// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2004-2006 Sage Weil * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #ifndef CEPH_MDCACHE_H #define CEPH_MDCACHE_H #include "include/types.h" #include "include/filepath.h" #include "include/elist.h" #include "osdc/Filer.h" #include "CInode.h" #include "CDentry.h" #include "CDir.h" #include "include/Context.h" #include "events/EMetaBlob.h" #include "RecoveryQueue.h" #include "StrayManager.h" #include "MDSContext.h" #include "MDSMap.h" #include "Mutation.h" #include "messages/MClientRequest.h" #include "messages/MMDSSlaveRequest.h" class PerfCounters; class MDSRank; class Session; class Migrator; class Message; class Session; class MMDSResolve; class MMDSResolveAck; class MMDSCacheRejoin; class MDiscover; class MDiscoverReply; class MCacheExpire; class MDirUpdate; class MDentryLink; class MDentryUnlink; class MLock; struct MMDSFindIno; struct MMDSFindInoReply; struct MMDSOpenIno; struct MMDSOpenInoReply; class Message; class MClientRequest; class MMDSSlaveRequest; struct MClientSnap; class MMDSFragmentNotify; class ESubtreeMap; enum { l_mdc_first = 3000, // How many inodes currently in stray dentries l_mdc_num_strays, // How many stray dentries are currently delayed for purge due to refs l_mdc_num_strays_delayed, // How many stray dentries are currently being enqueued for purge l_mdc_num_strays_enqueuing, // How many dentries have ever been added to stray dir l_mdc_strays_created, // How many dentries have been passed on to PurgeQueue l_mdc_strays_enqueued, // How many strays have been reintegrated? l_mdc_strays_reintegrated, // How many strays have been migrated? l_mdc_strays_migrated, // How many inode sizes currently being recovered l_mdc_num_recovering_processing, // How many inodes currently waiting to have size recovered l_mdc_num_recovering_enqueued, // How many inodes waiting with elevated priority for recovery l_mdc_num_recovering_prioritized, // How many inodes ever started size recovery l_mdc_recovery_started, // How many inodes ever completed size recovery l_mdc_recovery_completed, l_mdss_ireq_enqueue_scrub, l_mdss_ireq_exportdir, l_mdss_ireq_flush, l_mdss_ireq_fragmentdir, l_mdss_ireq_fragstats, l_mdss_ireq_inodestats, l_mdc_last, }; // flags for predirty_journal_parents() static const int PREDIRTY_PRIMARY = 1; // primary dn, adjust nested accounting static const int PREDIRTY_DIR = 2; // update parent dir mtime/size static const int PREDIRTY_SHALLOW = 4; // only go to immediate parent (for easier rollback) class MDCache { public: // my master MDSRank *mds; // -- my cache -- LRU lru; // dentry lru for expiring items from cache LRU bottom_lru; // dentries that should be trimmed ASAP protected: ceph::unordered_map inode_map; // map of inodes by ino CInode *root; // root inode CInode *myin; // .ceph/mds%d dir bool readonly; void set_readonly() { readonly = true; } CInode *strays[NUM_STRAY]; // my stray dir int stray_index; CInode *get_stray() { return strays[stray_index]; } set base_inodes; std::unique_ptr logger; Filer filer; bool exceeded_size_limit; public: static uint64_t cache_limit_inodes(void) { return g_conf->get_val("mds_cache_size"); } static uint64_t cache_limit_memory(void) { return g_conf->get_val("mds_cache_memory_limit"); } static double cache_reservation(void) { return g_conf->get_val("mds_cache_reservation"); } static double cache_mid(void) { return g_conf->get_val("mds_cache_mid"); } static double cache_health_threshold(void) { return g_conf->get_val("mds_health_cache_threshold"); } double cache_toofull_ratio(void) const { uint64_t inode_limit = cache_limit_inodes(); double inode_reserve = inode_limit*(1.0-cache_reservation()); double memory_reserve = cache_limit_memory()*(1.0-cache_reservation()); return fmax(0.0, fmax((cache_size()-memory_reserve)/memory_reserve, inode_limit == 0 ? 0.0 : (CInode::count()-inode_reserve)/inode_reserve)); } bool cache_toofull(void) const { return cache_toofull_ratio() > 0.0; } uint64_t cache_size(void) const { return mempool::get_pool(mempool::mds_co::id).allocated_bytes(); } bool cache_overfull(void) const { uint64_t inode_limit = cache_limit_inodes(); return (inode_limit > 0 && CInode::count() > inode_limit*cache_health_threshold()) || (cache_size() > cache_limit_memory()*cache_health_threshold()); } void advance_stray() { stray_index = (stray_index+1)%NUM_STRAY; } void activate_stray_manager(); /** * Call this when you know that a CDentry is ready to be passed * on to StrayManager (i.e. this is a stray you've just created) */ void notify_stray(CDentry *dn) { assert(dn->get_dir()->get_inode()->is_stray()); stray_manager.eval_stray(dn); } void maybe_eval_stray(CInode *in, bool delay=false); void clear_dirty_bits_for_stray(CInode* diri); bool is_readonly() { return readonly; } void force_readonly(); DecayRate decayrate; int num_inodes_with_caps; unsigned max_dir_commit_size; static file_layout_t gen_default_file_layout(const MDSMap &mdsmap); static file_layout_t gen_default_log_layout(const MDSMap &mdsmap); file_layout_t default_file_layout; file_layout_t default_log_layout; void register_perfcounters(); // -- client leases -- public: static const int client_lease_pools = 3; float client_lease_durations[client_lease_pools]; protected: xlist client_leases[client_lease_pools]; public: void touch_client_lease(ClientLease *r, int pool, utime_t ttl) { client_leases[pool].push_back(&r->item_lease); r->ttl = ttl; } void notify_stray_removed() { stray_manager.notify_stray_removed(); } void notify_stray_created() { stray_manager.notify_stray_created(); } void eval_remote(CDentry *dn) { stray_manager.eval_remote(dn); } // -- client caps -- uint64_t last_cap_id; // -- discover -- struct discover_info_t { ceph_tid_t tid; mds_rank_t mds; inodeno_t ino; frag_t frag; snapid_t snap; filepath want_path; CInode *basei; bool want_base_dir; bool want_xlocked; discover_info_t() : tid(0), mds(-1), snap(CEPH_NOSNAP), basei(NULL), want_base_dir(false), want_xlocked(false) {} ~discover_info_t() { if (basei) basei->put(MDSCacheObject::PIN_DISCOVERBASE); } void pin_base(CInode *b) { basei = b; basei->get(MDSCacheObject::PIN_DISCOVERBASE); } }; map discovers; ceph_tid_t discover_last_tid; void _send_discover(discover_info_t& dis); discover_info_t& _create_discover(mds_rank_t mds) { ceph_tid_t t = ++discover_last_tid; discover_info_t& d = discovers[t]; d.tid = t; d.mds = mds; return d; } // waiters map > > waiting_for_base_ino; void discover_base_ino(inodeno_t want_ino, MDSInternalContextBase *onfinish, mds_rank_t from=MDS_RANK_NONE); void discover_dir_frag(CInode *base, frag_t approx_fg, MDSInternalContextBase *onfinish, mds_rank_t from=MDS_RANK_NONE); void discover_path(CInode *base, snapid_t snap, filepath want_path, MDSInternalContextBase *onfinish, bool want_xlocked=false, mds_rank_t from=MDS_RANK_NONE); void discover_path(CDir *base, snapid_t snap, filepath want_path, MDSInternalContextBase *onfinish, bool want_xlocked=false); void kick_discovers(mds_rank_t who); // after a failure. // -- subtrees -- protected: /* subtree keys and each tree's non-recursive nested subtrees (the "bounds") */ map > subtrees; map > > projected_subtree_renames; // renamed ino -> target dir // adjust subtree auth specification // dir->dir_auth // imports/exports/nested_exports // join/split subtrees as appropriate public: bool is_subtrees() { return !subtrees.empty(); } void list_subtrees(list& ls); void adjust_subtree_auth(CDir *root, mds_authority_t auth); void adjust_subtree_auth(CDir *root, mds_rank_t a, mds_rank_t b=CDIR_AUTH_UNKNOWN) { adjust_subtree_auth(root, mds_authority_t(a,b)); } void adjust_bounded_subtree_auth(CDir *dir, set& bounds, mds_authority_t auth); void adjust_bounded_subtree_auth(CDir *dir, set& bounds, mds_rank_t a) { adjust_bounded_subtree_auth(dir, bounds, mds_authority_t(a, CDIR_AUTH_UNKNOWN)); } void adjust_bounded_subtree_auth(CDir *dir, vector& bounds, mds_authority_t auth); void adjust_bounded_subtree_auth(CDir *dir, vector& bounds, mds_rank_t a) { adjust_bounded_subtree_auth(dir, bounds, mds_authority_t(a, CDIR_AUTH_UNKNOWN)); } void map_dirfrag_set(list& dfs, set& result); void try_subtree_merge(CDir *root); void try_subtree_merge_at(CDir *root, set *to_eval); void subtree_merge_writebehind_finish(CInode *in, MutationRef& mut); void eval_subtree_root(CInode *diri); CDir *get_subtree_root(CDir *dir); CDir *get_projected_subtree_root(CDir *dir); bool is_leaf_subtree(CDir *dir) { assert(subtrees.count(dir)); return subtrees[dir].empty(); } void remove_subtree(CDir *dir); bool is_subtree(CDir *root) { return subtrees.count(root); } void get_subtree_bounds(CDir *root, set& bounds); void get_wouldbe_subtree_bounds(CDir *root, set& bounds); void verify_subtree_bounds(CDir *root, const set& bounds); void verify_subtree_bounds(CDir *root, const list& bounds); void project_subtree_rename(CInode *diri, CDir *olddir, CDir *newdir); void adjust_subtree_after_rename(CInode *diri, CDir *olddir, bool pop); void get_auth_subtrees(set& s); void get_fullauth_subtrees(set& s); int num_subtrees(); int num_subtrees_fullauth(); int num_subtrees_fullnonauth(); protected: // delayed cache expire map > delayed_expire; // subtree root -> expire msg // -- requests -- ceph::unordered_map active_requests; public: int get_num_client_requests(); MDRequestRef request_start(MClientRequest *req); MDRequestRef request_start_slave(metareqid_t rid, __u32 attempt, Message *m); MDRequestRef request_start_internal(int op); bool have_request(metareqid_t rid) { return active_requests.count(rid); } MDRequestRef request_get(metareqid_t rid); void request_pin_ref(MDRequestRef& r, CInode *ref, vector& trace); void request_finish(MDRequestRef& mdr); void request_forward(MDRequestRef& mdr, mds_rank_t mds, int port=0); void dispatch_request(MDRequestRef& mdr); void request_drop_foreign_locks(MDRequestRef& mdr); void request_drop_non_rdlocks(MDRequestRef& r); void request_drop_locks(MDRequestRef& r); void request_cleanup(MDRequestRef& r); void request_kill(MDRequestRef& r); // called when session closes // journal/snap helpers CInode *pick_inode_snap(CInode *in, snapid_t follows); CInode *cow_inode(CInode *in, snapid_t last); void journal_cow_dentry(MutationImpl *mut, EMetaBlob *metablob, CDentry *dn, snapid_t follows=CEPH_NOSNAP, CInode **pcow_inode=0, CDentry::linkage_t *dnl=0); void journal_cow_inode(MutationRef& mut, EMetaBlob *metablob, CInode *in, snapid_t follows=CEPH_NOSNAP, CInode **pcow_inode=0); void journal_dirty_inode(MutationImpl *mut, EMetaBlob *metablob, CInode *in, snapid_t follows=CEPH_NOSNAP); void project_rstat_inode_to_frag(CInode *cur, CDir *parent, snapid_t first, int linkunlink, SnapRealm *prealm); void _project_rstat_inode_to_frag(inode_t& inode, snapid_t ofirst, snapid_t last, CDir *parent, int linkunlink, bool update_inode); void project_rstat_frag_to_inode(nest_info_t& rstat, nest_info_t& accounted_rstat, snapid_t ofirst, snapid_t last, CInode *pin, bool cow_head); void broadcast_quota_to_client(CInode *in); void predirty_journal_parents(MutationRef mut, EMetaBlob *blob, CInode *in, CDir *parent, int flags, int linkunlink=0, snapid_t follows=CEPH_NOSNAP); // slaves void add_uncommitted_master(metareqid_t reqid, LogSegment *ls, set &slaves, bool safe=false) { uncommitted_masters[reqid].ls = ls; uncommitted_masters[reqid].slaves = slaves; uncommitted_masters[reqid].safe = safe; } void wait_for_uncommitted_master(metareqid_t reqid, MDSInternalContextBase *c) { uncommitted_masters[reqid].waiters.push_back(c); } bool have_uncommitted_master(metareqid_t reqid, mds_rank_t from) { auto p = uncommitted_masters.find(reqid); return p != uncommitted_masters.end() && p->second.slaves.count(from) > 0; } void log_master_commit(metareqid_t reqid); void logged_master_update(metareqid_t reqid); void _logged_master_commit(metareqid_t reqid); void committed_master_slave(metareqid_t r, mds_rank_t from); void finish_committed_masters(); void _logged_slave_commit(mds_rank_t from, metareqid_t reqid); // -- recovery -- protected: set recovery_set; public: void set_recovery_set(set& s); void handle_mds_failure(mds_rank_t who); void handle_mds_recovery(mds_rank_t who); protected: // [resolve] // from EImportStart w/o EImportFinish during journal replay map > my_ambiguous_imports; // from MMDSResolves map > > other_ambiguous_imports; map > uncommitted_slave_updates; // slave: for replay. map uncommitted_slave_rename_olddir; // slave: preserve the non-auth dir until seeing commit. map uncommitted_slave_unlink; // slave: preserve the unlinked inode until seeing commit. // track master requests whose slaves haven't acknowledged commit struct umaster { set slaves; LogSegment *ls; list waiters; bool safe; bool committing; bool recovering; umaster() : ls(NULL), safe(false), committing(false), recovering(false) {} }; map uncommitted_masters; // master: req -> slave set set pending_masters; map > ambiguous_slave_updates; friend class ESlaveUpdate; friend class ECommitted; bool resolves_pending; set resolve_gather; // nodes i need resolves from set resolve_ack_gather; // nodes i need a resolve_ack from map need_resolve_rollback; // rollbacks i'm writing to the journal map delayed_resolve; void handle_resolve(MMDSResolve *m); void handle_resolve_ack(MMDSResolveAck *m); void process_delayed_resolve(); void discard_delayed_resolve(mds_rank_t who); void maybe_resolve_finish(); void disambiguate_my_imports(); void disambiguate_other_imports(); void trim_unlinked_inodes(); void add_uncommitted_slave_update(metareqid_t reqid, mds_rank_t master, MDSlaveUpdate*); void finish_uncommitted_slave_update(metareqid_t reqid, mds_rank_t master); MDSlaveUpdate* get_uncommitted_slave_update(metareqid_t reqid, mds_rank_t master); public: void recalc_auth_bits(bool replay); void remove_inode_recursive(CInode *in); bool is_ambiguous_slave_update(metareqid_t reqid, mds_rank_t master) { auto p = ambiguous_slave_updates.find(master); return p != ambiguous_slave_updates.end() && p->second.count(reqid); } void add_ambiguous_slave_update(metareqid_t reqid, mds_rank_t master) { ambiguous_slave_updates[master].insert(reqid); } void remove_ambiguous_slave_update(metareqid_t reqid, mds_rank_t master) { auto p = ambiguous_slave_updates.find(master); auto q = p->second.find(reqid); assert(q != p->second.end()); p->second.erase(q); if (p->second.empty()) ambiguous_slave_updates.erase(p); } void add_rollback(metareqid_t reqid, mds_rank_t master) { need_resolve_rollback[reqid] = master; } void finish_rollback(metareqid_t reqid); // ambiguous imports void add_ambiguous_import(dirfrag_t base, const vector& bounds); void add_ambiguous_import(CDir *base, const set& bounds); bool have_ambiguous_import(dirfrag_t base) { return my_ambiguous_imports.count(base); } void get_ambiguous_import_bounds(dirfrag_t base, vector& bounds) { assert(my_ambiguous_imports.count(base)); bounds = my_ambiguous_imports[base]; } void cancel_ambiguous_import(CDir *); void finish_ambiguous_import(dirfrag_t dirino); void resolve_start(MDSInternalContext *resolve_done_); void send_resolves(); void send_slave_resolves(); void send_subtree_resolves(); void maybe_send_pending_resolves() { if (resolves_pending) send_subtree_resolves(); } void _move_subtree_map_bound(dirfrag_t df, dirfrag_t oldparent, dirfrag_t newparent, map >& subtrees); ESubtreeMap *create_subtree_map(); void clean_open_file_lists(); protected: // [rejoin] bool rejoins_pending; set rejoin_gather; // nodes from whom i need a rejoin set rejoin_sent; // nodes i sent a rejoin to set rejoin_ack_sent; // nodes i sent a rejoin to set rejoin_ack_gather; // nodes from whom i need a rejoin ack map > > rejoin_imported_caps; map > > rejoin_slave_exports; map rejoin_client_map; map > cap_exports; // ino -> client -> capex map cap_export_targets; // ino -> auth mds map > > cap_imports; // ino -> client -> frommds -> capex set cap_imports_missing; map > cap_reconnect_waiters; int cap_imports_num_opening; set rejoin_undef_inodes; set rejoin_potential_updated_scatterlocks; set rejoin_undef_dirfrags; map > rejoin_unlinked_inodes; vector rejoin_recover_q, rejoin_check_q; list rejoin_eval_locks; list rejoin_waiters; void rejoin_walk(CDir *dir, MMDSCacheRejoin *rejoin); void handle_cache_rejoin(MMDSCacheRejoin *m); void handle_cache_rejoin_weak(MMDSCacheRejoin *m); CInode* rejoin_invent_inode(inodeno_t ino, snapid_t last); CDir* rejoin_invent_dirfrag(dirfrag_t df); void handle_cache_rejoin_strong(MMDSCacheRejoin *m); void rejoin_scour_survivor_replicas(mds_rank_t from, MMDSCacheRejoin *ack, set& acked_inodes, set& gather_locks); void handle_cache_rejoin_ack(MMDSCacheRejoin *m); void rejoin_send_acks(); void rejoin_trim_undef_inodes(); void maybe_send_pending_rejoins() { if (rejoins_pending) rejoin_send_rejoins(); } std::unique_ptr rejoin_done; std::unique_ptr resolve_done; public: void rejoin_start(MDSInternalContext *rejoin_done_); void rejoin_gather_finish(); void rejoin_send_rejoins(); void rejoin_export_caps(inodeno_t ino, client_t client, const cap_reconnect_t& icr, int target=-1) { cap_exports[ino][client] = icr; cap_export_targets[ino] = target; } void rejoin_recovered_caps(inodeno_t ino, client_t client, const cap_reconnect_t& icr, mds_rank_t frommds=MDS_RANK_NONE) { cap_imports[ino][client][frommds] = icr; } const cap_reconnect_t *get_replay_cap_reconnect(inodeno_t ino, client_t client) { if (cap_imports.count(ino) && cap_imports[ino].count(client) && cap_imports[ino][client].count(MDS_RANK_NONE)) { return &cap_imports[ino][client][MDS_RANK_NONE]; } return NULL; } void remove_replay_cap_reconnect(inodeno_t ino, client_t client) { assert(cap_imports[ino].size() == 1); assert(cap_imports[ino][client].size() == 1); cap_imports.erase(ino); } void wait_replay_cap_reconnect(inodeno_t ino, MDSInternalContextBase *c) { cap_reconnect_waiters[ino].push_back(c); } // [reconnect/rejoin caps] struct reconnected_cap_info_t { inodeno_t realm_ino; snapid_t snap_follows; int dirty_caps; reconnected_cap_info_t() : realm_ino(0), snap_follows(0), dirty_caps(0) {} }; map > reconnected_caps; // inode -> client -> snap_follows,realmino map > reconnected_snaprealms; // realmino -> client -> realmseq void add_reconnected_cap(client_t client, inodeno_t ino, const cap_reconnect_t& icr) { reconnected_cap_info_t &info = reconnected_caps[ino][client]; info.realm_ino = inodeno_t(icr.capinfo.snaprealm); info.snap_follows = icr.snap_follows; } void set_reconnected_dirty_caps(client_t client, inodeno_t ino, int dirty) { reconnected_cap_info_t &info = reconnected_caps[ino][client]; info.dirty_caps |= dirty; } void add_reconnected_snaprealm(client_t client, inodeno_t ino, snapid_t seq) { reconnected_snaprealms[ino][client] = seq; } friend class C_MDC_RejoinOpenInoFinish; friend class C_MDC_RejoinSessionsOpened; void rejoin_open_ino_finish(inodeno_t ino, int ret); void rejoin_open_sessions_finish(map client_map, map& sseqmap); bool process_imported_caps(); void choose_lock_states_and_reconnect_caps(); void prepare_realm_split(SnapRealm *realm, client_t client, inodeno_t ino, map& splits); void do_realm_invalidate_and_update_notify(CInode *in, int snapop, bool nosend=false); void send_snaps(map& splits); Capability* rejoin_import_cap(CInode *in, client_t client, const cap_reconnect_t& icr, mds_rank_t frommds); void finish_snaprealm_reconnect(client_t client, SnapRealm *realm, snapid_t seq); void try_reconnect_cap(CInode *in, Session *session); void export_remaining_imported_caps(); // cap imports. delayed snap parent opens. // realm inode -> client -> cap inodes needing to split to this realm map > missing_snap_parents; map > delayed_imported_caps; void do_cap_import(Session *session, CInode *in, Capability *cap, uint64_t p_cap_id, ceph_seq_t p_seq, ceph_seq_t p_mseq, int peer, int p_flags); void do_delayed_cap_imports(); void rebuild_need_snapflush(CInode *head_in, SnapRealm *realm, client_t client, snapid_t snap_follows); void check_realm_past_parents(SnapRealm *realm, bool reconnect); void open_snap_parents(); bool open_undef_inodes_dirfrags(); void opened_undef_inode(CInode *in); void opened_undef_dirfrag(CDir *dir) { rejoin_undef_dirfrags.erase(dir); } void reissue_all_caps(); friend class Locker; friend class Migrator; friend class MDBalancer; // StrayManager needs to be able to remove_inode() from us // when it is done purging friend class StrayManager; // File size recovery private: RecoveryQueue recovery_queue; void identify_files_to_recover(); public: void start_files_to_recover(); void do_file_recover(); void queue_file_recover(CInode *in); void _queued_file_recover_cow(CInode *in, MutationRef& mut); // subsystems std::unique_ptr migrator; public: explicit MDCache(MDSRank *m, PurgeQueue &purge_queue_); ~MDCache(); // debug void log_stat(); // root inode CInode *get_root() { return root; } CInode *get_myin() { return myin; } size_t get_cache_size() { return lru.lru_get_size(); } // trimming bool trim(uint64_t count=0); private: void trim_lru(uint64_t count, map& expiremap); bool trim_dentry(CDentry *dn, map& expiremap); void trim_dirfrag(CDir *dir, CDir *con, map& expiremap); bool trim_inode(CDentry *dn, CInode *in, CDir *con, map& expiremap); void send_expire_messages(map& expiremap); void trim_non_auth(); // trim out trimmable non-auth items public: bool trim_non_auth_subtree(CDir *directory); void standby_trim_segment(LogSegment *ls); void try_trim_non_auth_subtree(CDir *dir); bool can_trim_non_auth_dirfrag(CDir *dir) { return my_ambiguous_imports.count((dir)->dirfrag()) == 0 && uncommitted_slave_rename_olddir.count(dir->inode) == 0; } /** * For all unreferenced inodes, dirs, dentries below an inode, compose * expiry messages. This is used when giving up all replicas of entities * for an MDS peer in the 'stopping' state, such that the peer can * empty its cache and finish shutting down. * * We have to make sure we're only expiring un-referenced items to * avoid interfering with ongoing stray-movement (we can't distinguish * between the "moving my strays" and "waiting for my cache to empty" * phases within 'stopping') * * @return false if we completed cleanly, true if caller should stop * expiring because we hit something with refs. */ bool expire_recursive( CInode *in, std::map& expiremap); void trim_client_leases(); void check_memory_usage(); utime_t last_recall_state; // shutdown private: set shutdown_exported_strays; public: void shutdown_start(); void shutdown_check(); bool shutdown_pass(); bool shutdown_export_strays(); bool shutdown(); // clear cache (ie at shutodwn) bool did_shutdown_log_cap; // inode_map bool have_inode(vinodeno_t vino) { return inode_map.count(vino) ? true:false; } bool have_inode(inodeno_t ino, snapid_t snap=CEPH_NOSNAP) { return have_inode(vinodeno_t(ino, snap)); } CInode* get_inode(vinodeno_t vino) { if (have_inode(vino)) return inode_map[vino]; return NULL; } CInode* get_inode(inodeno_t ino, snapid_t s=CEPH_NOSNAP) { return get_inode(vinodeno_t(ino, s)); } CDir* get_dirfrag(dirfrag_t df) { CInode *in = get_inode(df.ino); if (!in) return NULL; return in->get_dirfrag(df.frag); } CDir* get_dirfrag(inodeno_t ino, const string& dn) { CInode *in = get_inode(ino); if (!in) return NULL; frag_t fg = in->pick_dirfrag(dn); return in->get_dirfrag(fg); } CDir* get_force_dirfrag(dirfrag_t df, bool replay) { CInode *diri = get_inode(df.ino); if (!diri) return NULL; CDir *dir = force_dir_fragment(diri, df.frag, replay); if (!dir) dir = diri->get_dirfrag(df.frag); return dir; } MDSCacheObject *get_object(MDSCacheObjectInfo &info); public: void add_inode(CInode *in); void remove_inode(CInode *in); protected: void touch_inode(CInode *in) { if (in->get_parent_dn()) touch_dentry(in->get_projected_parent_dn()); } public: void touch_dentry(CDentry *dn) { if (dn->state_test(CDentry::STATE_BOTTOMLRU)) { bottom_lru.lru_midtouch(dn); } else { if (dn->is_auth()) lru.lru_touch(dn); else lru.lru_midtouch(dn); } } void touch_dentry_bottom(CDentry *dn) { if (dn->state_test(CDentry::STATE_BOTTOMLRU)) return; lru.lru_bottouch(dn); } protected: void inode_remove_replica(CInode *in, mds_rank_t rep, bool rejoin, set& gather_locks); void dentry_remove_replica(CDentry *dn, mds_rank_t rep, set& gather_locks); void rename_file(CDentry *srcdn, CDentry *destdn); public: // truncate void truncate_inode(CInode *in, LogSegment *ls); void _truncate_inode(CInode *in, LogSegment *ls); void truncate_inode_finish(CInode *in, LogSegment *ls); void truncate_inode_logged(CInode *in, MutationRef& mut); void add_recovered_truncate(CInode *in, LogSegment *ls); void remove_recovered_truncate(CInode *in, LogSegment *ls); void start_recovered_truncates(); public: CDir *get_auth_container(CDir *in); CDir *get_export_container(CDir *dir); void find_nested_exports(CDir *dir, set& s); void find_nested_exports_under(CDir *import, CDir *dir, set& s); private: bool opening_root, open; list waiting_for_open; public: void init_layouts(); void create_unlinked_system_inode(CInode *in, inodeno_t ino, int mode) const; CInode *create_system_inode(inodeno_t ino, int mode); CInode *create_root_inode(); void create_empty_hierarchy(MDSGather *gather); void create_mydir_hierarchy(MDSGather *gather); bool is_open() { return open; } void wait_for_open(MDSInternalContextBase *c) { waiting_for_open.push_back(c); } void open_root_inode(MDSInternalContextBase *c); void open_root(); void open_mydir_inode(MDSInternalContextBase *c); void populate_mydir(); void _create_system_file(CDir *dir, const char *name, CInode *in, MDSInternalContextBase *fin); void _create_system_file_finish(MutationRef& mut, CDentry *dn, version_t dpv, MDSInternalContextBase *fin); void open_foreign_mdsdir(inodeno_t ino, MDSInternalContextBase *c); CDir *get_stray_dir(CInode *in); CDentry *get_or_create_stray_dentry(CInode *in); MDSInternalContextBase *_get_waiter(MDRequestRef& mdr, Message *req, MDSInternalContextBase *fin); /** * Find the given dentry (and whether it exists or not), its ancestors, * and get them all into memory and usable on this MDS. This function * makes a best-effort attempt to load everything; if it needs to * go away and do something then it will put the request on a waitlist. * It prefers the mdr, then the req, then the fin. (At least one of these * must be non-null.) * * At least one of the params mdr, req, and fin must be non-null. * * @param mdr The MDRequest associated with the path. Can be null. * @param req The Message associated with the path. Can be null. * @param fin The Context associated with the path. Can be null. * @param path The path to traverse to. * @param pdnvec Data return parameter -- on success, contains a * vector of dentries. On failure, is either empty or contains the * full trace of traversable dentries. * @param pin Data return parameter -- if successful, points to the inode * associated with filepath. If unsuccessful, is null. * @param onfail Specifies different lookup failure behaviors. If set to * MDS_TRAVERSE_DISCOVERXLOCK, path_traverse will succeed on null * dentries (instead of returning -ENOENT). If set to * MDS_TRAVERSE_FORWARD, it will forward the request to the auth * MDS if that becomes appropriate (ie, if it doesn't know the contents * of a directory). If set to MDS_TRAVERSE_DISCOVER, it * will attempt to look up the path from a different MDS (and bring them * into its cache as replicas). * * @returns 0 on success, 1 on "not done yet", 2 on "forwarding", -errno otherwise. * If it returns 1, the requester associated with this call has been placed * on the appropriate waitlist, and it should unwind itself and back out. * If it returns 2 the request has been forwarded, and again the requester * should unwind itself and back out. */ int path_traverse(MDRequestRef& mdr, Message *req, MDSInternalContextBase *fin, const filepath& path, vector *pdnvec, CInode **pin, int onfail); CInode *cache_traverse(const filepath& path); void open_remote_dirfrag(CInode *diri, frag_t fg, MDSInternalContextBase *fin); CInode *get_dentry_inode(CDentry *dn, MDRequestRef& mdr, bool projected=false); bool parallel_fetch(map& pathmap, set& missing); bool parallel_fetch_traverse_dir(inodeno_t ino, filepath& path, set& fetch_queue, set& missing, C_GatherBuilder &gather_bld); void open_remote_dentry(CDentry *dn, bool projected, MDSInternalContextBase *fin, bool want_xlocked=false); void _open_remote_dentry_finish(CDentry *dn, inodeno_t ino, MDSInternalContextBase *fin, bool want_xlocked, int r); void make_trace(vector& trace, CInode *in); protected: struct open_ino_info_t { vector ancestors; set checked; mds_rank_t checking; mds_rank_t auth_hint; bool check_peers; bool fetch_backtrace; bool discover; bool want_replica; bool want_xlocked; version_t tid; int64_t pool; int last_err; list waiters; open_ino_info_t() : checking(MDS_RANK_NONE), auth_hint(MDS_RANK_NONE), check_peers(true), fetch_backtrace(true), discover(false), want_replica(false), want_xlocked(false), tid(0), pool(-1), last_err(0) {} }; ceph_tid_t open_ino_last_tid; map opening_inodes; void _open_ino_backtrace_fetched(inodeno_t ino, bufferlist& bl, int err); void _open_ino_parent_opened(inodeno_t ino, int ret); void _open_ino_traverse_dir(inodeno_t ino, open_ino_info_t& info, int err); void _open_ino_fetch_dir(inodeno_t ino, MMDSOpenIno *m, CDir *dir, bool parent); int open_ino_traverse_dir(inodeno_t ino, MMDSOpenIno *m, vector& ancestors, bool discover, bool want_xlocked, mds_rank_t *hint); void open_ino_finish(inodeno_t ino, open_ino_info_t& info, int err); void do_open_ino(inodeno_t ino, open_ino_info_t& info, int err); void do_open_ino_peer(inodeno_t ino, open_ino_info_t& info); void handle_open_ino(MMDSOpenIno *m, int err=0); void handle_open_ino_reply(MMDSOpenInoReply *m); friend class C_IO_MDC_OpenInoBacktraceFetched; friend struct C_MDC_OpenInoTraverseDir; friend struct C_MDC_OpenInoParentOpened; public: void kick_open_ino_peers(mds_rank_t who); void open_ino(inodeno_t ino, int64_t pool, MDSInternalContextBase *fin, bool want_replica=true, bool want_xlocked=false); // -- find_ino_peer -- struct find_ino_peer_info_t { inodeno_t ino; ceph_tid_t tid; MDSInternalContextBase *fin; mds_rank_t hint; mds_rank_t checking; set checked; find_ino_peer_info_t() : tid(0), fin(NULL), hint(MDS_RANK_NONE), checking(MDS_RANK_NONE) {} }; map find_ino_peer; ceph_tid_t find_ino_peer_last_tid; void find_ino_peers(inodeno_t ino, MDSInternalContextBase *c, mds_rank_t hint=MDS_RANK_NONE); void _do_find_ino_peer(find_ino_peer_info_t& fip); void handle_find_ino(MMDSFindIno *m); void handle_find_ino_reply(MMDSFindInoReply *m); void kick_find_ino_peers(mds_rank_t who); // -- snaprealms -- public: void snaprealm_create(MDRequestRef& mdr, CInode *in); void _snaprealm_create_finish(MDRequestRef& mdr, MutationRef& mut, CInode *in); // -- stray -- public: void fetch_backtrace(inodeno_t ino, int64_t pool, bufferlist& bl, Context *fin); uint64_t get_num_strays() const { return stray_manager.get_num_strays(); } protected: void scan_stray_dir(dirfrag_t next=dirfrag_t()); StrayManager stray_manager; friend struct C_MDC_RetryScanStray; friend class C_IO_MDC_FetchedBacktrace; // == messages == public: void dispatch(Message *m); protected: // -- replicas -- void handle_discover(MDiscover *dis); void handle_discover_reply(MDiscoverReply *m); friend class C_MDC_Join; public: void replicate_dir(CDir *dir, mds_rank_t to, bufferlist& bl) { dirfrag_t df = dir->dirfrag(); ::encode(df, bl); dir->encode_replica(to, bl); } void replicate_dentry(CDentry *dn, mds_rank_t to, bufferlist& bl) { ::encode(dn->name, bl); ::encode(dn->last, bl); dn->encode_replica(to, bl); } void replicate_inode(CInode *in, mds_rank_t to, bufferlist& bl, uint64_t features) { ::encode(in->inode.ino, bl); // bleh, minor assymetry here ::encode(in->last, bl); in->encode_replica(to, bl, features); } CDir* add_replica_dir(bufferlist::iterator& p, CInode *diri, mds_rank_t from, list& finished); CDentry *add_replica_dentry(bufferlist::iterator& p, CDir *dir, list& finished); CInode *add_replica_inode(bufferlist::iterator& p, CDentry *dn, list& finished); void replicate_stray(CDentry *straydn, mds_rank_t who, bufferlist& bl); CDentry *add_replica_stray(bufferlist &bl, mds_rank_t from); // -- namespace -- public: void send_dentry_link(CDentry *dn, MDRequestRef& mdr); void send_dentry_unlink(CDentry *dn, CDentry *straydn, MDRequestRef& mdr); protected: void handle_dentry_link(MDentryLink *m); void handle_dentry_unlink(MDentryUnlink *m); // -- fragmenting -- private: struct ufragment { int bits; bool committed; LogSegment *ls; list waiters; list old_frags; bufferlist rollback; ufragment() : bits(0), committed(false), ls(NULL) {} }; map uncommitted_fragments; struct fragment_info_t { int bits; list dirs; list resultfrags; MDRequestRef mdr; // for deadlock detection bool all_frozen; utime_t last_cum_auth_pins_change; int last_cum_auth_pins; int num_remote_waiters; // number of remote authpin waiters fragment_info_t() : bits(0), all_frozen(false), last_cum_auth_pins(0), num_remote_waiters(0) {} bool is_fragmenting() { return !resultfrags.empty(); } }; map fragments; void adjust_dir_fragments(CInode *diri, frag_t basefrag, int bits, list& frags, list& waiters, bool replay); void adjust_dir_fragments(CInode *diri, list& srcfrags, frag_t basefrag, int bits, list& resultfrags, list& waiters, bool replay); CDir *force_dir_fragment(CInode *diri, frag_t fg, bool replay=true); void get_force_dirfrag_bound_set(vector& dfs, set& bounds); bool can_fragment(CInode *diri, list& dirs); void fragment_freeze_dirs(list& dirs); void fragment_mark_and_complete(MDRequestRef& mdr); void fragment_frozen(MDRequestRef& mdr, int r); void fragment_unmark_unfreeze_dirs(list& dirs); void dispatch_fragment_dir(MDRequestRef& mdr); void _fragment_logged(MDRequestRef& mdr); void _fragment_stored(MDRequestRef& mdr); void _fragment_committed(dirfrag_t f, list& resultfrags); void _fragment_finish(dirfrag_t f, list& resultfrags); friend class EFragment; friend class C_MDC_FragmentFrozen; friend class C_MDC_FragmentMarking; friend class C_MDC_FragmentPrep; friend class C_MDC_FragmentStore; friend class C_MDC_FragmentCommit; friend class C_IO_MDC_FragmentFinish; void handle_fragment_notify(MMDSFragmentNotify *m); void add_uncommitted_fragment(dirfrag_t basedirfrag, int bits, list& old_frag, LogSegment *ls, bufferlist *rollback=NULL); void finish_uncommitted_fragment(dirfrag_t basedirfrag, int op); void rollback_uncommitted_fragment(dirfrag_t basedirfrag, list& old_frags); public: void wait_for_uncommitted_fragment(dirfrag_t dirfrag, MDSInternalContextBase *c) { assert(uncommitted_fragments.count(dirfrag)); uncommitted_fragments[dirfrag].waiters.push_back(c); } void split_dir(CDir *dir, int byn); void merge_dir(CInode *diri, frag_t fg); void rollback_uncommitted_fragments(); void find_stale_fragment_freeze(); void fragment_freeze_inc_num_waiters(CDir *dir); bool fragment_are_all_frozen(CDir *dir); int get_num_fragmenting_dirs() { return fragments.size(); } // -- updates -- //int send_inode_updates(CInode *in); //void handle_inode_update(MInodeUpdate *m); int send_dir_updates(CDir *in, bool bcast=false); void handle_dir_update(MDirUpdate *m); // -- cache expiration -- void handle_cache_expire(MCacheExpire *m); void process_delayed_expire(CDir *dir); void discard_delayed_expire(CDir *dir); protected: int dump_cache(const char *fn, Formatter *f, const std::string& dump_root = "", int depth = -1); public: int dump_cache() { return dump_cache(NULL, NULL); } int dump_cache(const std::string &filename); int dump_cache(Formatter *f); int dump_cache(const std::string& dump_root, int depth, Formatter *f); int cache_status(Formatter *f); void dump_resolve_status(Formatter *f) const; void dump_rejoin_status(Formatter *f) const; // == crap fns == public: void show_cache(); void show_subtrees(int dbl=10); CInode *hack_pick_random_inode() { assert(!inode_map.empty()); int n = rand() % inode_map.size(); ceph::unordered_map::iterator p = inode_map.begin(); while (n--) ++p; return p->second; } protected: void flush_dentry_work(MDRequestRef& mdr); /** * Resolve path to a dentry and pass it onto the ScrubStack. * * TODO: return enough information to the original mdr formatter * and completion that they can subsequeuntly check the progress of * this scrub (we won't block them on a whole scrub as it can take a very * long time) */ void enqueue_scrub_work(MDRequestRef& mdr); void repair_inode_stats_work(MDRequestRef& mdr); void repair_dirfrag_stats_work(MDRequestRef& mdr); friend class C_MDC_RepairDirfragStats; public: void flush_dentry(const string& path, Context *fin); /** * Create and start an OP_ENQUEUE_SCRUB */ void enqueue_scrub(const string& path, const std::string &tag, bool force, bool recursive, bool repair, Formatter *f, Context *fin); void repair_inode_stats(CInode *diri); void repair_dirfrag_stats(CDir *dir); public: /* Because exports may fail, this set lets us keep track of inodes that need exporting. */ std::set export_pin_queue; }; class C_MDS_RetryRequest : public MDSInternalContext { MDCache *cache; MDRequestRef mdr; public: C_MDS_RetryRequest(MDCache *c, MDRequestRef& r); void finish(int r) override; }; #endif