// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab #include "librbd/object_map/UpdateRequest.h" #include "include/rbd/object_map_types.h" #include "include/stringify.h" #include "common/dout.h" #include "librbd/ImageCtx.h" #include "librbd/ObjectMap.h" #include "librbd/Utils.h" #include "cls/lock/cls_lock_client.h" #include #define dout_subsys ceph_subsys_rbd #undef dout_prefix #define dout_prefix *_dout << "librbd::object_map::UpdateRequest: " << this \ << " " << __func__ << ": " namespace librbd { namespace object_map { namespace { // keep aligned to bit_vector 4K block sizes const uint64_t MAX_OBJECTS_PER_UPDATE = 256 * (1 << 10); } template void UpdateRequest::send() { update_object_map(); } template void UpdateRequest::update_object_map() { assert(m_image_ctx.snap_lock.is_locked()); assert(m_image_ctx.object_map_lock.is_locked()); CephContext *cct = m_image_ctx.cct; // break very large requests into manageable batches m_update_end_object_no = MIN( m_end_object_no, m_update_start_object_no + MAX_OBJECTS_PER_UPDATE); std::string oid(ObjectMap<>::object_map_name(m_image_ctx.id, m_snap_id)); ldout(cct, 20) << "ictx=" << &m_image_ctx << ", oid=" << oid << ", " << "[" << m_update_start_object_no << "," << m_update_end_object_no << ") = " << (m_current_state ? stringify(static_cast(*m_current_state)) : "") << "->" << static_cast(m_new_state) << dendl; librados::ObjectWriteOperation op; if (m_snap_id == CEPH_NOSNAP) { rados::cls::lock::assert_locked(&op, RBD_LOCK_NAME, LOCK_EXCLUSIVE, "", ""); } cls_client::object_map_update(&op, m_update_start_object_no, m_update_end_object_no, m_new_state, m_current_state); auto rados_completion = librbd::util::create_rados_callback< UpdateRequest, &UpdateRequest::handle_update_object_map>(this); std::vector snaps; int r = m_image_ctx.md_ctx.aio_operate( oid, rados_completion, &op, 0, snaps, (m_trace.valid() ? m_trace.get_info() : nullptr)); assert(r == 0); rados_completion->release(); } template void UpdateRequest::handle_update_object_map(int r) { ldout(m_image_ctx.cct, 20) << "r=" << r << dendl; { RWLock::RLocker snap_locker(m_image_ctx.snap_lock); RWLock::WLocker object_map_locker(m_image_ctx.object_map_lock); update_in_memory_object_map(); if (m_update_end_object_no < m_end_object_no) { m_update_start_object_no = m_update_end_object_no; update_object_map(); return; } } // no more batch updates to send complete(r); } template void UpdateRequest::update_in_memory_object_map() { assert(m_image_ctx.snap_lock.is_locked()); assert(m_image_ctx.object_map_lock.is_locked()); // rebuilding the object map might update on-disk only if (m_snap_id == m_image_ctx.snap_id) { ldout(m_image_ctx.cct, 20) << dendl; auto it = m_object_map.begin() + MIN(m_update_start_object_no, m_object_map.size()); auto end_it = m_object_map.begin() + MIN(m_update_end_object_no, m_object_map.size()); for (; it != end_it; ++it) { auto state_ref = *it; uint8_t state = state_ref; if (!m_current_state || state == *m_current_state || (*m_current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) { state_ref = m_new_state; } } } } template void UpdateRequest::finish_request() { } } // namespace object_map } // namespace librbd template class librbd::object_map::UpdateRequest;