#include "acconfig.h" #include "include/int_types.h" #include "common/crc32c_aarch64.h" #ifndef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS /* Request crc extension capabilities from the assembler */ asm(".arch_extension crc"); #ifdef HAVE_ARMV8_CRYPTO /* Request crypto extension capabilities from the assembler */ asm(".arch_extension crypto"); #endif #define CRC32CX(crc, value) __asm__("crc32cx %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value)) #define CRC32CW(crc, value) __asm__("crc32cw %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) #define CRC32CH(crc, value) __asm__("crc32ch %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) #define CRC32CB(crc, value) __asm__("crc32cb %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) #define CRC32C3X8(ITR) \ __asm__("crc32cx %w[c1], %w[c1], %x[v]":[c1]"+r"(crc1):[v]"r"(*((const uint64_t *)buffer + 42*1 + (ITR))));\ __asm__("crc32cx %w[c2], %w[c2], %x[v]":[c2]"+r"(crc2):[v]"r"(*((const uint64_t *)buffer + 42*2 + (ITR))));\ __asm__("crc32cx %w[c0], %w[c0], %x[v]":[c0]"+r"(crc0):[v]"r"(*((const uint64_t *)buffer + 42*0 + (ITR)))); #define CRC32C3X8_ZERO \ __asm__("crc32cx %w[c0], %w[c0], xzr":[c0]"+r"(crc0)); #else /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */ #include #include #define CRC32CX(crc, value) (crc) = __crc32cd((crc), (value)) #define CRC32CW(crc, value) (crc) = __crc32cw((crc), (value)) #define CRC32CH(crc, value) (crc) = __crc32ch((crc), (value)) #define CRC32CB(crc, value) (crc) = __crc32cb((crc), (value)) #define CRC32C3X8(ITR) \ crc1 = __crc32cd(crc1, *((const uint64_t *)buffer + 42*1 + (ITR)));\ crc2 = __crc32cd(crc2, *((const uint64_t *)buffer + 42*2 + (ITR)));\ crc0 = __crc32cd(crc0, *((const uint64_t *)buffer + 42*0 + (ITR))); #define CRC32C3X8_ZERO \ crc0 = __crc32cd(crc0, (const uint64_t)0); #endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */ #define CRC32C7X3X8(ITR) do {\ CRC32C3X8((ITR)*7+0) \ CRC32C3X8((ITR)*7+1) \ CRC32C3X8((ITR)*7+2) \ CRC32C3X8((ITR)*7+3) \ CRC32C3X8((ITR)*7+4) \ CRC32C3X8((ITR)*7+5) \ CRC32C3X8((ITR)*7+6) \ } while(0) #define CRC32C7X3X8_ZERO do {\ CRC32C3X8_ZERO \ CRC32C3X8_ZERO \ CRC32C3X8_ZERO \ CRC32C3X8_ZERO \ CRC32C3X8_ZERO \ CRC32C3X8_ZERO \ CRC32C3X8_ZERO \ } while(0) #define PREF4X64L1(PREF_OFFSET, ITR) \ __asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\ __asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\ __asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\ __asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64)); #define PREF1KL1(PREF_OFFSET) \ PREF4X64L1((PREF_OFFSET), 0) \ PREF4X64L1((PREF_OFFSET), 4) \ PREF4X64L1((PREF_OFFSET), 8) \ PREF4X64L1((PREF_OFFSET), 12) #define PREF4X64L2(PREF_OFFSET, ITR) \ __asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\ __asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\ __asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\ __asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64)); #define PREF1KL2(PREF_OFFSET) \ PREF4X64L2((PREF_OFFSET), 0) \ PREF4X64L2((PREF_OFFSET), 4) \ PREF4X64L2((PREF_OFFSET), 8) \ PREF4X64L2((PREF_OFFSET), 12) uint32_t ceph_crc32c_aarch64(uint32_t crc, unsigned char const *buffer, unsigned len) { int64_t length = len; uint32_t crc0, crc1, crc2; if (buffer) { #ifdef HAVE_ARMV8_CRYPTO #ifdef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS /* Calculate reflected crc with PMULL Instruction */ const poly64_t k1 = 0xe417f38a, k2 = 0x8f158014; uint64_t t0, t1; /* crc done "by 3" for fixed input block size of 1024 bytes */ while ((length -= 1024) >= 0) { /* Prefetch data for following block to avoid cache miss */ PREF1KL2(1024*3); /* Do first 8 bytes here for better pipelining */ crc0 = __crc32cd(crc, *(const uint64_t *)buffer); crc1 = 0; crc2 = 0; buffer += sizeof(uint64_t); /* Process block inline Process crc0 last to avoid dependency with above */ CRC32C7X3X8(0); CRC32C7X3X8(1); CRC32C7X3X8(2); CRC32C7X3X8(3); CRC32C7X3X8(4); CRC32C7X3X8(5); buffer += 42*3*sizeof(uint64_t); /* Prefetch data for following block to avoid cache miss */ PREF1KL1(1024); /* Merge crc0 and crc1 into crc2 crc1 multiply by K2 crc0 multiply by K1 */ t1 = (uint64_t)vmull_p64(crc1, k2); t0 = (uint64_t)vmull_p64(crc0, k1); crc = __crc32cd(crc2, *(const uint64_t *)buffer); crc1 = __crc32cd(0, t1); crc ^= crc1; crc0 = __crc32cd(0, t0); crc ^= crc0; buffer += sizeof(uint64_t); } #else /* !HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */ __asm__("mov x16, #0xf38a \n\t" "movk x16, #0xe417, lsl 16 \n\t" "mov v1.2d[0], x16 \n\t" "mov x16, #0x8014 \n\t" "movk x16, #0x8f15, lsl 16 \n\t" "mov v0.2d[0], x16 \n\t" :::"x16"); while ((length -= 1024) >= 0) { PREF1KL2(1024*3); __asm__("crc32cx %w[c0], %w[c], %x[v]\n\t" :[c0]"=r"(crc0):[c]"r"(crc), [v]"r"(*(const uint64_t *)buffer):); crc1 = 0; crc2 = 0; buffer += sizeof(uint64_t); CRC32C7X3X8(0); CRC32C7X3X8(1); CRC32C7X3X8(2); CRC32C7X3X8(3); CRC32C7X3X8(4); CRC32C7X3X8(5); buffer += 42*3*sizeof(uint64_t); PREF1KL1(1024); __asm__("mov v2.2d[0], %x[c1] \n\t" "pmull v2.1q, v2.1d, v0.1d \n\t" "mov v3.2d[0], %x[c0] \n\t" "pmull v3.1q, v3.1d, v1.1d \n\t" "crc32cx %w[c], %w[c2], %x[v] \n\t" "mov %x[c1], v2.2d[0] \n\t" "crc32cx %w[c1], wzr, %x[c1] \n\t" "eor %w[c], %w[c], %w[c1] \n\t" "mov %x[c0], v3.2d[0] \n\t" "crc32cx %w[c0], wzr, %x[c0] \n\t" "eor %w[c], %w[c], %w[c0] \n\t" :[c1]"+r"(crc1), [c0]"+r"(crc0), [c2]"+r"(crc2), [c]"+r"(crc) :[v]"r"(*((const uint64_t *)buffer))); buffer += sizeof(uint64_t); } #endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */ if(!(length += 1024)) return crc; #endif /* HAVE_ARMV8_CRYPTO */ while ((length -= sizeof(uint64_t)) >= 0) { CRC32CX(crc, *(uint64_t *)buffer); buffer += sizeof(uint64_t); } /* The following is more efficient than the straight loop */ if (length & sizeof(uint32_t)) { CRC32CW(crc, *(uint32_t *)buffer); buffer += sizeof(uint32_t); } if (length & sizeof(uint16_t)) { CRC32CH(crc, *(uint16_t *)buffer); buffer += sizeof(uint16_t); } if (length & sizeof(uint8_t)) CRC32CB(crc, *buffer); } else { #ifdef HAVE_ARMV8_CRYPTO #ifdef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS const poly64_t k1 = 0xe417f38a; uint64_t t0; while ((length -= 1024) >= 0) { crc0 = __crc32cd(crc, 0); CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; /* Merge crc0 into crc: crc0 multiply by K1 */ t0 = (uint64_t)vmull_p64(crc0, k1); crc = __crc32cd(0, t0); } #else /* !HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */ __asm__("mov x16, #0xf38a \n\t" "movk x16, #0xe417, lsl 16 \n\t" "mov v1.2d[0], x16 \n\t" :::"x16"); while ((length -= 1024) >= 0) { __asm__("crc32cx %w[c0], %w[c], xzr\n\t" :[c0]"=r"(crc0):[c]"r"(crc)); CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; CRC32C7X3X8_ZERO; __asm__("mov v3.2d[0], %x[c0] \n\t" "pmull v3.1q, v3.1d, v1.1d \n\t" "mov %x[c0], v3.2d[0] \n\t" "crc32cx %w[c], wzr, %x[c0] \n\t" :[c]"=r"(crc) :[c0]"r"(crc0)); } #endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */ if(!(length += 1024)) return crc; #endif /* HAVE_ARMV8_CRYPTO */ while ((length -= sizeof(uint64_t)) >= 0) CRC32CX(crc, 0); /* The following is more efficient than the straight loop */ if (length & sizeof(uint32_t)) CRC32CW(crc, 0); if (length & sizeof(uint16_t)) CRC32CH(crc, 0); if (length & sizeof(uint8_t)) CRC32CB(crc, 0); } return crc; }