE_EVENTFD)); ASSERT_FALSE(event_sock.is_valid()); #endif ASSERT_EQ(0, event_sock.init(pipe_fd[1], EVENT_SOCKET_TYPE_PIPE)); ASSERT_TRUE(event_sock.is_valid()); ASSERT_EQ(0, event_sock.notify()); ASSERT_EQ(1, read(pipe_fd[0], buf, 32)); ASSERT_EQ('i', buf[0]); close(pipe_fd[0]); close(pipe_fd[1]); } TEST_F(TestLibRBD, EventSocketEventfd) { #ifdef HAVE_EVENTFD EventSocket event_sock; int event_fd; struct pollfd poll_fd; char buf[32]; event_fd = eventfd(0, EFD_NONBLOCK); ASSERT_NE(-1, event_fd); ASSERT_FALSE(event_sock.is_valid()); ASSERT_EQ(-EINVAL, event_sock.init(event_fd, EVENT_SOCKET_TYPE_NONE)); ASSERT_FALSE(event_sock.is_valid()); ASSERT_EQ(-EINVAL, event_sock.init(event_fd, 44)); ASSERT_FALSE(event_sock.is_valid()); ASSERT_EQ(0, event_sock.init(event_fd, EVENT_SOCKET_TYPE_EVENTFD)); ASSERT_TRUE(event_sock.is_valid()); ASSERT_EQ(0, event_sock.notify()); poll_fd.fd = event_fd; poll_fd.events = POLLIN; ASSERT_EQ(1, poll(&poll_fd, 1, -1)); ASSERT_TRUE(poll_fd.revents & POLLIN); ASSERT_EQ(static_cast(sizeof(uint64_t)), read(event_fd, buf, 32)); ASSERT_EQ(1U, *reinterpret_cast(buf)); close(event_fd); #endif } TEST_F(TestLibRBD, ImagePollIO) { #ifdef HAVE_EVENTFD rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); rbd_image_t image; int order = 0; std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int fd = eventfd(0, EFD_NONBLOCK); ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_set_image_notification(image, fd, EVENT_SOCKET_TYPE_EVENTFD)); char test_data[TEST_IO_SIZE + 1]; char zero_data[TEST_IO_SIZE + 1]; int i; for (i = 0; i < TEST_IO_SIZE; ++i) test_data[i] = (char) (rand() % (126 - 33) + 33); test_data[TEST_IO_SIZE] = '\0'; memset(zero_data, 0, sizeof(zero_data)); for (i = 0; i < 5; ++i) ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_write_test_data_and_poll, image, fd, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); for (i = 5; i < 10; ++i) ASSERT_PASSED(aio_read_test_data_and_poll, image, fd, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0); ASSERT_EQ(0, rbd_close(image)); rados_ioctx_destroy(ioctx); #endif } namespace librbd { static bool operator==(const mirror_peer_t &lhs, const mirror_peer_t &rhs) { return (lhs.uuid == rhs.uuid && lhs.cluster_name == rhs.cluster_name && lhs.client_name == rhs.client_name); } static std::ostream& operator<<(std::ostream &os, const mirror_peer_t &peer) { os << "uuid=" << peer.uuid << ", " << "cluster=" << peer.cluster_name << ", " << "client=" << peer.client_name; return os; } } // namespace librbd TEST_F(TestLibRBD, Mirror) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::vector expected_peers; std::vector peers; ASSERT_EQ(0, rbd.mirror_peer_list(ioctx, &peers)); ASSERT_EQ(expected_peers, peers); std::string uuid1; ASSERT_EQ(-EINVAL, rbd.mirror_peer_add(ioctx, &uuid1, "cluster1", "client")); rbd_mirror_mode_t mirror_mode; ASSERT_EQ(0, rbd.mirror_mode_get(ioctx, &mirror_mode)); ASSERT_EQ(RBD_MIRROR_MODE_DISABLED, mirror_mode); ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_IMAGE)); ASSERT_EQ(0, rbd.mirror_mode_get(ioctx, &mirror_mode)); // Add some images to the pool int order = 0; std::string parent_name = get_temp_image_name(); std::string child_name = get_temp_image_name(); ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), 2 << 20, &order)); bool old_format; uint64_t features; ASSERT_EQ(0, get_features(&old_format, &features)); if ((features & RBD_FEATURE_LAYERING) != 0) { librbd::Image parent; ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), NULL)); ASSERT_EQ(0, parent.snap_create("parent_snap")); ASSERT_EQ(0, parent.close()); ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), "parent_snap")); ASSERT_EQ(0, parent.snap_protect("parent_snap")); ASSERT_EQ(0, parent.close()); ASSERT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "parent_snap", ioctx, child_name.c_str(), features, &order)); } ASSERT_EQ(RBD_MIRROR_MODE_IMAGE, mirror_mode); ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_POOL)); ASSERT_EQ(0, rbd.mirror_mode_get(ioctx, &mirror_mode)); ASSERT_EQ(RBD_MIRROR_MODE_POOL, mirror_mode); std::string uuid2; std::string uuid3; ASSERT_EQ(0, rbd.mirror_peer_add(ioctx, &uuid1, "cluster1", "client")); ASSERT_EQ(0, rbd.mirror_peer_add(ioctx, &uuid2, "cluster2", "admin")); ASSERT_EQ(-EEXIST, rbd.mirror_peer_add(ioctx, &uuid3, "cluster1", "foo")); ASSERT_EQ(0, rbd.mirror_peer_add(ioctx, &uuid3, "cluster3", "admin")); ASSERT_EQ(0, rbd.mirror_peer_list(ioctx, &peers)); auto sort_peers = [](const librbd::mirror_peer_t &lhs, const librbd::mirror_peer_t &rhs) { return lhs.uuid < rhs.uuid; }; expected_peers = { {uuid1, "cluster1", "client"}, {uuid2, "cluster2", "admin"}, {uuid3, "cluster3", "admin"}}; std::sort(expected_peers.begin(), expected_peers.end(), sort_peers); ASSERT_EQ(expected_peers, peers); ASSERT_EQ(0, rbd.mirror_peer_remove(ioctx, "uuid4")); ASSERT_EQ(0, rbd.mirror_peer_remove(ioctx, uuid2)); ASSERT_EQ(-ENOENT, rbd.mirror_peer_set_client(ioctx, "uuid4", "new client")); ASSERT_EQ(0, rbd.mirror_peer_set_client(ioctx, uuid1, "new client")); ASSERT_EQ(-ENOENT, rbd.mirror_peer_set_cluster(ioctx, "uuid4", "new cluster")); ASSERT_EQ(0, rbd.mirror_peer_set_cluster(ioctx, uuid3, "new cluster")); ASSERT_EQ(0, rbd.mirror_peer_list(ioctx, &peers)); expected_peers = { {uuid1, "cluster1", "new client"}, {uuid3, "new cluster", "admin"}}; std::sort(expected_peers.begin(), expected_peers.end(), sort_peers); ASSERT_EQ(expected_peers, peers); ASSERT_EQ(-EBUSY, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_DISABLED)); } TEST_F(TestLibRBD, FlushCacheWithCopyupOnExternalSnapshot) { REQUIRE_FEATURE(RBD_FEATURE_LAYERING); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; librbd::Image image; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 0; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); bufferlist bl; bl.append(std::string(size, '1')); ASSERT_EQ((int)size, image.write(0, size, bl)); ASSERT_EQ(0, image.snap_create("one")); ASSERT_EQ(0, image.snap_protect("one")); std::string clone_name = this->get_temp_image_name(); ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "one", ioctx, clone_name.c_str(), RBD_FEATURE_LAYERING, &order)); ASSERT_EQ(0, rbd.open(ioctx, image, clone_name.c_str(), NULL)); librbd::Image image2; ASSERT_EQ(0, rbd.open(ioctx, image2, clone_name.c_str(), NULL)); // prepare CoW writeback that will be flushed on next op bl.clear(); bl.append(std::string(1, '1')); ASSERT_EQ(0, image.flush()); ASSERT_EQ(1, image.write(0, 1, bl)); ASSERT_EQ(0, image2.snap_create("snap1")); librbd::RBD::AioCompletion *read_comp = new librbd::RBD::AioCompletion(NULL, NULL); bufferlist read_bl; image.aio_read(0, 1024, read_bl, read_comp); ASSERT_EQ(0, read_comp->wait_for_complete()); read_comp->release(); } TEST_F(TestLibRBD, ExclusiveLock) { REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK); static char buf[10]; rados_ioctx_t ioctx; rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx); std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); rbd_image_t image1; ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image1, NULL)); int lock_owner; ASSERT_EQ(0, rbd_lock_acquire(image1, RBD_LOCK_MODE_EXCLUSIVE)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner)); ASSERT_TRUE(lock_owner); rbd_lock_mode_t lock_mode; char *lock_owners[1]; size_t max_lock_owners = 0; ASSERT_EQ(-ERANGE, rbd_lock_get_owners(image1, &lock_mode, lock_owners, &max_lock_owners)); ASSERT_EQ(1U, max_lock_owners); max_lock_owners = 2; ASSERT_EQ(0, rbd_lock_get_owners(image1, &lock_mode, lock_owners, &max_lock_owners)); ASSERT_EQ(RBD_LOCK_MODE_EXCLUSIVE, lock_mode); ASSERT_STRNE("", lock_owners[0]); ASSERT_EQ(1U, max_lock_owners); rbd_image_t image2; ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image2, NULL)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(-EOPNOTSUPP, rbd_lock_break(image1, RBD_LOCK_MODE_SHARED, "")); ASSERT_EQ(-EBUSY, rbd_lock_break(image1, RBD_LOCK_MODE_EXCLUSIVE, "not the owner")); ASSERT_EQ(0, rbd_lock_release(image1)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(-ENOENT, rbd_lock_break(image1, RBD_LOCK_MODE_EXCLUSIVE, lock_owners[0])); rbd_lock_get_owners_cleanup(lock_owners, max_lock_owners); ASSERT_EQ(-EROFS, rbd_write(image1, 0, sizeof(buf), buf)); ASSERT_EQ((ssize_t)sizeof(buf), rbd_write(image2, 0, sizeof(buf), buf)); ASSERT_EQ(0, rbd_lock_acquire(image2, RBD_LOCK_MODE_EXCLUSIVE)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_EQ(0, rbd_lock_release(image2)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner)); ASSERT_FALSE(lock_owner); ASSERT_EQ(0, rbd_lock_acquire(image1, RBD_LOCK_MODE_EXCLUSIVE)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_EQ((ssize_t)sizeof(buf), rbd_write(image1, 0, sizeof(buf), buf)); ASSERT_EQ(-EROFS, rbd_write(image2, 0, sizeof(buf), buf)); ASSERT_EQ(0, rbd_lock_release(image1)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner)); ASSERT_FALSE(lock_owner); int owner_id = -1; mutex lock; const auto pingpong = [&,this](int m_id, rbd_image_t &m_image) { for (int i = 0; i < 10; i++) { { lock_guard locker(lock); if (owner_id == m_id) { std::cout << m_id << ": releasing exclusive lock" << std::endl; EXPECT_EQ(0, rbd_lock_release(m_image)); int lock_owner; EXPECT_EQ(0, rbd_is_exclusive_lock_owner(m_image, &lock_owner)); EXPECT_FALSE(lock_owner); owner_id = -1; std::cout << m_id << ": exclusive lock released" << std::endl; continue; } } std::cout << m_id << ": acquiring exclusive lock" << std::endl; int r; do { r = rbd_lock_acquire(m_image, RBD_LOCK_MODE_EXCLUSIVE); if (r == -EROFS) { usleep(1000); } } while (r == -EROFS); EXPECT_EQ(0, r); int lock_owner; EXPECT_EQ(0, rbd_is_exclusive_lock_owner(m_image, &lock_owner)); EXPECT_TRUE(lock_owner); std::cout << m_id << ": exclusive lock acquired" << std::endl; { lock_guard locker(lock); owner_id = m_id; } usleep(rand() % 50000); } lock_guard locker(lock); if (owner_id == m_id) { EXPECT_EQ(0, rbd_lock_release(m_image)); int lock_owner; EXPECT_EQ(0, rbd_is_exclusive_lock_owner(m_image, &lock_owner)); EXPECT_FALSE(lock_owner); owner_id = -1; } }; thread ping(bind(pingpong, 1, ref(image1))); thread pong(bind(pingpong, 2, ref(image2))); ping.join(); pong.join(); ASSERT_EQ(0, rbd_lock_acquire(image2, RBD_LOCK_MODE_EXCLUSIVE)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_EQ(0, rbd_close(image2)); ASSERT_EQ(0, rbd_lock_acquire(image1, RBD_LOCK_MODE_EXCLUSIVE)); ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner)); ASSERT_TRUE(lock_owner); ASSERT_EQ(0, rbd_close(image1)); rados_ioctx_destroy(ioctx); } TEST_F(TestLibRBD, BreakLock) { REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK); static char buf[10]; rados_t blacklist_cluster; ASSERT_EQ("", connect_cluster(&blacklist_cluster)); rados_ioctx_t ioctx, blacklist_ioctx; ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx)); ASSERT_EQ(0, rados_ioctx_create(blacklist_cluster, m_pool_name.c_str(), &blacklist_ioctx)); std::string name = get_temp_image_name(); uint64_t size = 2 << 20; int order = 0; ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order)); rbd_image_t image, blacklist_image; ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL)); ASSERT_EQ(0, rbd_open(blacklist_ioctx, name.c_str(), &blacklist_image, NULL)); ASSERT_EQ(0, rbd_metadata_set(image, "rbd_blacklist_on_break_lock", "true")); ASSERT_EQ(0, rbd_lock_acquire(blacklist_image, RBD_LOCK_MODE_EXCLUSIVE)); rbd_lock_mode_t lock_mode; char *lock_owners[1]; size_t max_lock_owners = 1; ASSERT_EQ(0, rbd_lock_get_owners(image, &lock_mode, lock_owners, &max_lock_owners)); ASSERT_EQ(RBD_LOCK_MODE_EXCLUSIVE, lock_mode); ASSERT_STRNE("", lock_owners[0]); ASSERT_EQ(1U, max_lock_owners); ASSERT_EQ(0, rbd_lock_break(image, RBD_LOCK_MODE_EXCLUSIVE, lock_owners[0])); ASSERT_EQ(0, rbd_lock_acquire(image, RBD_LOCK_MODE_EXCLUSIVE)); EXPECT_EQ(0, rados_wait_for_latest_osdmap(blacklist_cluster)); ASSERT_EQ((ssize_t)sizeof(buf), rbd_write(image, 0, sizeof(buf), buf)); ASSERT_EQ(-EBLACKLISTED, rbd_write(blacklist_image, 0, sizeof(buf), buf)); ASSERT_EQ(0, rbd_close(image)); ASSERT_EQ(0, rbd_close(blacklist_image)); rbd_lock_get_owners_cleanup(lock_owners, max_lock_owners); rados_ioctx_destroy(ioctx); rados_ioctx_destroy(blacklist_ioctx); rados_shutdown(blacklist_cluster); } TEST_F(TestLibRBD, DiscardAfterWrite) { REQUIRE(!is_skip_partial_discard_enabled()); librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 20; int order = 18; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL)); // enable writeback cache ASSERT_EQ(0, image.flush()); bufferlist bl; bl.append(std::string(256, '1')); librbd::RBD::AioCompletion *write_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, image.aio_write(0, bl.length(), bl, write_comp)); ASSERT_EQ(0, write_comp->wait_for_complete()); write_comp->release(); librbd::RBD::AioCompletion *discard_comp = new librbd::RBD::AioCompletion(NULL, NULL); ASSERT_EQ(0, image.aio_discard(0, 256, discard_comp)); ASSERT_EQ(0, discard_comp->wait_for_complete()); discard_comp->release(); librbd::RBD::AioCompletion *read_comp = new librbd::RBD::AioCompletion(NULL, NULL); bufferlist read_bl; image.aio_read(0, bl.length(), read_bl, read_comp); ASSERT_EQ(0, read_comp->wait_for_complete()); ASSERT_EQ(bl.length(), read_comp->get_return_value()); ASSERT_TRUE(read_bl.is_zero()); read_comp->release(); } TEST_F(TestLibRBD, DefaultFeatures) { std::string orig_default_features; ASSERT_EQ(0, _rados.conf_get("rbd_default_features", orig_default_features)); BOOST_SCOPE_EXIT_ALL(orig_default_features) { ASSERT_EQ(0, _rados.conf_set("rbd_default_features", orig_default_features.c_str())); }; std::list > feature_names_to_bitmask = { {"", orig_default_features}, {"layering", "1"}, {"layering, exclusive-lock", "5"}, {"exclusive-lock,journaling", "68"}, {"125", "125"} }; for (auto &pair : feature_names_to_bitmask) { ASSERT_EQ(0, _rados.conf_set("rbd_default_features", pair.first.c_str())); std::string features; ASSERT_EQ(0, _rados.conf_get("rbd_default_features", features)); ASSERT_EQ(pair.second, features); } } TEST_F(TestLibRBD, TestTrashMoveAndPurge) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 12; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr)); uint8_t old_format; ASSERT_EQ(0, image.old_format(&old_format)); if (old_format) { ASSERT_EQ(-EOPNOTSUPP, rbd.trash_move(ioctx, name.c_str(), 0)); image.close(); return; } std::string image_id; ASSERT_EQ(0, image.get_id(&image_id)); image.close(); ASSERT_EQ(0, rbd.trash_move(ioctx, name.c_str(), 0)); std::vector images; ASSERT_EQ(0, rbd.list(ioctx, images)); for (const auto& image : images) { ASSERT_TRUE(image != name); } librbd::trash_image_info_t info; ASSERT_EQ(-ENOENT, rbd.trash_get(ioctx, "dummy image id", &info)); ASSERT_EQ(0, rbd.trash_get(ioctx, image_id.c_str(), &info)); ASSERT_EQ(image_id, info.id); std::vector entries; ASSERT_EQ(0, rbd.trash_list(ioctx, entries)); ASSERT_FALSE(entries.empty()); ASSERT_EQ(entries.begin()->id, image_id); entries.clear(); PrintProgress pp; ASSERT_EQ(0, rbd.trash_remove_with_progress(ioctx, image_id.c_str(), false, pp)); ASSERT_EQ(0, rbd.trash_list(ioctx, entries)); ASSERT_TRUE(entries.empty()); } TEST_F(TestLibRBD, TestTrashMoveAndPurgeNonExpiredDelay) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 12; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr)); uint8_t old_format; ASSERT_EQ(0, image.old_format(&old_format)); if (old_format) { ASSERT_EQ(-EOPNOTSUPP, rbd.trash_move(ioctx, name.c_str(), 0)); image.close(); return; } std::string image_id; ASSERT_EQ(0, image.get_id(&image_id)); image.close(); ASSERT_EQ(0, rbd.trash_move(ioctx, name.c_str(), 100)); PrintProgress pp; ASSERT_EQ(-EPERM, rbd.trash_remove_with_progress(ioctx, image_id.c_str(), false, pp)); PrintProgress pp2; ASSERT_EQ(0, rbd.trash_remove_with_progress(ioctx, image_id.c_str(), true, pp2)); } TEST_F(TestLibRBD, TestTrashMoveAndRestore) { librados::IoCtx ioctx; ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx)); librbd::RBD rbd; std::string name = get_temp_image_name(); uint64_t size = 1 << 18; int order = 12; ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order)); librbd::Image image; ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr)); uint8_t old_format; ASSERT_EQ(0, image.old_format(&old_format)); if (old_format) { ASSERT_EQ(-EOPNOTSUPP, rbd.trash_move(ioctx, name.c_str(), 0)); image.close(); return; } std::string image_id; ASSERT_EQ(0, image.get_id(&image_id)); image.close(); ASSERT_EQ(0, rbd.trash_move(ioctx, name.c_str(), 10)); std::vector images; ASSERT_EQ(0, rbd.list(ioctx, images)); for (const auto& image : images) { ASSERT_TRUE(image != name); } std::vector entries; ASSERT_EQ(0, rbd.trash_list(ioctx, entries)); ASSERT_FALSE(entries.empty()); ASSERT_EQ(entries.begin()->id, image_id); images.clear(); ASSERT_EQ(0, rbd.trash_restore(ioctx, image_id.c_str(), "")); ASSERT_EQ(0, rbd.list(ioctx, images)); ASSERT_FALSE(images.empty()); bool found = false; for (const auto& image : images) { if (image == name) { found = true; break; } } ASSERT_TRUE(found); } // poorman's assert() namespace ceph { void __ceph_assert_fail(const char *assertion, const char *file, int line, const char *func) { assert(false); } }