// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2004-2006 Sage Weil * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #include "WorkQueue.h" #include "include/compat.h" #include "common/errno.h" #define dout_subsys ceph_subsys_tp #undef dout_prefix #define dout_prefix *_dout << name << " " ThreadPool::ThreadPool(CephContext *cct_, string nm, string tn, int n, const char *option) : cct(cct_), name(std::move(nm)), thread_name(std::move(tn)), lockname(name + "::lock"), _lock(lockname.c_str()), // this should be safe due to declaration order _stop(false), _pause(0), _draining(0), ioprio_class(-1), ioprio_priority(-1), _num_threads(n), processing(0) { if (option) { _thread_num_option = option; // set up conf_keys _conf_keys = new const char*[2]; _conf_keys[0] = _thread_num_option.c_str(); _conf_keys[1] = NULL; } else { _conf_keys = new const char*[1]; _conf_keys[0] = NULL; } } void ThreadPool::TPHandle::suspend_tp_timeout() { cct->get_heartbeat_map()->clear_timeout(hb); } void ThreadPool::TPHandle::reset_tp_timeout() { cct->get_heartbeat_map()->reset_timeout( hb, grace, suicide_grace); } ThreadPool::~ThreadPool() { assert(_threads.empty()); delete[] _conf_keys; } void ThreadPool::handle_conf_change(const struct md_config_t *conf, const std::set &changed) { if (changed.count(_thread_num_option)) { char *buf; int r = conf->get_val(_thread_num_option.c_str(), &buf, -1); assert(r >= 0); int v = atoi(buf); free(buf); if (v >= 0) { _lock.Lock(); _num_threads = v; start_threads(); _cond.SignalAll(); _lock.Unlock(); } } } void ThreadPool::worker(WorkThread *wt) { _lock.Lock(); ldout(cct,10) << "worker start" << dendl; std::stringstream ss; ss << name << " thread " << (void *)pthread_self(); heartbeat_handle_d *hb = cct->get_heartbeat_map()->add_worker(ss.str(), pthread_self()); while (!_stop) { // manage dynamic thread pool join_old_threads(); if (_threads.size() > _num_threads) { ldout(cct,1) << " worker shutting down; too many threads (" << _threads.size() << " > " << _num_threads << ")" << dendl; _threads.erase(wt); _old_threads.push_back(wt); break; } if (!_pause && !work_queues.empty()) { WorkQueue_* wq; int tries = work_queues.size(); bool did = false; while (tries--) { next_work_queue %= work_queues.size(); wq = work_queues[next_work_queue++]; void *item = wq->_void_dequeue(); if (item) { processing++; ldout(cct,12) << "worker wq " << wq->name << " start processing " << item << " (" << processing << " active)" << dendl; TPHandle tp_handle(cct, hb, wq->timeout_interval, wq->suicide_interval); tp_handle.reset_tp_timeout(); _lock.Unlock(); wq->_void_process(item, tp_handle); _lock.Lock(); wq->_void_process_finish(item); processing--; ldout(cct,15) << "worker wq " << wq->name << " done processing " << item << " (" << processing << " active)" << dendl; if (_pause || _draining) _wait_cond.Signal(); did = true; break; } } if (did) continue; } ldout(cct,20) << "worker waiting" << dendl; cct->get_heartbeat_map()->reset_timeout( hb, cct->_conf->threadpool_default_timeout, 0); _cond.WaitInterval(_lock, utime_t( cct->_conf->threadpool_empty_queue_max_wait, 0)); } ldout(cct,1) << "worker finish" << dendl; cct->get_heartbeat_map()->remove_worker(hb); _lock.Unlock(); } void ThreadPool::start_threads() { assert(_lock.is_locked()); while (_threads.size() < _num_threads) { WorkThread *wt = new WorkThread(this); ldout(cct, 10) << "start_threads creating and starting " << wt << dendl; _threads.insert(wt); int r = wt->set_ioprio(ioprio_class, ioprio_priority); if (r < 0) lderr(cct) << " set_ioprio got " << cpp_strerror(r) << dendl; wt->create(thread_name.c_str()); } } void ThreadPool::join_old_threads() { assert(_lock.is_locked()); while (!_old_threads.empty()) { ldout(cct, 10) << "join_old_threads joining and deleting " << _old_threads.front() << dendl; _old_threads.front()->join(); delete _old_threads.front(); _old_threads.pop_front(); } } void ThreadPool::start() { ldout(cct,10) << "start" << dendl; if (_thread_num_option.length()) { ldout(cct, 10) << " registering config observer on " << _thread_num_option << dendl; cct->_conf->add_observer(this); } _lock.Lock(); start_threads(); _lock.Unlock(); ldout(cct,15) << "started" << dendl; } void ThreadPool::stop(bool clear_after) { ldout(cct,10) << "stop" << dendl; if (_thread_num_option.length()) { ldout(cct, 10) << " unregistering config observer on " << _thread_num_option << dendl; cct->_conf->remove_observer(this); } _lock.Lock(); _stop = true; _cond.Signal(); join_old_threads(); _lock.Unlock(); for (set::iterator p = _threads.begin(); p != _threads.end(); ++p) { (*p)->join(); delete *p; } _threads.clear(); _lock.Lock(); for (unsigned i=0; i_clear(); _stop = false; _lock.Unlock(); ldout(cct,15) << "stopped" << dendl; } void ThreadPool::pause() { ldout(cct,10) << "pause" << dendl; _lock.Lock(); _pause++; while (processing) _wait_cond.Wait(_lock); _lock.Unlock(); ldout(cct,15) << "paused" << dendl; } void ThreadPool::pause_new() { ldout(cct,10) << "pause_new" << dendl; _lock.Lock(); _pause++; _lock.Unlock(); } void ThreadPool::unpause() { ldout(cct,10) << "unpause" << dendl; _lock.Lock(); assert(_pause > 0); _pause--; _cond.Signal(); _lock.Unlock(); } void ThreadPool::drain(WorkQueue_* wq) { ldout(cct,10) << "drain" << dendl; _lock.Lock(); _draining++; while (processing || (wq != NULL && !wq->_empty())) _wait_cond.Wait(_lock); _draining--; _lock.Unlock(); } void ThreadPool::set_ioprio(int cls, int priority) { Mutex::Locker l(_lock); ioprio_class = cls; ioprio_priority = priority; for (set::iterator p = _threads.begin(); p != _threads.end(); ++p) { ldout(cct,10) << __func__ << " class " << cls << " priority " << priority << " pid " << (*p)->get_pid() << dendl; int r = (*p)->set_ioprio(cls, priority); if (r < 0) lderr(cct) << " set_ioprio got " << cpp_strerror(r) << dendl; } } ShardedThreadPool::ShardedThreadPool(CephContext *pcct_, string nm, string tn, uint32_t pnum_threads): cct(pcct_), name(std::move(nm)), thread_name(std::move(tn)), lockname(name + "::lock"), shardedpool_lock(lockname.c_str()), num_threads(pnum_threads), num_paused(0), num_drained(0), wq(NULL) {} void ShardedThreadPool::shardedthreadpool_worker(uint32_t thread_index) { assert(wq != NULL); ldout(cct,10) << "worker start" << dendl; std::stringstream ss; ss << name << " thread " << (void *)pthread_self(); heartbeat_handle_d *hb = cct->get_heartbeat_map()->add_worker(ss.str(), pthread_self()); while (!stop_threads) { if (pause_threads) { shardedpool_lock.Lock(); ++num_paused; wait_cond.Signal(); while (pause_threads) { cct->get_heartbeat_map()->reset_timeout( hb, wq->timeout_interval, wq->suicide_interval); shardedpool_cond.WaitInterval(shardedpool_lock, utime_t( cct->_conf->threadpool_empty_queue_max_wait, 0)); } --num_paused; shardedpool_lock.Unlock(); } if (drain_threads) { shardedpool_lock.Lock(); if (wq->is_shard_empty(thread_index)) { ++num_drained; wait_cond.Signal(); while (drain_threads) { cct->get_heartbeat_map()->reset_timeout( hb, wq->timeout_interval, wq->suicide_interval); shardedpool_cond.WaitInterval(shardedpool_lock, utime_t( cct->_conf->threadpool_empty_queue_max_wait, 0)); } --num_drained; } shardedpool_lock.Unlock(); } cct->get_heartbeat_map()->reset_timeout( hb, wq->timeout_interval, wq->suicide_interval); wq->_process(thread_index, hb); } ldout(cct,10) << "sharded worker finish" << dendl; cct->get_heartbeat_map()->remove_worker(hb); } void ShardedThreadPool::start_threads() { assert(shardedpool_lock.is_locked()); int32_t thread_index = 0; while (threads_shardedpool.size() < num_threads) { WorkThreadSharded *wt = new WorkThreadSharded(this, thread_index); ldout(cct, 10) << "start_threads creating and starting " << wt << dendl; threads_shardedpool.push_back(wt); wt->create(thread_name.c_str()); thread_index++; } } void ShardedThreadPool::start() { ldout(cct,10) << "start" << dendl; shardedpool_lock.Lock(); start_threads(); shardedpool_lock.Unlock(); ldout(cct,15) << "started" << dendl; } void ShardedThreadPool::stop() { ldout(cct,10) << "stop" << dendl; stop_threads = true; assert(wq != NULL); wq->return_waiting_threads(); for (vector::iterator p = threads_shardedpool.begin(); p != threads_shardedpool.end(); ++p) { (*p)->join(); delete *p; } threads_shardedpool.clear(); ldout(cct,15) << "stopped" << dendl; } void ShardedThreadPool::pause() { ldout(cct,10) << "pause" << dendl; shardedpool_lock.Lock(); pause_threads = true; assert(wq != NULL); wq->return_waiting_threads(); while (num_threads != num_paused){ wait_cond.Wait(shardedpool_lock); } shardedpool_lock.Unlock(); ldout(cct,10) << "paused" << dendl; } void ShardedThreadPool::pause_new() { ldout(cct,10) << "pause_new" << dendl; shardedpool_lock.Lock(); pause_threads = true; assert(wq != NULL); wq->return_waiting_threads(); shardedpool_lock.Unlock(); ldout(cct,10) << "paused_new" << dendl; } void ShardedThreadPool::unpause() { ldout(cct,10) << "unpause" << dendl; shardedpool_lock.Lock(); pause_threads = false; shardedpool_cond.Signal(); shardedpool_lock.Unlock(); ldout(cct,10) << "unpaused" << dendl; } void ShardedThreadPool::drain() { ldout(cct,10) << "drain" << dendl; shardedpool_lock.Lock(); drain_threads = true; assert(wq != NULL); wq->return_waiting_threads(); while (num_threads != num_drained) { wait_cond.Wait(shardedpool_lock); } drain_threads = false; shardedpool_cond.Signal(); shardedpool_lock.Unlock(); ldout(cct,10) << "drained" << dendl; }