// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- /* * This file is open source software, licensed to you under the terms * of the Apache License, Version 2.0 (the "License"). See the NOTICE file * distributed with this work for additional information regarding copyright * ownership. You may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Copyright (C) 2014 Cloudius Systems, Ltd. */ #include "align.h" #include "TCP.h" #include "IP.h" #include "DPDKStack.h" #include "common/dout.h" #include "include/assert.h" #define dout_subsys ceph_subsys_dpdk #undef dout_prefix #define dout_prefix *_dout << "tcp " void tcp_option::parse(uint8_t* beg, uint8_t* end) { while (beg < end) { auto kind = option_kind(*beg); if (kind != option_kind::nop && kind != option_kind::eol) { // Make sure there is enough room for this option auto len = *(beg + 1); if (beg + len > end) { return; } } switch (kind) { case option_kind::mss: _mss_received = true; _remote_mss = ntoh(reinterpret_cast(beg)->mss); beg += option_len::mss; break; case option_kind::win_scale: _win_scale_received = true; _remote_win_scale = reinterpret_cast(beg)->shift; // We can turn on win_scale option, 7 is Linux's default win scale size _local_win_scale = 7; beg += option_len::win_scale; break; case option_kind::sack: _sack_received = true; beg += option_len::sack; break; case option_kind::nop: beg += option_len::nop; break; case option_kind::eol: return; default: // Ignore options we do not understand auto len = *(beg + 1); beg += len; // Prevent infinite loop if (len == 0) { return; } break; } } } uint8_t tcp_option::fill(tcp_hdr* th, uint8_t options_size) { auto hdr = reinterpret_cast(th); auto off = hdr + sizeof(tcp_hdr); uint8_t size = 0; bool syn_on = th->f_syn; bool ack_on = th->f_ack; if (syn_on) { if (_mss_received || !ack_on) { auto mss = new (off) tcp_option::mss; mss->mss = _local_mss; off += mss->len; size += mss->len; *mss = mss->hton(); } if (_win_scale_received || !ack_on) { auto win_scale = new (off) tcp_option::win_scale; win_scale->shift = _local_win_scale; off += win_scale->len; size += win_scale->len; } } if (size > 0) { // Insert NOP option auto size_max = align_up(uint8_t(size + 1), tcp_option::align); while (size < size_max - uint8_t(option_len::eol)) { new (off) tcp_option::nop; off += option_len::nop; size += option_len::nop; } new (off) tcp_option::eol; size += option_len::eol; } assert(size == options_size); return size; } uint8_t tcp_option::get_size(bool syn_on, bool ack_on) { uint8_t size = 0; if (syn_on) { if (_mss_received || !ack_on) { size += option_len::mss; } if (_win_scale_received || !ack_on) { size += option_len::win_scale; } } if (size > 0) { size += option_len::eol; // Insert NOP option to align on 32-bit size = align_up(size, tcp_option::align); } return size; } ipv4_tcp::ipv4_tcp(ipv4& inet, EventCenter *c) : _inet_l4(inet), _tcp(std::unique_ptr>(new tcp(inet.cct, _inet_l4, c))) { } ipv4_tcp::~ipv4_tcp() { } void ipv4_tcp::received(Packet p, ipv4_address from, ipv4_address to) { _tcp->received(std::move(p), from, to); } bool ipv4_tcp::forward(forward_hash& out_hash_data, Packet& p, size_t off) { return _tcp->forward(out_hash_data, p, off); } int tcpv4_listen(tcp& tcpv4, uint16_t port, const SocketOptions &opts, ServerSocket *sock) { auto p = new DPDKServerSocketImpl>(tcpv4, port, opts); int r = p->listen(); if (r < 0) { delete p; return r; } *sock = ServerSocket(std::unique_ptr(p)); return 0; } int tcpv4_connect(tcp& tcpv4, const entity_addr_t &addr, ConnectedSocket *sock) { auto conn = tcpv4.connect(addr); *sock = ConnectedSocket(std::unique_ptr( new NativeConnectedSocketImpl>(std::move(conn)))); return 0; } template void tcp::respond_with_reset(tcp_hdr* rth, ipaddr local_ip, ipaddr foreign_ip) { ldout(cct, 20) << __func__ << " tcp header rst=" << bool(rth->f_rst) << " fin=" << bool(rth->f_fin) << " syn=" << bool(rth->f_syn) << dendl; if (rth->f_rst) { return; } Packet p; auto th = p.prepend_header(); th->src_port = rth->dst_port; th->dst_port = rth->src_port; if (rth->f_ack) { th->seq = rth->ack; } // If this RST packet is in response to a SYN packet. We ACK the ISN. if (rth->f_syn) { th->ack = rth->seq + 1; th->f_ack = true; } th->f_rst = true; th->data_offset = sizeof(*th) / 4; th->checksum = 0; *th = th->hton(); checksummer csum; offload_info oi; InetTraits::tcp_pseudo_header_checksum(csum, local_ip, foreign_ip, sizeof(*th)); if (get_hw_features().tx_csum_l4_offload) { th->checksum = ~csum.get(); oi.needs_csum = true; } else { csum.sum(p); th->checksum = csum.get(); oi.needs_csum = false; } oi.protocol = ip_protocol_num::tcp; oi.tcp_hdr_len = sizeof(tcp_hdr); p.set_offload_info(oi); send_packet_without_tcb(local_ip, foreign_ip, std::move(p)); } #undef dout_prefix #define dout_prefix _prefix(_dout) template ostream& tcp::tcb::_prefix(std::ostream *_dout) { return *_dout << "tcp " << _local_ip << ":" << _local_port << " -> " << _foreign_ip << ":" << _foreign_port << " tcb(" << this << " fd=" << fd << " s=" << _state << ")."; } template void tcp::tcb::input_handle_listen_state(tcp_hdr* th, Packet p) { auto opt_len = th->data_offset * 4 - sizeof(tcp_hdr); auto opt_start = reinterpret_cast(p.get_header(0, th->data_offset * 4)) + sizeof(tcp_hdr); auto opt_end = opt_start + opt_len; p.trim_front(th->data_offset * 4); tcp_sequence seg_seq = th->seq; // Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ _rcv.next = seg_seq + 1; _rcv.initial = seg_seq; // ISS should be selected and a SYN segment sent of the form: // // SND.NXT is set to ISS+1 and SND.UNA to ISS // NOTE: In previous code, _snd.next is set to ISS + 1 only when SYN is // ACKed. Now, we set _snd.next to ISS + 1 here, so in output_one(): we // have // th->seq = syn_on ? _snd.initial : _snd.next // to make sure retransmitted SYN has correct SEQ number. do_setup_isn(); _rcv.urgent = _rcv.next; ldout(_tcp.cct, 10) << __func__ << " listen: LISTEN -> SYN_RECEIVED" << dendl; init_from_options(th, opt_start, opt_end); do_syn_received(); } template void tcp::tcb::input_handle_syn_sent_state(tcp_hdr* th, Packet p) { auto opt_len = th->data_offset * 4 - sizeof(tcp_hdr); auto opt_start = reinterpret_cast(p.get_header(0, th->data_offset * 4)) + sizeof(tcp_hdr); auto opt_end = opt_start + opt_len; p.trim_front(th->data_offset * 4); tcp_sequence seg_seq = th->seq; auto seg_ack = th->ack; ldout(_tcp.cct, 20) << __func__ << " tcp header seq " << seg_seq.raw << " ack " << seg_ack.raw << " fin=" << bool(th->f_fin) << " syn=" << bool(th->f_syn) << dendl; bool acceptable = false; // 3.1 first check the ACK bit if (th->f_ack) { // If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless the // RST bit is set, if so drop the segment and return) if (seg_ack <= _snd.initial || seg_ack > _snd.next) { return respond_with_reset(th); } // If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable. acceptable = _snd.unacknowledged <= seg_ack && seg_ack <= _snd.next; } // 3.2 second check the RST bit if (th->f_rst) { // If the ACK was acceptable then signal the user "error: connection // reset", drop the segment, enter CLOSED state, delete TCB, and // return. Otherwise (no ACK) drop the segment and return. if (acceptable) { return do_reset(); } else { return; } } // 3.3 third check the security and precedence // NOTE: Ignored for now // 3.4 fourth check the SYN bit if (th->f_syn) { // RCV.NXT is set to SEG.SEQ+1, IRS is set to SEG.SEQ. SND.UNA should // be advanced to equal SEG.ACK (if there is an ACK), and any segments // on the retransmission queue which are thereby acknowledged should be // removed. _rcv.next = seg_seq + 1; _rcv.initial = seg_seq; if (th->f_ack) { // TODO: clean retransmission queue _snd.unacknowledged = seg_ack; } if (_snd.unacknowledged > _snd.initial) { // If SND.UNA > ISS (our SYN has been ACKed), change the connection // state to ESTABLISHED, form an ACK segment // ldout(_tcp.cct, 20) << __func__ << " syn: SYN_SENT -> ESTABLISHED" << dendl; init_from_options(th, opt_start, opt_end); do_established(); output(); } else { // Otherwise enter SYN_RECEIVED, form a SYN,ACK segment // ldout(_tcp.cct, 20) << __func__ << " syn: SYN_SENT -> SYN_RECEIVED" << dendl; do_syn_received(); } } // 3.5 fifth, if neither of the SYN or RST bits is set then drop the // segment and return. return; } template void tcp::tcb::input_handle_other_state(tcp_hdr* th, Packet p) { p.trim_front(th->data_offset * 4); bool do_output = false; bool do_output_data = false; tcp_sequence seg_seq = th->seq; auto seg_ack = th->ack; auto seg_len = p.len(); ldout(_tcp.cct, 20) << __func__ << " tcp header seq " << seg_seq.raw << " ack " << seg_ack.raw << " snd next " << _snd.next.raw << " unack " << _snd.unacknowledged.raw << " rcv next " << _rcv.next.raw << " len " << seg_len << " fin=" << bool(th->f_fin) << " syn=" << bool(th->f_syn) << dendl; // 4.1 first check sequence number if (!segment_acceptable(seg_seq, seg_len)) { // return output(); } // In the following it is assumed that the segment is the idealized // segment that begins at RCV.NXT and does not exceed the window. if (seg_seq < _rcv.next) { // ignore already acknowledged data auto dup = std::min(uint32_t(_rcv.next - seg_seq), seg_len); ldout(_tcp.cct, 10) << __func__ << " dup segment len " << dup << dendl; p.trim_front(dup); seg_len -= dup; seg_seq += dup; } // FIXME: We should trim data outside the right edge of the receive window as well if (seg_seq != _rcv.next) { ldout(_tcp.cct, 10) << __func__ << " out of order, expect " << _rcv.next.raw << " actual " << seg_seq.raw << " out of order size " << _rcv.out_of_order.map.size() << dendl; insert_out_of_order(seg_seq, std::move(p)); // A TCP receiver SHOULD send an immediate duplicate ACK // when an out-of-order segment arrives. return output(); } // 4.2 second check the RST bit if (th->f_rst) { if (in_state(SYN_RECEIVED)) { // If this connection was initiated with a passive OPEN (i.e., // came from the LISTEN state), then return this connection to // LISTEN state and return. The user need not be informed. If // this connection was initiated with an active OPEN (i.e., came // from SYN_SENT state) then the connection was refused, signal // the user "connection refused". In either case, all segments // on the retransmission queue should be removed. And in the // active OPEN case, enter the CLOSED state and delete the TCB, // and return. errno = -ECONNREFUSED; return do_reset(); } if (in_state(ESTABLISHED | FIN_WAIT_1 | FIN_WAIT_2 | CLOSE_WAIT)) { // If the RST bit is set then, any outstanding RECEIVEs and SEND // should receive "reset" responses. All segment queues should be // flushed. Users should also receive an unsolicited general // "connection reset" signal. Enter the CLOSED state, delete the // TCB, and return. return do_reset(); } if (in_state(CLOSING | LAST_ACK | TIME_WAIT)) { // If the RST bit is set then, enter the CLOSED state, delete the // TCB, and return. return do_closed(); } } // 4.3 third check security and precedence // NOTE: Ignored for now // 4.4 fourth, check the SYN bit if (th->f_syn) { // SYN_RECEIVED, ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2 // CLOSE_WAIT, CLOSING, LAST_ACK, TIME_WAIT // If the SYN is in the window it is an error, send a reset, any // outstanding RECEIVEs and SEND should receive "reset" responses, // all segment queues should be flushed, the user should also // receive an unsolicited general "connection reset" signal, enter // the CLOSED state, delete the TCB, and return. respond_with_reset(th); return do_reset(); // If the SYN is not in the window this step would not be reached // and an ack would have been sent in the first step (sequence // number check). } // 4.5 fifth check the ACK field if (!th->f_ack) { // if the ACK bit is off drop the segment and return return; } else { // SYN_RECEIVED STATE if (in_state(SYN_RECEIVED)) { // If SND.UNA =< SEG.ACK =< SND.NXT then enter ESTABLISHED state // and continue processing. if (_snd.unacknowledged <= seg_ack && seg_ack <= _snd.next) { ldout(_tcp.cct, 20) << __func__ << " SYN_RECEIVED -> ESTABLISHED" << dendl; do_established(); if (_tcp.push_listen_queue(_local_port, this)) { ldout(_tcp.cct, 20) << __func__ << " successfully accepting socket" << dendl; } else { ldout(_tcp.cct, 5) << __func__ << " not exist listener or full queue, reset" << dendl; return respond_with_reset(th); } } else { // return respond_with_reset(th); } } auto update_window = [this, th, seg_seq, seg_ack] { ldout(_tcp.cct, 20) << __func__ << " window update seg_seq=" << seg_seq << " seg_ack=" << seg_ack << " old window=" << th->window << " new window=" << int(_snd.window_scale) << dendl; _snd.window = th->window << _snd.window_scale; _snd.wl1 = seg_seq; _snd.wl2 = seg_ack; if (_snd.window == 0) { _persist_time_out = _rto; start_persist_timer(); } else { stop_persist_timer(); } }; // ESTABLISHED STATE or // CLOSE_WAIT STATE: Do the same processing as for the ESTABLISHED state. if (in_state(ESTABLISHED | CLOSE_WAIT)) { // If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK. if (_snd.unacknowledged < seg_ack && seg_ack <= _snd.next) { // Remote ACKed data we sent auto acked_bytes = data_segment_acked(seg_ack); // If SND.UNA < SEG.ACK =< SND.NXT, the send window should be updated. if (_snd.wl1 < seg_seq || (_snd.wl1 == seg_seq && _snd.wl2 <= seg_ack)) { update_window(); } // some data is acked, try send more data do_output_data = true; auto set_retransmit_timer = [this] { if (_snd.data.empty()) { // All outstanding segments are acked, turn off the timer. stop_retransmit_timer(); // Signal the waiter of this event signal_all_data_acked(); } else { // Restart the timer becasue new data is acked. start_retransmit_timer(); } }; if (_snd.dupacks >= 3) { // We are in fast retransmit / fast recovery phase uint32_t smss = _snd.mss; if (seg_ack > _snd.recover) { ldout(_tcp.cct, 20) << __func__ << " ack: full_ack" << dendl; // Set cwnd to min (ssthresh, max(FlightSize, SMSS) + SMSS) _snd.cwnd = std::min(_snd.ssthresh, std::max(flight_size(), smss) + smss); // Exit the fast recovery procedure exit_fast_recovery(); set_retransmit_timer(); } else { ldout(_tcp.cct, 20) << __func__ << " ack: partial_ack" << dendl; // Retransmit the first unacknowledged segment fast_retransmit(); // Deflate the congestion window by the amount of new data // acknowledged by the Cumulative Acknowledgment field _snd.cwnd -= acked_bytes; // If the partial ACK acknowledges at least one SMSS of new // data, then add back SMSS bytes to the congestion window if (acked_bytes >= smss) { _snd.cwnd += smss; } // Send a new segment if permitted by the new value of // cwnd. Do not exit the fast recovery procedure For // the first partial ACK that arrives during fast // recovery, also reset the retransmit timer. if (++_snd.partial_ack == 1) { start_retransmit_timer(); } } } else { // RFC5681: The fast retransmit algorithm uses the arrival // of 3 duplicate ACKs (as defined in section 2, without // any intervening ACKs which move SND.UNA) as an // indication that a segment has been lost. // // So, here we reset dupacks to zero becasue this ACK moves // SND.UNA. exit_fast_recovery(); set_retransmit_timer(); } } else if (!_snd.data.empty() && seg_len == 0 && th->f_fin == 0 && th->f_syn == 0 && th->ack == _snd.unacknowledged && uint32_t(th->window << _snd.window_scale) == _snd.window) { // Note: // RFC793 states: // If the ACK is a duplicate (SEG.ACK < SND.UNA), it can be ignored // RFC5681 states: // The TCP sender SHOULD use the "fast retransmit" algorithm to detect // and repair loss, based on incoming duplicate ACKs. // Here, We follow RFC5681. _snd.dupacks++; uint32_t smss = _snd.mss; // 3 duplicated ACKs trigger a fast retransmit if (_snd.dupacks == 1 || _snd.dupacks == 2) { // RFC5681 Step 3.1 // Send cwnd + 2 * smss per RFC3042 do_output_data = true; } else if (_snd.dupacks == 3) { // RFC6582 Step 3.2 if (seg_ack - 1 > _snd.recover) { _snd.recover = _snd.next - 1; // RFC5681 Step 3.2 _snd.ssthresh = std::max((flight_size() - _snd.limited_transfer) / 2, 2 * smss); fast_retransmit(); } else { // Do not enter fast retransmit and do not reset ssthresh } // RFC5681 Step 3.3 _snd.cwnd = _snd.ssthresh + 3 * smss; } else if (_snd.dupacks > 3) { // RFC5681 Step 3.4 _snd.cwnd += smss; // RFC5681 Step 3.5 do_output_data = true; } } else if (seg_ack > _snd.next) { // If the ACK acks something not yet sent (SEG.ACK > SND.NXT) // then send an ACK, drop the segment, and return return output(); } else if (_snd.window == 0 && th->window > 0) { update_window(); do_output_data = true; } } // FIN_WAIT_1 STATE if (in_state(FIN_WAIT_1)) { // In addition to the processing for the ESTABLISHED state, if // our FIN is now acknowledged then enter FIN-WAIT-2 and continue // processing in that state. if (seg_ack == _snd.next + 1) { ldout(_tcp.cct, 20) << __func__ << " ack: FIN_WAIT_1 -> FIN_WAIT_2" << dendl; _state = FIN_WAIT_2; do_local_fin_acked(); } } // FIN_WAIT_2 STATE if (in_state(FIN_WAIT_2)) { // In addition to the processing for the ESTABLISHED state, if // the retransmission queue is empty, the user’s CLOSE can be // acknowledged ("ok") but do not delete the TCB. // TODO } // CLOSING STATE if (in_state(CLOSING)) { if (seg_ack == _snd.next + 1) { ldout(_tcp.cct, 20) << __func__ << " ack: CLOSING -> TIME_WAIT" << dendl; do_local_fin_acked(); return do_time_wait(); } else { return; } } // LAST_ACK STATE if (in_state(LAST_ACK)) { if (seg_ack == _snd.next + 1) { ldout(_tcp.cct, 20) << __func__ << " ack: LAST_ACK -> CLOSED" << dendl; do_local_fin_acked(); return do_closed(); } } // TIME_WAIT STATE if (in_state(TIME_WAIT)) { // The only thing that can arrive in this state is a // retransmission of the remote FIN. Acknowledge it, and restart // the 2 MSL timeout. // TODO } } // 4.6 sixth, check the URG bit if (th->f_urg) { // TODO } // 4.7 seventh, process the segment text if (in_state(ESTABLISHED | FIN_WAIT_1 | FIN_WAIT_2)) { if (p.len()) { // Once the TCP takes responsibility for the data it advances // RCV.NXT over the data accepted, and adjusts RCV.WND as // apporopriate to the current buffer availability. The total of // RCV.NXT and RCV.WND should not be reduced. _rcv.data.push_back(std::move(p)); _rcv.next += seg_len; auto merged = merge_out_of_order(); signal_data_received(); // Send an acknowledgment of the form: // // This acknowledgment should be piggybacked on a segment being // transmitted if possible without incurring undue delay. if (merged) { // TCP receiver SHOULD send an immediate ACK when the // incoming segment fills in all or part of a gap in the // sequence space. do_output = true; } else { do_output = should_send_ack(seg_len); } ldout(_tcp.cct, 20) << __func__ << " merged=" << merged << " do_output=" << do_output << dendl; } } else if (in_state(CLOSE_WAIT | CLOSING | LAST_ACK | TIME_WAIT)) { // This should not occur, since a FIN has been received from the // remote side. Ignore the segment text. return; } // 4.8 eighth, check the FIN bit if (th->f_fin) { if (in_state(CLOSED | LISTEN | SYN_SENT)) { // Do not process the FIN if the state is CLOSED, LISTEN or SYN-SENT // since the SEG.SEQ cannot be validated; drop the segment and return. return; } auto fin_seq = seg_seq + seg_len; if (fin_seq == _rcv.next) { _rcv.next = fin_seq + 1; // If this packet contains data as well, we can ACK both data // and in a single packet, so canncel the previous ACK. clear_delayed_ack(); do_output = false; // Send ACK for the FIN! output(); signal_data_received(); _errno = 0; if (in_state(SYN_RECEIVED | ESTABLISHED)) { ldout(_tcp.cct, 20) << __func__ << " fin: SYN_RECEIVED or ESTABLISHED -> CLOSE_WAIT" << dendl; _state = CLOSE_WAIT; // EOF } if (in_state(FIN_WAIT_1)) { // If our FIN has been ACKed (perhaps in this segment), then // enter TIME-WAIT, start the time-wait timer, turn off the other // timers; otherwise enter the CLOSING state. // Note: If our FIN has been ACKed, we should be in FIN_WAIT_2 // not FIN_WAIT_1 if we reach here. ldout(_tcp.cct, 20) << __func__ << " fin: FIN_WAIT_1 -> CLOSING" << dendl; _state = CLOSING; } if (in_state(FIN_WAIT_2)) { ldout(_tcp.cct, 20) << __func__ << " fin: FIN_WAIT_2 -> TIME_WAIT" << dendl; return do_time_wait(); } } } if (do_output || (do_output_data && can_send())) { // Since we will do output, we can canncel scheduled delayed ACK. clear_delayed_ack(); output(); } } template void tcp::tcb::connect() { ldout(_tcp.cct, 20) << __func__ << dendl; // An initial send sequence number (ISS) is selected. A SYN segment of the // form is sent. Set SND.UNA to ISS, SND.NXT to ISS+1, // enter SYN-SENT state, and return. do_setup_isn(); // Local receive window scale factor _rcv.window_scale = _option._local_win_scale = 7; // Maximum segment size local can receive _rcv.mss = _option._local_mss = local_mss(); // Linux's default window size _rcv.window = 29200 << _rcv.window_scale; do_syn_sent(); } template void tcp::tcb::close_final_cleanup() { if (_snd._all_data_acked_fd >= 0) { center->delete_file_event(_snd._all_data_acked_fd, EVENT_READABLE); _tcp.manager.close(_snd._all_data_acked_fd); _snd._all_data_acked_fd = -1; } _snd.closed = true; signal_data_received(); ldout(_tcp.cct, 20) << __func__ << " unsent_len=" << _snd.unsent_len << dendl; if (in_state(CLOSE_WAIT)) { ldout(_tcp.cct, 20) << __func__ << " CLOSE_WAIT -> LAST_ACK" << dendl; _state = LAST_ACK; } else if (in_state(ESTABLISHED)) { ldout(_tcp.cct, 20) << __func__ << " ESTABLISHED -> FIN_WAIT_1" << dendl; _state = FIN_WAIT_1; } // Send to remote // Note: we call output_one to make sure a packet with FIN actually // sent out. If we only call output() and _packetq is not empty, // tcp::tcb::get_packet(), packet with FIN will not be generated. output_one(); output(); center->delete_file_event(fd, EVENT_READABLE|EVENT_WRITABLE); } template void tcp::tcb::retransmit() { auto output_update_rto = [this] { output(); // According to RFC6298, Update RTO <- RTO * 2 to perform binary exponential back-off this->_rto = std::min(this->_rto * 2, this->_rto_max); start_retransmit_timer(); }; // Retransmit SYN if (syn_needs_on()) { if (_snd.syn_retransmit++ < _max_nr_retransmit) { output_update_rto(); } else { _errno = -ECONNABORTED; ldout(_tcp.cct, 5) << __func__ << " syn retransmit exceed max " << _max_nr_retransmit << dendl; _errno = -ETIMEDOUT; cleanup(); return; } } // Retransmit FIN if (fin_needs_on()) { if (_snd.fin_retransmit++ < _max_nr_retransmit) { output_update_rto(); } else { ldout(_tcp.cct, 5) << __func__ << " fin retransmit exceed max " << _max_nr_retransmit << dendl; _errno = -ETIMEDOUT; cleanup(); return; } } // Retransmit Data if (_snd.data.empty()) { return; } // If there are unacked data, retransmit the earliest segment auto& unacked_seg = _snd.data.front(); // According to RFC5681 // Update ssthresh only for the first retransmit uint32_t smss = _snd.mss; if (unacked_seg.nr_transmits == 0) { _snd.ssthresh = std::max(flight_size() / 2, 2 * smss); } // RFC6582 Step 4 _snd.recover = _snd.next - 1; // Start the slow start process _snd.cwnd = smss; // End fast recovery exit_fast_recovery(); ldout(_tcp.cct, 20) << __func__ << " unack data size " << _snd.data.size() << " nr=" << unacked_seg.nr_transmits << dendl; if (unacked_seg.nr_transmits < _max_nr_retransmit) { unacked_seg.nr_transmits++; } else { // Delete connection when max num of retransmission is reached ldout(_tcp.cct, 5) << __func__ << " seg retransmit exceed max " << _max_nr_retransmit << dendl; _errno = -ETIMEDOUT; cleanup(); return; } retransmit_one(); output_update_rto(); } template void tcp::tcb::persist() { ldout(_tcp.cct, 20) << __func__ << " persist timer fired" << dendl; // Send 1 byte packet to probe peer's window size _snd.window_probe = true; output_one(); _snd.window_probe = false; output(); // Perform binary exponential back-off per RFC1122 _persist_time_out = std::min(_persist_time_out * 2, _rto_max); start_persist_timer(); }