// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2016 XSKY * * Author: Haomai Wang * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #include #include #include #include "include/str_list.h" #include "common/deleter.h" #include "common/Tub.h" #include "RDMAStack.h" #define dout_subsys ceph_subsys_ms #undef dout_prefix #define dout_prefix *_dout << "RDMAStack " static Tub global_infiniband; RDMADispatcher::~RDMADispatcher() { done = true; polling_stop(); ldout(cct, 20) << __func__ << " destructing rdma dispatcher" << dendl; assert(qp_conns.empty()); assert(num_qp_conn == 0); assert(dead_queue_pairs.empty()); assert(num_dead_queue_pair == 0); tx_cc->ack_events(); rx_cc->ack_events(); delete tx_cq; delete rx_cq; delete tx_cc; delete rx_cc; delete async_handler; global_infiniband->set_dispatcher(nullptr); } RDMADispatcher::RDMADispatcher(CephContext* c, RDMAStack* s) : cct(c), async_handler(new C_handle_cq_async(this)), lock("RDMADispatcher::lock"), w_lock("RDMADispatcher::for worker pending list"), stack(s) { PerfCountersBuilder plb(cct, "AsyncMessenger::RDMADispatcher", l_msgr_rdma_dispatcher_first, l_msgr_rdma_dispatcher_last); plb.add_u64_counter(l_msgr_rdma_polling, "polling", "Whether dispatcher thread is polling"); plb.add_u64_counter(l_msgr_rdma_inflight_tx_chunks, "inflight_tx_chunks", "The number of inflight tx chunks"); plb.add_u64_counter(l_msgr_rdma_inqueue_rx_chunks, "inqueue_rx_chunks", "The number of inqueue rx chunks"); plb.add_u64_counter(l_msgr_rdma_tx_total_wc, "tx_total_wc", "The number of tx work comletions"); plb.add_u64_counter(l_msgr_rdma_tx_total_wc_errors, "tx_total_wc_errors", "The number of tx errors"); plb.add_u64_counter(l_msgr_rdma_tx_wc_retry_errors, "tx_retry_errors", "The number of tx retry errors"); plb.add_u64_counter(l_msgr_rdma_tx_wc_wr_flush_errors, "tx_wr_flush_errors", "The number of tx work request flush errors"); plb.add_u64_counter(l_msgr_rdma_rx_total_wc, "rx_total_wc", "The number of total rx work completion"); plb.add_u64_counter(l_msgr_rdma_rx_total_wc_errors, "rx_total_wc_errors", "The number of total rx error work completion"); plb.add_u64_counter(l_msgr_rdma_rx_fin, "rx_fin", "The number of rx finish work request"); plb.add_u64_counter(l_msgr_rdma_total_async_events, "total_async_events", "The number of async events"); plb.add_u64_counter(l_msgr_rdma_async_last_wqe_events, "async_last_wqe_events", "The number of last wqe events"); plb.add_u64_counter(l_msgr_rdma_handshake_errors, "handshake_errors", "The number of handshake errors"); plb.add_u64_counter(l_msgr_rdma_created_queue_pair, "created_queue_pair", "Active queue pair number"); plb.add_u64_counter(l_msgr_rdma_active_queue_pair, "active_queue_pair", "Created queue pair number"); perf_logger = plb.create_perf_counters(); cct->get_perfcounters_collection()->add(perf_logger); } void RDMADispatcher::polling_start() { tx_cc = global_infiniband->create_comp_channel(cct); assert(tx_cc); rx_cc = global_infiniband->create_comp_channel(cct); assert(rx_cc); tx_cq = global_infiniband->create_comp_queue(cct, tx_cc); assert(tx_cq); rx_cq = global_infiniband->create_comp_queue(cct, rx_cc); assert(rx_cq); t = std::thread(&RDMADispatcher::polling, this); } void RDMADispatcher::polling_stop() { if (t.joinable()) t.join(); } void RDMADispatcher::handle_async_event() { ldout(cct, 30) << __func__ << dendl; while (1) { ibv_async_event async_event; if (ibv_get_async_event(global_infiniband->get_device()->ctxt, &async_event)) { if (errno != EAGAIN) lderr(cct) << __func__ << " ibv_get_async_event failed. (errno=" << errno << " " << cpp_strerror(errno) << ")" << dendl; return; } perf_logger->inc(l_msgr_rdma_total_async_events); // FIXME: Currently we must ensure no other factor make QP in ERROR state, // otherwise this qp can't be deleted in current cleanup flow. if (async_event.event_type == IBV_EVENT_QP_LAST_WQE_REACHED) { perf_logger->inc(l_msgr_rdma_async_last_wqe_events); uint64_t qpn = async_event.element.qp->qp_num; ldout(cct, 10) << __func__ << " event associated qp=" << async_event.element.qp << " evt: " << ibv_event_type_str(async_event.event_type) << dendl; Mutex::Locker l(lock); RDMAConnectedSocketImpl *conn = get_conn_lockless(qpn); if (!conn) { ldout(cct, 1) << __func__ << " missing qp_num=" << qpn << " discard event" << dendl; } else { ldout(cct, 1) << __func__ << " it's not forwardly stopped by us, reenable=" << conn << dendl; conn->fault(); erase_qpn_lockless(qpn); } } else { ldout(cct, 1) << __func__ << " ibv_get_async_event: dev=" << global_infiniband->get_device()->ctxt << " evt: " << ibv_event_type_str(async_event.event_type) << dendl; } ibv_ack_async_event(&async_event); } } void RDMADispatcher::polling() { static int MAX_COMPLETIONS = 32; ibv_wc wc[MAX_COMPLETIONS]; std::map > polled; std::vector tx_cqe; ldout(cct, 20) << __func__ << " going to poll tx cq: " << tx_cq << " rx cq: " << rx_cq << dendl; RDMAConnectedSocketImpl *conn = nullptr; utime_t last_inactive = ceph_clock_now(); bool rearmed = false; int r = 0; while (true) { int tx_ret = tx_cq->poll_cq(MAX_COMPLETIONS, wc); if (tx_ret > 0) { ldout(cct, 20) << __func__ << " tx completion queue got " << tx_ret << " responses."<< dendl; handle_tx_event(wc, tx_ret); } int rx_ret = rx_cq->poll_cq(MAX_COMPLETIONS, wc); if (rx_ret > 0) { ldout(cct, 20) << __func__ << " rt completion queue got " << rx_ret << " responses."<< dendl; perf_logger->inc(l_msgr_rdma_rx_total_wc, rx_ret); Mutex::Locker l(lock);//make sure connected socket alive when pass wc for (int i = 0; i < rx_ret; ++i) { ibv_wc* response = &wc[i]; Chunk* chunk = reinterpret_cast(response->wr_id); ldout(cct, 25) << __func__ << " got chunk=" << chunk << " bytes:" << response->byte_len << " opcode:" << response->opcode << dendl; assert(wc[i].opcode == IBV_WC_RECV); if (response->status == IBV_WC_SUCCESS) { conn = get_conn_lockless(response->qp_num); if (!conn) { assert(global_infiniband->is_rx_buffer(chunk->buffer)); r = global_infiniband->post_chunk(chunk); ldout(cct, 1) << __func__ << " csi with qpn " << response->qp_num << " may be dead. chunk " << chunk << " will be back ? " << r << dendl; assert(r == 0); } else { polled[conn].push_back(*response); } } else { perf_logger->inc(l_msgr_rdma_rx_total_wc_errors); ldout(cct, 1) << __func__ << " work request returned error for buffer(" << chunk << ") status(" << response->status << ":" << global_infiniband->wc_status_to_string(response->status) << ")" << dendl; assert(global_infiniband->is_rx_buffer(chunk->buffer)); r = global_infiniband->post_chunk(chunk); if (r) { ldout(cct, 0) << __func__ << " post chunk failed, error: " << cpp_strerror(r) << dendl; assert(r == 0); } conn = get_conn_lockless(response->qp_num); if (conn && conn->is_connected()) conn->fault(); } } for (auto &&i : polled) { perf_logger->inc(l_msgr_rdma_inqueue_rx_chunks, i.second.size()); i.first->pass_wc(std::move(i.second)); } polled.clear(); } if (!tx_ret && !rx_ret) { // NOTE: Has TX just transitioned to idle? We should do it when idle! // It's now safe to delete queue pairs (see comment by declaration // for dead_queue_pairs). // Additionally, don't delete qp while outstanding_buffers isn't empty, // because we need to check qp's state before sending perf_logger->set(l_msgr_rdma_inflight_tx_chunks, inflight); if (num_dead_queue_pair) { Mutex::Locker l(lock); // FIXME reuse dead qp because creating one qp costs 1 ms while (!dead_queue_pairs.empty()) { ldout(cct, 10) << __func__ << " finally delete qp=" << dead_queue_pairs.back() << dendl; delete dead_queue_pairs.back(); perf_logger->dec(l_msgr_rdma_active_queue_pair); dead_queue_pairs.pop_back(); --num_dead_queue_pair; } } if (!num_qp_conn && done) break; if ((ceph_clock_now() - last_inactive).to_nsec() / 1000 > cct->_conf->ms_async_rdma_polling_us) { handle_async_event(); if (!rearmed) { // Clean up cq events after rearm notify ensure no new incoming event // arrived between polling and rearm tx_cq->rearm_notify(); rx_cq->rearm_notify(); rearmed = true; continue; } struct pollfd channel_poll[2]; channel_poll[0].fd = tx_cc->get_fd(); channel_poll[0].events = POLLIN | POLLERR | POLLNVAL | POLLHUP; channel_poll[0].revents = 0; channel_poll[1].fd = rx_cc->get_fd(); channel_poll[1].events = POLLIN | POLLERR | POLLNVAL | POLLHUP; channel_poll[1].revents = 0; r = 0; perf_logger->set(l_msgr_rdma_polling, 0); while (!done && r == 0) { r = poll(channel_poll, 2, 100); if (r < 0) { r = -errno; lderr(cct) << __func__ << " poll failed " << r << dendl; ceph_abort(); } } if (r > 0 && tx_cc->get_cq_event()) ldout(cct, 20) << __func__ << " got tx cq event." << dendl; if (r > 0 && rx_cc->get_cq_event()) ldout(cct, 20) << __func__ << " got rx cq event." << dendl; last_inactive = ceph_clock_now(); perf_logger->set(l_msgr_rdma_polling, 1); rearmed = false; } } } } void RDMADispatcher::notify_pending_workers() { if (num_pending_workers) { RDMAWorker *w = nullptr; { Mutex::Locker l(w_lock); if (!pending_workers.empty()) { w = pending_workers.front(); pending_workers.pop_front(); --num_pending_workers; } } if (w) w->notify_worker(); } } int RDMADispatcher::register_qp(QueuePair *qp, RDMAConnectedSocketImpl* csi) { int fd = eventfd(0, EFD_CLOEXEC|EFD_NONBLOCK); assert(fd >= 0); Mutex::Locker l(lock); assert(!qp_conns.count(qp->get_local_qp_number())); qp_conns[qp->get_local_qp_number()] = std::make_pair(qp, csi); ++num_qp_conn; return fd; } RDMAConnectedSocketImpl* RDMADispatcher::get_conn_lockless(uint32_t qp) { auto it = qp_conns.find(qp); if (it == qp_conns.end()) return nullptr; if (it->second.first->is_dead()) return nullptr; return it->second.second; } void RDMADispatcher::erase_qpn_lockless(uint32_t qpn) { auto it = qp_conns.find(qpn); if (it == qp_conns.end()) return ; ++num_dead_queue_pair; dead_queue_pairs.push_back(it->second.first); qp_conns.erase(it); --num_qp_conn; } void RDMADispatcher::erase_qpn(uint32_t qpn) { Mutex::Locker l(lock); erase_qpn_lockless(qpn); } void RDMADispatcher::handle_tx_event(ibv_wc *cqe, int n) { std::vector tx_chunks; for (int i = 0; i < n; ++i) { ibv_wc* response = &cqe[i]; Chunk* chunk = reinterpret_cast(response->wr_id); ldout(cct, 25) << __func__ << " QP: " << response->qp_num << " len: " << response->byte_len << " , addr:" << chunk << " " << global_infiniband->wc_status_to_string(response->status) << dendl; if (response->status != IBV_WC_SUCCESS) { perf_logger->inc(l_msgr_rdma_tx_total_wc_errors); if (response->status == IBV_WC_RETRY_EXC_ERR) { ldout(cct, 1) << __func__ << " connection between server and client not working. Disconnect this now" << dendl; perf_logger->inc(l_msgr_rdma_tx_wc_retry_errors); } else if (response->status == IBV_WC_WR_FLUSH_ERR) { ldout(cct, 1) << __func__ << " Work Request Flushed Error: this connection's qp=" << response->qp_num << " should be down while this WR=" << response->wr_id << " still in flight." << dendl; perf_logger->inc(l_msgr_rdma_tx_wc_wr_flush_errors); } else { ldout(cct, 1) << __func__ << " send work request returned error for buffer(" << response->wr_id << ") status(" << response->status << "): " << global_infiniband->wc_status_to_string(response->status) << dendl; } Mutex::Locker l(lock);//make sure connected socket alive when pass wc RDMAConnectedSocketImpl *conn = get_conn_lockless(response->qp_num); if (conn && conn->is_connected()) { ldout(cct, 25) << __func__ << " qp state is : " << conn->get_qp_state() << dendl;//wangzhi conn->fault(); } else { ldout(cct, 1) << __func__ << " missing qp_num=" << response->qp_num << " discard event" << dendl; } } //TX completion may come either from regular send message or from 'fin' message. //In the case of 'fin' wr_id points to the QueuePair. if (global_infiniband->get_memory_manager()->is_tx_buffer(chunk->buffer)) { tx_chunks.push_back(chunk); } else if (reinterpret_cast(response->wr_id)->get_local_qp_number() == response->qp_num ) { ldout(cct, 1) << __func__ << " sending of the disconnect msg completed" << dendl; } else { ldout(cct, 1) << __func__ << " not tx buffer, chunk " << chunk << dendl; ceph_abort(); } } perf_logger->inc(l_msgr_rdma_tx_total_wc, n); post_tx_buffer(tx_chunks); } /** * Add the given Chunks to the given free queue. * * \param[in] chunks * The Chunks to enqueue. * \return * 0 if success or -1 for failure */ void RDMADispatcher::post_tx_buffer(std::vector &chunks) { if (chunks.empty()) return ; inflight -= chunks.size(); global_infiniband->get_memory_manager()->return_tx(chunks); ldout(cct, 30) << __func__ << " release " << chunks.size() << " chunks, inflight " << inflight << dendl; notify_pending_workers(); } RDMAWorker::RDMAWorker(CephContext *c, unsigned i) : Worker(c, i), stack(nullptr), tx_handler(new C_handle_cq_tx(this)), lock("RDMAWorker::lock") { // initialize perf_logger char name[128]; sprintf(name, "AsyncMessenger::RDMAWorker-%u", id); PerfCountersBuilder plb(cct, name, l_msgr_rdma_first, l_msgr_rdma_last); plb.add_u64_counter(l_msgr_rdma_tx_no_mem, "tx_no_mem", "The count of no tx buffer"); plb.add_u64_counter(l_msgr_rdma_tx_parital_mem, "tx_parital_mem", "The count of parital tx buffer"); plb.add_u64_counter(l_msgr_rdma_tx_failed, "tx_failed_post", "The number of tx failed posted"); plb.add_u64_counter(l_msgr_rdma_rx_no_registered_mem, "rx_no_registered_mem", "The count of no registered buffer when receiving"); plb.add_u64_counter(l_msgr_rdma_tx_chunks, "tx_chunks", "The number of tx chunks transmitted"); plb.add_u64_counter(l_msgr_rdma_tx_bytes, "tx_bytes", "The bytes of tx chunks transmitted"); plb.add_u64_counter(l_msgr_rdma_rx_chunks, "rx_chunks", "The number of rx chunks transmitted"); plb.add_u64_counter(l_msgr_rdma_rx_bytes, "rx_bytes", "The bytes of rx chunks transmitted"); plb.add_u64_counter(l_msgr_rdma_pending_sent_conns, "pending_sent_conns", "The count of pending sent conns"); perf_logger = plb.create_perf_counters(); cct->get_perfcounters_collection()->add(perf_logger); } RDMAWorker::~RDMAWorker() { delete tx_handler; } void RDMAWorker::initialize() { if (!dispatcher) { dispatcher = stack->get_dispatcher(); } } int RDMAWorker::listen(entity_addr_t &sa, const SocketOptions &opt,ServerSocket *sock) { global_infiniband->init(); auto p = new RDMAServerSocketImpl(cct, global_infiniband.get(), get_stack()->get_dispatcher(), this, sa); int r = p->listen(sa, opt); if (r < 0) { delete p; return r; } *sock = ServerSocket(std::unique_ptr(p)); return 0; } int RDMAWorker::connect(const entity_addr_t &addr, const SocketOptions &opts, ConnectedSocket *socket) { global_infiniband->init(); RDMAConnectedSocketImpl* p = new RDMAConnectedSocketImpl(cct, global_infiniband.get(), get_stack()->get_dispatcher(), this); int r = p->try_connect(addr, opts); if (r < 0) { ldout(cct, 1) << __func__ << " try connecting failed." << dendl; delete p; return r; } std::unique_ptr csi(p); *socket = ConnectedSocket(std::move(csi)); return 0; } int RDMAWorker::get_reged_mem(RDMAConnectedSocketImpl *o, std::vector &c, size_t bytes) { assert(center.in_thread()); int r = global_infiniband->get_tx_buffers(c, bytes); assert(r >= 0); size_t got = global_infiniband->get_memory_manager()->get_tx_buffer_size() * r; ldout(cct, 30) << __func__ << " need " << bytes << " bytes, reserve " << got << " registered bytes, inflight " << dispatcher->inflight << dendl; stack->get_dispatcher()->inflight += r; if (got >= bytes) return r; if (o) { if (!o->is_pending()) { pending_sent_conns.push_back(o); perf_logger->inc(l_msgr_rdma_pending_sent_conns, 1); o->set_pending(1); } dispatcher->make_pending_worker(this); } return r; } void RDMAWorker::handle_pending_message() { ldout(cct, 20) << __func__ << " pending conns " << pending_sent_conns.size() << dendl; while (!pending_sent_conns.empty()) { RDMAConnectedSocketImpl *o = pending_sent_conns.front(); pending_sent_conns.pop_front(); ssize_t r = o->submit(false); ldout(cct, 20) << __func__ << " sent pending bl socket=" << o << " r=" << r << dendl; if (r < 0) { if (r == -EAGAIN) { pending_sent_conns.push_back(o); dispatcher->make_pending_worker(this); return ; } o->fault(); } o->set_pending(0); perf_logger->dec(l_msgr_rdma_pending_sent_conns, 1); } dispatcher->notify_pending_workers(); } RDMAStack::RDMAStack(CephContext *cct, const string &t): NetworkStack(cct, t) { // //On RDMA MUST be called before fork // int rc = ibv_fork_init(); if (rc) { lderr(cct) << __func__ << " failed to call ibv_for_init(). On RDMA must be called before fork. Application aborts." << dendl; ceph_abort(); } ldout(cct, 1) << __func__ << " ms_async_rdma_enable_hugepage value is: " << cct->_conf->ms_async_rdma_enable_hugepage << dendl; if (cct->_conf->ms_async_rdma_enable_hugepage) { rc = setenv("RDMAV_HUGEPAGES_SAFE","1",1); ldout(cct, 1) << __func__ << " RDMAV_HUGEPAGES_SAFE is set as: " << getenv("RDMAV_HUGEPAGES_SAFE") << dendl; if (rc) { lderr(cct) << __func__ << " failed to export RDMA_HUGEPAGES_SAFE. On RDMA must be exported before using huge pages. Application aborts." << dendl; ceph_abort(); } } //Check ulimit struct rlimit limit; getrlimit(RLIMIT_MEMLOCK, &limit); if (limit.rlim_cur != RLIM_INFINITY || limit.rlim_max != RLIM_INFINITY) { lderr(cct) << __func__ << "!!! WARNING !!! For RDMA to work properly user memlock (ulimit -l) must be big enough to allow large amount of registered memory." " We recommend setting this parameter to infinity" << dendl; } if (!global_infiniband) global_infiniband.construct( cct, cct->_conf->ms_async_rdma_device_name, cct->_conf->ms_async_rdma_port_num); ldout(cct, 20) << __func__ << " constructing RDMAStack..." << dendl; dispatcher = new RDMADispatcher(cct, this); global_infiniband->set_dispatcher(dispatcher); unsigned num = get_num_worker(); for (unsigned i = 0; i < num; ++i) { RDMAWorker* w = dynamic_cast(get_worker(i)); w->set_stack(this); } ldout(cct, 20) << " creating RDMAStack:" << this << " with dispatcher:" << dispatcher << dendl; } RDMAStack::~RDMAStack() { if (cct->_conf->ms_async_rdma_enable_hugepage) { unsetenv("RDMAV_HUGEPAGES_SAFE"); //remove env variable on destruction } delete dispatcher; } void RDMAStack::spawn_worker(unsigned i, std::function &&func) { threads.resize(i+1); threads[i] = std::thread(func); } void RDMAStack::join_worker(unsigned i) { assert(threads.size() > i && threads[i].joinable()); threads[i].join(); }