Add qemu 2.4.0
[kvmfornfv.git] / qemu / target-sparc / ldst_helper.c
diff --git a/qemu/target-sparc/ldst_helper.c b/qemu/target-sparc/ldst_helper.c
new file mode 100644 (file)
index 0000000..c7ad47d
--- /dev/null
@@ -0,0 +1,2455 @@
+/*
+ * Helpers for loads and stores
+ *
+ *  Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "cpu.h"
+#include "exec/helper-proto.h"
+#include "exec/cpu_ldst.h"
+
+//#define DEBUG_MMU
+//#define DEBUG_MXCC
+//#define DEBUG_UNALIGNED
+//#define DEBUG_UNASSIGNED
+//#define DEBUG_ASI
+//#define DEBUG_CACHE_CONTROL
+
+#ifdef DEBUG_MMU
+#define DPRINTF_MMU(fmt, ...)                                   \
+    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_MMU(fmt, ...) do {} while (0)
+#endif
+
+#ifdef DEBUG_MXCC
+#define DPRINTF_MXCC(fmt, ...)                                  \
+    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_MXCC(fmt, ...) do {} while (0)
+#endif
+
+#ifdef DEBUG_ASI
+#define DPRINTF_ASI(fmt, ...)                                   \
+    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
+#endif
+
+#ifdef DEBUG_CACHE_CONTROL
+#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
+    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
+#endif
+
+#ifdef TARGET_SPARC64
+#ifndef TARGET_ABI32
+#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
+#else
+#define AM_CHECK(env1) (1)
+#endif
+#endif
+
+#define QT0 (env->qt0)
+#define QT1 (env->qt1)
+
+#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
+/* Calculates TSB pointer value for fault page size 8k or 64k */
+static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
+                                       uint64_t tag_access_register,
+                                       int page_size)
+{
+    uint64_t tsb_base = tsb_register & ~0x1fffULL;
+    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
+    int tsb_size  = tsb_register & 0xf;
+
+    /* discard lower 13 bits which hold tag access context */
+    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
+
+    /* now reorder bits */
+    uint64_t tsb_base_mask = ~0x1fffULL;
+    uint64_t va = tag_access_va;
+
+    /* move va bits to correct position */
+    if (page_size == 8*1024) {
+        va >>= 9;
+    } else if (page_size == 64*1024) {
+        va >>= 12;
+    }
+
+    if (tsb_size) {
+        tsb_base_mask <<= tsb_size;
+    }
+
+    /* calculate tsb_base mask and adjust va if split is in use */
+    if (tsb_split) {
+        if (page_size == 8*1024) {
+            va &= ~(1ULL << (13 + tsb_size));
+        } else if (page_size == 64*1024) {
+            va |= (1ULL << (13 + tsb_size));
+        }
+        tsb_base_mask <<= 1;
+    }
+
+    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
+}
+
+/* Calculates tag target register value by reordering bits
+   in tag access register */
+static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
+{
+    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
+}
+
+static void replace_tlb_entry(SparcTLBEntry *tlb,
+                              uint64_t tlb_tag, uint64_t tlb_tte,
+                              CPUSPARCState *env1)
+{
+    target_ulong mask, size, va, offset;
+
+    /* flush page range if translation is valid */
+    if (TTE_IS_VALID(tlb->tte)) {
+        CPUState *cs = CPU(sparc_env_get_cpu(env1));
+
+        mask = 0xffffffffffffe000ULL;
+        mask <<= 3 * ((tlb->tte >> 61) & 3);
+        size = ~mask + 1;
+
+        va = tlb->tag & mask;
+
+        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
+            tlb_flush_page(cs, va + offset);
+        }
+    }
+
+    tlb->tag = tlb_tag;
+    tlb->tte = tlb_tte;
+}
+
+static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
+                      const char *strmmu, CPUSPARCState *env1)
+{
+    unsigned int i;
+    target_ulong mask;
+    uint64_t context;
+
+    int is_demap_context = (demap_addr >> 6) & 1;
+
+    /* demap context */
+    switch ((demap_addr >> 4) & 3) {
+    case 0: /* primary */
+        context = env1->dmmu.mmu_primary_context;
+        break;
+    case 1: /* secondary */
+        context = env1->dmmu.mmu_secondary_context;
+        break;
+    case 2: /* nucleus */
+        context = 0;
+        break;
+    case 3: /* reserved */
+    default:
+        return;
+    }
+
+    for (i = 0; i < 64; i++) {
+        if (TTE_IS_VALID(tlb[i].tte)) {
+
+            if (is_demap_context) {
+                /* will remove non-global entries matching context value */
+                if (TTE_IS_GLOBAL(tlb[i].tte) ||
+                    !tlb_compare_context(&tlb[i], context)) {
+                    continue;
+                }
+            } else {
+                /* demap page
+                   will remove any entry matching VA */
+                mask = 0xffffffffffffe000ULL;
+                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
+
+                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
+                    continue;
+                }
+
+                /* entry should be global or matching context value */
+                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
+                    !tlb_compare_context(&tlb[i], context)) {
+                    continue;
+                }
+            }
+
+            replace_tlb_entry(&tlb[i], 0, 0, env1);
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
+            dump_mmu(stdout, fprintf, env1);
+#endif
+        }
+    }
+}
+
+static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
+                                 uint64_t tlb_tag, uint64_t tlb_tte,
+                                 const char *strmmu, CPUSPARCState *env1)
+{
+    unsigned int i, replace_used;
+
+    /* Try replacing invalid entry */
+    for (i = 0; i < 64; i++) {
+        if (!TTE_IS_VALID(tlb[i].tte)) {
+            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
+            dump_mmu(stdout, fprintf, env1);
+#endif
+            return;
+        }
+    }
+
+    /* All entries are valid, try replacing unlocked entry */
+
+    for (replace_used = 0; replace_used < 2; ++replace_used) {
+
+        /* Used entries are not replaced on first pass */
+
+        for (i = 0; i < 64; i++) {
+            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
+
+                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
+#ifdef DEBUG_MMU
+                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
+                            strmmu, (replace_used ? "used" : "unused"), i);
+                dump_mmu(stdout, fprintf, env1);
+#endif
+                return;
+            }
+        }
+
+        /* Now reset used bit and search for unused entries again */
+
+        for (i = 0; i < 64; i++) {
+            TTE_SET_UNUSED(tlb[i].tte);
+        }
+    }
+
+#ifdef DEBUG_MMU
+    DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
+#endif
+    /* error state? */
+}
+
+#endif
+
+#if defined(TARGET_SPARC64) || defined(CONFIG_USER_ONLY)
+static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
+{
+#ifdef TARGET_SPARC64
+    if (AM_CHECK(env1)) {
+        addr &= 0xffffffffULL;
+    }
+#endif
+    return addr;
+}
+#endif
+
+#ifdef TARGET_SPARC64
+/* returns true if access using this ASI is to have address translated by MMU
+   otherwise access is to raw physical address */
+/* TODO: check sparc32 bits */
+static inline int is_translating_asi(int asi)
+{
+    /* Ultrasparc IIi translating asi
+       - note this list is defined by cpu implementation
+    */
+    switch (asi) {
+    case 0x04 ... 0x11:
+    case 0x16 ... 0x19:
+    case 0x1E ... 0x1F:
+    case 0x24 ... 0x2C:
+    case 0x70 ... 0x73:
+    case 0x78 ... 0x79:
+    case 0x80 ... 0xFF:
+        return 1;
+
+    default:
+        return 0;
+    }
+}
+
+static inline target_ulong asi_address_mask(CPUSPARCState *env,
+                                            int asi, target_ulong addr)
+{
+    if (is_translating_asi(asi)) {
+        return address_mask(env, addr);
+    } else {
+        return addr;
+    }
+}
+#endif
+
+void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
+{
+    if (addr & align) {
+#ifdef DEBUG_UNALIGNED
+        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
+               "\n", addr, env->pc);
+#endif
+        helper_raise_exception(env, TT_UNALIGNED);
+    }
+}
+
+#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
+    defined(DEBUG_MXCC)
+static void dump_mxcc(CPUSPARCState *env)
+{
+    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+           "\n",
+           env->mxccdata[0], env->mxccdata[1],
+           env->mxccdata[2], env->mxccdata[3]);
+    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+           "\n"
+           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+           "\n",
+           env->mxccregs[0], env->mxccregs[1],
+           env->mxccregs[2], env->mxccregs[3],
+           env->mxccregs[4], env->mxccregs[5],
+           env->mxccregs[6], env->mxccregs[7]);
+}
+#endif
+
+#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
+    && defined(DEBUG_ASI)
+static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
+                     uint64_t r1)
+{
+    switch (size) {
+    case 1:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
+                    addr, asi, r1 & 0xff);
+        break;
+    case 2:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
+                    addr, asi, r1 & 0xffff);
+        break;
+    case 4:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
+                    addr, asi, r1 & 0xffffffff);
+        break;
+    case 8:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
+                    addr, asi, r1);
+        break;
+    }
+}
+#endif
+
+#ifndef TARGET_SPARC64
+#ifndef CONFIG_USER_ONLY
+
+
+/* Leon3 cache control */
+
+static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
+                                   uint64_t val, int size)
+{
+    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
+                          addr, val, size);
+
+    if (size != 4) {
+        DPRINTF_CACHE_CONTROL("32bits only\n");
+        return;
+    }
+
+    switch (addr) {
+    case 0x00:              /* Cache control */
+
+        /* These values must always be read as zeros */
+        val &= ~CACHE_CTRL_FD;
+        val &= ~CACHE_CTRL_FI;
+        val &= ~CACHE_CTRL_IB;
+        val &= ~CACHE_CTRL_IP;
+        val &= ~CACHE_CTRL_DP;
+
+        env->cache_control = val;
+        break;
+    case 0x04:              /* Instruction cache configuration */
+    case 0x08:              /* Data cache configuration */
+        /* Read Only */
+        break;
+    default:
+        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
+        break;
+    };
+}
+
+static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
+                                       int size)
+{
+    uint64_t ret = 0;
+
+    if (size != 4) {
+        DPRINTF_CACHE_CONTROL("32bits only\n");
+        return 0;
+    }
+
+    switch (addr) {
+    case 0x00:              /* Cache control */
+        ret = env->cache_control;
+        break;
+
+        /* Configuration registers are read and only always keep those
+           predefined values */
+
+    case 0x04:              /* Instruction cache configuration */
+        ret = 0x10220000;
+        break;
+    case 0x08:              /* Data cache configuration */
+        ret = 0x18220000;
+        break;
+    default:
+        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
+        break;
+    };
+    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
+                          addr, ret, size);
+    return ret;
+}
+
+uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
+                       int sign)
+{
+    CPUState *cs = CPU(sparc_env_get_cpu(env));
+    uint64_t ret = 0;
+#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
+    uint32_t last_addr = addr;
+#endif
+
+    helper_check_align(env, addr, size - 1);
+    switch (asi) {
+    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
+        switch (addr) {
+        case 0x00:          /* Leon3 Cache Control */
+        case 0x08:          /* Leon3 Instruction Cache config */
+        case 0x0C:          /* Leon3 Date Cache config */
+            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+                ret = leon3_cache_control_ld(env, addr, size);
+            }
+            break;
+        case 0x01c00a00: /* MXCC control register */
+            if (size == 8) {
+                ret = env->mxccregs[3];
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00a04: /* MXCC control register */
+            if (size == 4) {
+                ret = env->mxccregs[3];
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00c00: /* Module reset register */
+            if (size == 8) {
+                ret = env->mxccregs[5];
+                /* should we do something here? */
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00f00: /* MBus port address register */
+            if (size == 8) {
+                ret = env->mxccregs[7];
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        default:
+            qemu_log_mask(LOG_UNIMP,
+                          "%08x: unimplemented address, size: %d\n", addr,
+                          size);
+            break;
+        }
+        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
+                     "addr = %08x -> ret = %" PRIx64 ","
+                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
+#ifdef DEBUG_MXCC
+        dump_mxcc(env);
+#endif
+        break;
+    case 3: /* MMU probe */
+    case 0x18: /* LEON3 MMU probe */
+        {
+            int mmulev;
+
+            mmulev = (addr >> 8) & 15;
+            if (mmulev > 4) {
+                ret = 0;
+            } else {
+                ret = mmu_probe(env, addr, mmulev);
+            }
+            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
+                        addr, mmulev, ret);
+        }
+        break;
+    case 4: /* read MMU regs */
+    case 0x19: /* LEON3 read MMU regs */
+        {
+            int reg = (addr >> 8) & 0x1f;
+
+            ret = env->mmuregs[reg];
+            if (reg == 3) { /* Fault status cleared on read */
+                env->mmuregs[3] = 0;
+            } else if (reg == 0x13) { /* Fault status read */
+                ret = env->mmuregs[3];
+            } else if (reg == 0x14) { /* Fault address read */
+                ret = env->mmuregs[4];
+            }
+            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
+        }
+        break;
+    case 5: /* Turbosparc ITLB Diagnostic */
+    case 6: /* Turbosparc DTLB Diagnostic */
+    case 7: /* Turbosparc IOTLB Diagnostic */
+        break;
+    case 9: /* Supervisor code access */
+        switch (size) {
+        case 1:
+            ret = cpu_ldub_code(env, addr);
+            break;
+        case 2:
+            ret = cpu_lduw_code(env, addr);
+            break;
+        default:
+        case 4:
+            ret = cpu_ldl_code(env, addr);
+            break;
+        case 8:
+            ret = cpu_ldq_code(env, addr);
+            break;
+        }
+        break;
+    case 0xa: /* User data access */
+        switch (size) {
+        case 1:
+            ret = cpu_ldub_user(env, addr);
+            break;
+        case 2:
+            ret = cpu_lduw_user(env, addr);
+            break;
+        default:
+        case 4:
+            ret = cpu_ldl_user(env, addr);
+            break;
+        case 8:
+            ret = cpu_ldq_user(env, addr);
+            break;
+        }
+        break;
+    case 0xb: /* Supervisor data access */
+    case 0x80:
+        switch (size) {
+        case 1:
+            ret = cpu_ldub_kernel(env, addr);
+            break;
+        case 2:
+            ret = cpu_lduw_kernel(env, addr);
+            break;
+        default:
+        case 4:
+            ret = cpu_ldl_kernel(env, addr);
+            break;
+        case 8:
+            ret = cpu_ldq_kernel(env, addr);
+            break;
+        }
+        break;
+    case 0xc: /* I-cache tag */
+    case 0xd: /* I-cache data */
+    case 0xe: /* D-cache tag */
+    case 0xf: /* D-cache data */
+        break;
+    case 0x20: /* MMU passthrough */
+    case 0x1c: /* LEON MMU passthrough */
+        switch (size) {
+        case 1:
+            ret = ldub_phys(cs->as, addr);
+            break;
+        case 2:
+            ret = lduw_phys(cs->as, addr);
+            break;
+        default:
+        case 4:
+            ret = ldl_phys(cs->as, addr);
+            break;
+        case 8:
+            ret = ldq_phys(cs->as, addr);
+            break;
+        }
+        break;
+    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+        switch (size) {
+        case 1:
+            ret = ldub_phys(cs->as, (hwaddr)addr
+                            | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        case 2:
+            ret = lduw_phys(cs->as, (hwaddr)addr
+                            | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        default:
+        case 4:
+            ret = ldl_phys(cs->as, (hwaddr)addr
+                           | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        case 8:
+            ret = ldq_phys(cs->as, (hwaddr)addr
+                           | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        }
+        break;
+    case 0x30: /* Turbosparc secondary cache diagnostic */
+    case 0x31: /* Turbosparc RAM snoop */
+    case 0x32: /* Turbosparc page table descriptor diagnostic */
+    case 0x39: /* data cache diagnostic register */
+        ret = 0;
+        break;
+    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
+        {
+            int reg = (addr >> 8) & 3;
+
+            switch (reg) {
+            case 0: /* Breakpoint Value (Addr) */
+                ret = env->mmubpregs[reg];
+                break;
+            case 1: /* Breakpoint Mask */
+                ret = env->mmubpregs[reg];
+                break;
+            case 2: /* Breakpoint Control */
+                ret = env->mmubpregs[reg];
+                break;
+            case 3: /* Breakpoint Status */
+                ret = env->mmubpregs[reg];
+                env->mmubpregs[reg] = 0ULL;
+                break;
+            }
+            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
+                        ret);
+        }
+        break;
+    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
+        ret = env->mmubpctrv;
+        break;
+    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
+        ret = env->mmubpctrc;
+        break;
+    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
+        ret = env->mmubpctrs;
+        break;
+    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
+        ret = env->mmubpaction;
+        break;
+    case 8: /* User code access, XXX */
+    default:
+        cpu_unassigned_access(cs, addr, false, false, asi, size);
+        ret = 0;
+        break;
+    }
+    if (sign) {
+        switch (size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        default:
+            break;
+        }
+    }
+#ifdef DEBUG_ASI
+    dump_asi("read ", last_addr, asi, size, ret);
+#endif
+    return ret;
+}
+
+void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
+                   int size)
+{
+    SPARCCPU *cpu = sparc_env_get_cpu(env);
+    CPUState *cs = CPU(cpu);
+
+    helper_check_align(env, addr, size - 1);
+    switch (asi) {
+    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
+        switch (addr) {
+        case 0x00:          /* Leon3 Cache Control */
+        case 0x08:          /* Leon3 Instruction Cache config */
+        case 0x0C:          /* Leon3 Date Cache config */
+            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+                leon3_cache_control_st(env, addr, val, size);
+            }
+            break;
+
+        case 0x01c00000: /* MXCC stream data register 0 */
+            if (size == 8) {
+                env->mxccdata[0] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00008: /* MXCC stream data register 1 */
+            if (size == 8) {
+                env->mxccdata[1] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00010: /* MXCC stream data register 2 */
+            if (size == 8) {
+                env->mxccdata[2] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00018: /* MXCC stream data register 3 */
+            if (size == 8) {
+                env->mxccdata[3] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00100: /* MXCC stream source */
+            if (size == 8) {
+                env->mxccregs[0] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            env->mxccdata[0] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        0);
+            env->mxccdata[1] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        8);
+            env->mxccdata[2] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        16);
+            env->mxccdata[3] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        24);
+            break;
+        case 0x01c00200: /* MXCC stream destination */
+            if (size == 8) {
+                env->mxccregs[1] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
+                     env->mxccdata[0]);
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
+                     env->mxccdata[1]);
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
+                     env->mxccdata[2]);
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
+                     env->mxccdata[3]);
+            break;
+        case 0x01c00a00: /* MXCC control register */
+            if (size == 8) {
+                env->mxccregs[3] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00a04: /* MXCC control register */
+            if (size == 4) {
+                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
+                    | val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00e00: /* MXCC error register  */
+            /* writing a 1 bit clears the error */
+            if (size == 8) {
+                env->mxccregs[6] &= ~val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00f00: /* MBus port address register */
+            if (size == 8) {
+                env->mxccregs[7] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        default:
+            qemu_log_mask(LOG_UNIMP,
+                          "%08x: unimplemented address, size: %d\n", addr,
+                          size);
+            break;
+        }
+        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
+                     asi, size, addr, val);
+#ifdef DEBUG_MXCC
+        dump_mxcc(env);
+#endif
+        break;
+    case 3: /* MMU flush */
+    case 0x18: /* LEON3 MMU flush */
+        {
+            int mmulev;
+
+            mmulev = (addr >> 8) & 15;
+            DPRINTF_MMU("mmu flush level %d\n", mmulev);
+            switch (mmulev) {
+            case 0: /* flush page */
+                tlb_flush_page(CPU(cpu), addr & 0xfffff000);
+                break;
+            case 1: /* flush segment (256k) */
+            case 2: /* flush region (16M) */
+            case 3: /* flush context (4G) */
+            case 4: /* flush entire */
+                tlb_flush(CPU(cpu), 1);
+                break;
+            default:
+                break;
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+        }
+        break;
+    case 4: /* write MMU regs */
+    case 0x19: /* LEON3 write MMU regs */
+        {
+            int reg = (addr >> 8) & 0x1f;
+            uint32_t oldreg;
+
+            oldreg = env->mmuregs[reg];
+            switch (reg) {
+            case 0: /* Control Register */
+                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
+                    (val & 0x00ffffff);
+                /* Mappings generated during no-fault mode or MMU
+                   disabled mode are invalid in normal mode */
+                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
+                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
+                    tlb_flush(CPU(cpu), 1);
+                }
+                break;
+            case 1: /* Context Table Pointer Register */
+                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
+                break;
+            case 2: /* Context Register */
+                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
+                if (oldreg != env->mmuregs[reg]) {
+                    /* we flush when the MMU context changes because
+                       QEMU has no MMU context support */
+                    tlb_flush(CPU(cpu), 1);
+                }
+                break;
+            case 3: /* Synchronous Fault Status Register with Clear */
+            case 4: /* Synchronous Fault Address Register */
+                break;
+            case 0x10: /* TLB Replacement Control Register */
+                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
+                break;
+            case 0x13: /* Synchronous Fault Status Register with Read
+                          and Clear */
+                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
+                break;
+            case 0x14: /* Synchronous Fault Address Register */
+                env->mmuregs[4] = val;
+                break;
+            default:
+                env->mmuregs[reg] = val;
+                break;
+            }
+            if (oldreg != env->mmuregs[reg]) {
+                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
+                            reg, oldreg, env->mmuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+        }
+        break;
+    case 5: /* Turbosparc ITLB Diagnostic */
+    case 6: /* Turbosparc DTLB Diagnostic */
+    case 7: /* Turbosparc IOTLB Diagnostic */
+        break;
+    case 0xa: /* User data access */
+        switch (size) {
+        case 1:
+            cpu_stb_user(env, addr, val);
+            break;
+        case 2:
+            cpu_stw_user(env, addr, val);
+            break;
+        default:
+        case 4:
+            cpu_stl_user(env, addr, val);
+            break;
+        case 8:
+            cpu_stq_user(env, addr, val);
+            break;
+        }
+        break;
+    case 0xb: /* Supervisor data access */
+    case 0x80:
+        switch (size) {
+        case 1:
+            cpu_stb_kernel(env, addr, val);
+            break;
+        case 2:
+            cpu_stw_kernel(env, addr, val);
+            break;
+        default:
+        case 4:
+            cpu_stl_kernel(env, addr, val);
+            break;
+        case 8:
+            cpu_stq_kernel(env, addr, val);
+            break;
+        }
+        break;
+    case 0xc: /* I-cache tag */
+    case 0xd: /* I-cache data */
+    case 0xe: /* D-cache tag */
+    case 0xf: /* D-cache data */
+    case 0x10: /* I/D-cache flush page */
+    case 0x11: /* I/D-cache flush segment */
+    case 0x12: /* I/D-cache flush region */
+    case 0x13: /* I/D-cache flush context */
+    case 0x14: /* I/D-cache flush user */
+        break;
+    case 0x17: /* Block copy, sta access */
+        {
+            /* val = src
+               addr = dst
+               copy 32 bytes */
+            unsigned int i;
+            uint32_t src = val & ~3, dst = addr & ~3, temp;
+
+            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
+                temp = cpu_ldl_kernel(env, src);
+                cpu_stl_kernel(env, dst, temp);
+            }
+        }
+        break;
+    case 0x1f: /* Block fill, stda access */
+        {
+            /* addr = dst
+               fill 32 bytes with val */
+            unsigned int i;
+            uint32_t dst = addr & 7;
+
+            for (i = 0; i < 32; i += 8, dst += 8) {
+                cpu_stq_kernel(env, dst, val);
+            }
+        }
+        break;
+    case 0x20: /* MMU passthrough */
+    case 0x1c: /* LEON MMU passthrough */
+        {
+            switch (size) {
+            case 1:
+                stb_phys(cs->as, addr, val);
+                break;
+            case 2:
+                stw_phys(cs->as, addr, val);
+                break;
+            case 4:
+            default:
+                stl_phys(cs->as, addr, val);
+                break;
+            case 8:
+                stq_phys(cs->as, addr, val);
+                break;
+            }
+        }
+        break;
+    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+        {
+            switch (size) {
+            case 1:
+                stb_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            case 2:
+                stw_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            case 4:
+            default:
+                stl_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            case 8:
+                stq_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            }
+        }
+        break;
+    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
+    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
+                  Turbosparc snoop RAM */
+    case 0x32: /* store buffer control or Turbosparc page table
+                  descriptor diagnostic */
+    case 0x36: /* I-cache flash clear */
+    case 0x37: /* D-cache flash clear */
+        break;
+    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
+        {
+            int reg = (addr >> 8) & 3;
+
+            switch (reg) {
+            case 0: /* Breakpoint Value (Addr) */
+                env->mmubpregs[reg] = (val & 0xfffffffffULL);
+                break;
+            case 1: /* Breakpoint Mask */
+                env->mmubpregs[reg] = (val & 0xfffffffffULL);
+                break;
+            case 2: /* Breakpoint Control */
+                env->mmubpregs[reg] = (val & 0x7fULL);
+                break;
+            case 3: /* Breakpoint Status */
+                env->mmubpregs[reg] = (val & 0xfULL);
+                break;
+            }
+            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
+                        env->mmuregs[reg]);
+        }
+        break;
+    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
+        env->mmubpctrv = val & 0xffffffff;
+        break;
+    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
+        env->mmubpctrc = val & 0x3;
+        break;
+    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
+        env->mmubpctrs = val & 0x3;
+        break;
+    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
+        env->mmubpaction = val & 0x1fff;
+        break;
+    case 8: /* User code access, XXX */
+    case 9: /* Supervisor code access, XXX */
+    default:
+        cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
+                              addr, true, false, asi, size);
+        break;
+    }
+#ifdef DEBUG_ASI
+    dump_asi("write", addr, asi, size, val);
+#endif
+}
+
+#endif /* CONFIG_USER_ONLY */
+#else /* TARGET_SPARC64 */
+
+#ifdef CONFIG_USER_ONLY
+uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
+                       int sign)
+{
+    uint64_t ret = 0;
+#if defined(DEBUG_ASI)
+    target_ulong last_addr = addr;
+#endif
+
+    if (asi < 0x80) {
+        helper_raise_exception(env, TT_PRIV_ACT);
+    }
+
+    helper_check_align(env, addr, size - 1);
+    addr = asi_address_mask(env, asi, addr);
+
+    switch (asi) {
+    case 0x82: /* Primary no-fault */
+    case 0x8a: /* Primary no-fault LE */
+        if (page_check_range(addr, size, PAGE_READ) == -1) {
+#ifdef DEBUG_ASI
+            dump_asi("read ", last_addr, asi, size, ret);
+#endif
+            return 0;
+        }
+        /* Fall through */
+    case 0x80: /* Primary */
+    case 0x88: /* Primary LE */
+        {
+            switch (size) {
+            case 1:
+                ret = cpu_ldub_data(env, addr);
+                break;
+            case 2:
+                ret = cpu_lduw_data(env, addr);
+                break;
+            case 4:
+                ret = cpu_ldl_data(env, addr);
+                break;
+            default:
+            case 8:
+                ret = cpu_ldq_data(env, addr);
+                break;
+            }
+        }
+        break;
+    case 0x83: /* Secondary no-fault */
+    case 0x8b: /* Secondary no-fault LE */
+        if (page_check_range(addr, size, PAGE_READ) == -1) {
+#ifdef DEBUG_ASI
+            dump_asi("read ", last_addr, asi, size, ret);
+#endif
+            return 0;
+        }
+        /* Fall through */
+    case 0x81: /* Secondary */
+    case 0x89: /* Secondary LE */
+        /* XXX */
+        break;
+    default:
+        break;
+    }
+
+    /* Convert from little endian */
+    switch (asi) {
+    case 0x88: /* Primary LE */
+    case 0x89: /* Secondary LE */
+    case 0x8a: /* Primary no-fault LE */
+    case 0x8b: /* Secondary no-fault LE */
+        switch (size) {
+        case 2:
+            ret = bswap16(ret);
+            break;
+        case 4:
+            ret = bswap32(ret);
+            break;
+        case 8:
+            ret = bswap64(ret);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    /* Convert to signed number */
+    if (sign) {
+        switch (size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        default:
+            break;
+        }
+    }
+#ifdef DEBUG_ASI
+    dump_asi("read ", last_addr, asi, size, ret);
+#endif
+    return ret;
+}
+
+void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
+                   int asi, int size)
+{
+#ifdef DEBUG_ASI
+    dump_asi("write", addr, asi, size, val);
+#endif
+    if (asi < 0x80) {
+        helper_raise_exception(env, TT_PRIV_ACT);
+    }
+
+    helper_check_align(env, addr, size - 1);
+    addr = asi_address_mask(env, asi, addr);
+
+    /* Convert to little endian */
+    switch (asi) {
+    case 0x88: /* Primary LE */
+    case 0x89: /* Secondary LE */
+        switch (size) {
+        case 2:
+            val = bswap16(val);
+            break;
+        case 4:
+            val = bswap32(val);
+            break;
+        case 8:
+            val = bswap64(val);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    switch (asi) {
+    case 0x80: /* Primary */
+    case 0x88: /* Primary LE */
+        {
+            switch (size) {
+            case 1:
+                cpu_stb_data(env, addr, val);
+                break;
+            case 2:
+                cpu_stw_data(env, addr, val);
+                break;
+            case 4:
+                cpu_stl_data(env, addr, val);
+                break;
+            case 8:
+            default:
+                cpu_stq_data(env, addr, val);
+                break;
+            }
+        }
+        break;
+    case 0x81: /* Secondary */
+    case 0x89: /* Secondary LE */
+        /* XXX */
+        return;
+
+    case 0x82: /* Primary no-fault, RO */
+    case 0x83: /* Secondary no-fault, RO */
+    case 0x8a: /* Primary no-fault LE, RO */
+    case 0x8b: /* Secondary no-fault LE, RO */
+    default:
+        helper_raise_exception(env, TT_DATA_ACCESS);
+        return;
+    }
+}
+
+#else /* CONFIG_USER_ONLY */
+
+uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
+                       int sign)
+{
+    CPUState *cs = CPU(sparc_env_get_cpu(env));
+    uint64_t ret = 0;
+#if defined(DEBUG_ASI)
+    target_ulong last_addr = addr;
+#endif
+
+    asi &= 0xff;
+
+    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+        || (cpu_has_hypervisor(env)
+            && asi >= 0x30 && asi < 0x80
+            && !(env->hpstate & HS_PRIV))) {
+        helper_raise_exception(env, TT_PRIV_ACT);
+    }
+
+    helper_check_align(env, addr, size - 1);
+    addr = asi_address_mask(env, asi, addr);
+
+    /* process nonfaulting loads first */
+    if ((asi & 0xf6) == 0x82) {
+        int mmu_idx;
+
+        /* secondary space access has lowest asi bit equal to 1 */
+        if (env->pstate & PS_PRIV) {
+            mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
+        } else {
+            mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
+        }
+
+        if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
+#ifdef DEBUG_ASI
+            dump_asi("read ", last_addr, asi, size, ret);
+#endif
+            /* env->exception_index is set in get_physical_address_data(). */
+            helper_raise_exception(env, cs->exception_index);
+        }
+
+        /* convert nonfaulting load ASIs to normal load ASIs */
+        asi &= ~0x02;
+    }
+
+    switch (asi) {
+    case 0x10: /* As if user primary */
+    case 0x11: /* As if user secondary */
+    case 0x18: /* As if user primary LE */
+    case 0x19: /* As if user secondary LE */
+    case 0x80: /* Primary */
+    case 0x81: /* Secondary */
+    case 0x88: /* Primary LE */
+    case 0x89: /* Secondary LE */
+    case 0xe2: /* UA2007 Primary block init */
+    case 0xe3: /* UA2007 Secondary block init */
+        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+            if (cpu_hypervisor_mode(env)) {
+                switch (size) {
+                case 1:
+                    ret = cpu_ldub_hypv(env, addr);
+                    break;
+                case 2:
+                    ret = cpu_lduw_hypv(env, addr);
+                    break;
+                case 4:
+                    ret = cpu_ldl_hypv(env, addr);
+                    break;
+                default:
+                case 8:
+                    ret = cpu_ldq_hypv(env, addr);
+                    break;
+                }
+            } else {
+                /* secondary space access has lowest asi bit equal to 1 */
+                if (asi & 1) {
+                    switch (size) {
+                    case 1:
+                        ret = cpu_ldub_kernel_secondary(env, addr);
+                        break;
+                    case 2:
+                        ret = cpu_lduw_kernel_secondary(env, addr);
+                        break;
+                    case 4:
+                        ret = cpu_ldl_kernel_secondary(env, addr);
+                        break;
+                    default:
+                    case 8:
+                        ret = cpu_ldq_kernel_secondary(env, addr);
+                        break;
+                    }
+                } else {
+                    switch (size) {
+                    case 1:
+                        ret = cpu_ldub_kernel(env, addr);
+                        break;
+                    case 2:
+                        ret = cpu_lduw_kernel(env, addr);
+                        break;
+                    case 4:
+                        ret = cpu_ldl_kernel(env, addr);
+                        break;
+                    default:
+                    case 8:
+                        ret = cpu_ldq_kernel(env, addr);
+                        break;
+                    }
+                }
+            }
+        } else {
+            /* secondary space access has lowest asi bit equal to 1 */
+            if (asi & 1) {
+                switch (size) {
+                case 1:
+                    ret = cpu_ldub_user_secondary(env, addr);
+                    break;
+                case 2:
+                    ret = cpu_lduw_user_secondary(env, addr);
+                    break;
+                case 4:
+                    ret = cpu_ldl_user_secondary(env, addr);
+                    break;
+                default:
+                case 8:
+                    ret = cpu_ldq_user_secondary(env, addr);
+                    break;
+                }
+            } else {
+                switch (size) {
+                case 1:
+                    ret = cpu_ldub_user(env, addr);
+                    break;
+                case 2:
+                    ret = cpu_lduw_user(env, addr);
+                    break;
+                case 4:
+                    ret = cpu_ldl_user(env, addr);
+                    break;
+                default:
+                case 8:
+                    ret = cpu_ldq_user(env, addr);
+                    break;
+                }
+            }
+        }
+        break;
+    case 0x14: /* Bypass */
+    case 0x15: /* Bypass, non-cacheable */
+    case 0x1c: /* Bypass LE */
+    case 0x1d: /* Bypass, non-cacheable LE */
+        {
+            switch (size) {
+            case 1:
+                ret = ldub_phys(cs->as, addr);
+                break;
+            case 2:
+                ret = lduw_phys(cs->as, addr);
+                break;
+            case 4:
+                ret = ldl_phys(cs->as, addr);
+                break;
+            default:
+            case 8:
+                ret = ldq_phys(cs->as, addr);
+                break;
+            }
+            break;
+        }
+    case 0x24: /* Nucleus quad LDD 128 bit atomic */
+    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
+                  Only ldda allowed */
+        helper_raise_exception(env, TT_ILL_INSN);
+        return 0;
+    case 0x04: /* Nucleus */
+    case 0x0c: /* Nucleus Little Endian (LE) */
+        {
+            switch (size) {
+            case 1:
+                ret = cpu_ldub_nucleus(env, addr);
+                break;
+            case 2:
+                ret = cpu_lduw_nucleus(env, addr);
+                break;
+            case 4:
+                ret = cpu_ldl_nucleus(env, addr);
+                break;
+            default:
+            case 8:
+                ret = cpu_ldq_nucleus(env, addr);
+                break;
+            }
+            break;
+        }
+    case 0x4a: /* UPA config */
+        /* XXX */
+        break;
+    case 0x45: /* LSU */
+        ret = env->lsu;
+        break;
+    case 0x50: /* I-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+
+            if (reg == 0) {
+                /* I-TSB Tag Target register */
+                ret = ultrasparc_tag_target(env->immu.tag_access);
+            } else {
+                ret = env->immuregs[reg];
+            }
+
+            break;
+        }
+    case 0x51: /* I-MMU 8k TSB pointer */
+        {
+            /* env->immuregs[5] holds I-MMU TSB register value
+               env->immuregs[6] holds I-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
+                                         8*1024);
+            break;
+        }
+    case 0x52: /* I-MMU 64k TSB pointer */
+        {
+            /* env->immuregs[5] holds I-MMU TSB register value
+               env->immuregs[6] holds I-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
+                                         64*1024);
+            break;
+        }
+    case 0x55: /* I-MMU data access */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->itlb[reg].tte;
+            break;
+        }
+    case 0x56: /* I-MMU tag read */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->itlb[reg].tag;
+            break;
+        }
+    case 0x58: /* D-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+
+            if (reg == 0) {
+                /* D-TSB Tag Target register */
+                ret = ultrasparc_tag_target(env->dmmu.tag_access);
+            } else {
+                ret = env->dmmuregs[reg];
+            }
+            break;
+        }
+    case 0x59: /* D-MMU 8k TSB pointer */
+        {
+            /* env->dmmuregs[5] holds D-MMU TSB register value
+               env->dmmuregs[6] holds D-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
+                                         8*1024);
+            break;
+        }
+    case 0x5a: /* D-MMU 64k TSB pointer */
+        {
+            /* env->dmmuregs[5] holds D-MMU TSB register value
+               env->dmmuregs[6] holds D-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
+                                         64*1024);
+            break;
+        }
+    case 0x5d: /* D-MMU data access */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->dtlb[reg].tte;
+            break;
+        }
+    case 0x5e: /* D-MMU tag read */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->dtlb[reg].tag;
+            break;
+        }
+    case 0x48: /* Interrupt dispatch, RO */
+        break;
+    case 0x49: /* Interrupt data receive */
+        ret = env->ivec_status;
+        break;
+    case 0x7f: /* Incoming interrupt vector, RO */
+        {
+            int reg = (addr >> 4) & 0x3;
+            if (reg < 3) {
+                ret = env->ivec_data[reg];
+            }
+            break;
+        }
+    case 0x46: /* D-cache data */
+    case 0x47: /* D-cache tag access */
+    case 0x4b: /* E-cache error enable */
+    case 0x4c: /* E-cache asynchronous fault status */
+    case 0x4d: /* E-cache asynchronous fault address */
+    case 0x4e: /* E-cache tag data */
+    case 0x66: /* I-cache instruction access */
+    case 0x67: /* I-cache tag access */
+    case 0x6e: /* I-cache predecode */
+    case 0x6f: /* I-cache LRU etc. */
+    case 0x76: /* E-cache tag */
+    case 0x7e: /* E-cache tag */
+        break;
+    case 0x5b: /* D-MMU data pointer */
+    case 0x54: /* I-MMU data in, WO */
+    case 0x57: /* I-MMU demap, WO */
+    case 0x5c: /* D-MMU data in, WO */
+    case 0x5f: /* D-MMU demap, WO */
+    case 0x77: /* Interrupt vector, WO */
+    default:
+        cpu_unassigned_access(cs, addr, false, false, 1, size);
+        ret = 0;
+        break;
+    }
+
+    /* Convert from little endian */
+    switch (asi) {
+    case 0x0c: /* Nucleus Little Endian (LE) */
+    case 0x18: /* As if user primary LE */
+    case 0x19: /* As if user secondary LE */
+    case 0x1c: /* Bypass LE */
+    case 0x1d: /* Bypass, non-cacheable LE */
+    case 0x88: /* Primary LE */
+    case 0x89: /* Secondary LE */
+        switch(size) {
+        case 2:
+            ret = bswap16(ret);
+            break;
+        case 4:
+            ret = bswap32(ret);
+            break;
+        case 8:
+            ret = bswap64(ret);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    /* Convert to signed number */
+    if (sign) {
+        switch (size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        default:
+            break;
+        }
+    }
+#ifdef DEBUG_ASI
+    dump_asi("read ", last_addr, asi, size, ret);
+#endif
+    return ret;
+}
+
+void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
+                   int asi, int size)
+{
+    SPARCCPU *cpu = sparc_env_get_cpu(env);
+    CPUState *cs = CPU(cpu);
+
+#ifdef DEBUG_ASI
+    dump_asi("write", addr, asi, size, val);
+#endif
+
+    asi &= 0xff;
+
+    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+        || (cpu_has_hypervisor(env)
+            && asi >= 0x30 && asi < 0x80
+            && !(env->hpstate & HS_PRIV))) {
+        helper_raise_exception(env, TT_PRIV_ACT);
+    }
+
+    helper_check_align(env, addr, size - 1);
+    addr = asi_address_mask(env, asi, addr);
+
+    /* Convert to little endian */
+    switch (asi) {
+    case 0x0c: /* Nucleus Little Endian (LE) */
+    case 0x18: /* As if user primary LE */
+    case 0x19: /* As if user secondary LE */
+    case 0x1c: /* Bypass LE */
+    case 0x1d: /* Bypass, non-cacheable LE */
+    case 0x88: /* Primary LE */
+    case 0x89: /* Secondary LE */
+        switch (size) {
+        case 2:
+            val = bswap16(val);
+            break;
+        case 4:
+            val = bswap32(val);
+            break;
+        case 8:
+            val = bswap64(val);
+            break;
+        default:
+            break;
+        }
+    default:
+        break;
+    }
+
+    switch (asi) {
+    case 0x10: /* As if user primary */
+    case 0x11: /* As if user secondary */
+    case 0x18: /* As if user primary LE */
+    case 0x19: /* As if user secondary LE */
+    case 0x80: /* Primary */
+    case 0x81: /* Secondary */
+    case 0x88: /* Primary LE */
+    case 0x89: /* Secondary LE */
+    case 0xe2: /* UA2007 Primary block init */
+    case 0xe3: /* UA2007 Secondary block init */
+        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+            if (cpu_hypervisor_mode(env)) {
+                switch (size) {
+                case 1:
+                    cpu_stb_hypv(env, addr, val);
+                    break;
+                case 2:
+                    cpu_stw_hypv(env, addr, val);
+                    break;
+                case 4:
+                    cpu_stl_hypv(env, addr, val);
+                    break;
+                case 8:
+                default:
+                    cpu_stq_hypv(env, addr, val);
+                    break;
+                }
+            } else {
+                /* secondary space access has lowest asi bit equal to 1 */
+                if (asi & 1) {
+                    switch (size) {
+                    case 1:
+                        cpu_stb_kernel_secondary(env, addr, val);
+                        break;
+                    case 2:
+                        cpu_stw_kernel_secondary(env, addr, val);
+                        break;
+                    case 4:
+                        cpu_stl_kernel_secondary(env, addr, val);
+                        break;
+                    case 8:
+                    default:
+                        cpu_stq_kernel_secondary(env, addr, val);
+                        break;
+                    }
+                } else {
+                    switch (size) {
+                    case 1:
+                        cpu_stb_kernel(env, addr, val);
+                        break;
+                    case 2:
+                        cpu_stw_kernel(env, addr, val);
+                        break;
+                    case 4:
+                        cpu_stl_kernel(env, addr, val);
+                        break;
+                    case 8:
+                    default:
+                        cpu_stq_kernel(env, addr, val);
+                        break;
+                    }
+                }
+            }
+        } else {
+            /* secondary space access has lowest asi bit equal to 1 */
+            if (asi & 1) {
+                switch (size) {
+                case 1:
+                    cpu_stb_user_secondary(env, addr, val);
+                    break;
+                case 2:
+                    cpu_stw_user_secondary(env, addr, val);
+                    break;
+                case 4:
+                    cpu_stl_user_secondary(env, addr, val);
+                    break;
+                case 8:
+                default:
+                    cpu_stq_user_secondary(env, addr, val);
+                    break;
+                }
+            } else {
+                switch (size) {
+                case 1:
+                    cpu_stb_user(env, addr, val);
+                    break;
+                case 2:
+                    cpu_stw_user(env, addr, val);
+                    break;
+                case 4:
+                    cpu_stl_user(env, addr, val);
+                    break;
+                case 8:
+                default:
+                    cpu_stq_user(env, addr, val);
+                    break;
+                }
+            }
+        }
+        break;
+    case 0x14: /* Bypass */
+    case 0x15: /* Bypass, non-cacheable */
+    case 0x1c: /* Bypass LE */
+    case 0x1d: /* Bypass, non-cacheable LE */
+        {
+            switch (size) {
+            case 1:
+                stb_phys(cs->as, addr, val);
+                break;
+            case 2:
+                stw_phys(cs->as, addr, val);
+                break;
+            case 4:
+                stl_phys(cs->as, addr, val);
+                break;
+            case 8:
+            default:
+                stq_phys(cs->as, addr, val);
+                break;
+            }
+        }
+        return;
+    case 0x24: /* Nucleus quad LDD 128 bit atomic */
+    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
+                  Only ldda allowed */
+        helper_raise_exception(env, TT_ILL_INSN);
+        return;
+    case 0x04: /* Nucleus */
+    case 0x0c: /* Nucleus Little Endian (LE) */
+        {
+            switch (size) {
+            case 1:
+                cpu_stb_nucleus(env, addr, val);
+                break;
+            case 2:
+                cpu_stw_nucleus(env, addr, val);
+                break;
+            case 4:
+                cpu_stl_nucleus(env, addr, val);
+                break;
+            default:
+            case 8:
+                cpu_stq_nucleus(env, addr, val);
+                break;
+            }
+            break;
+        }
+
+    case 0x4a: /* UPA config */
+        /* XXX */
+        return;
+    case 0x45: /* LSU */
+        {
+            uint64_t oldreg;
+
+            oldreg = env->lsu;
+            env->lsu = val & (DMMU_E | IMMU_E);
+            /* Mappings generated during D/I MMU disabled mode are
+               invalid in normal mode */
+            if (oldreg != env->lsu) {
+                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
+                            oldreg, env->lsu);
+#ifdef DEBUG_MMU
+                dump_mmu(stdout, fprintf, env);
+#endif
+                tlb_flush(CPU(cpu), 1);
+            }
+            return;
+        }
+    case 0x50: /* I-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+            uint64_t oldreg;
+
+            oldreg = env->immuregs[reg];
+            switch (reg) {
+            case 0: /* RO */
+                return;
+            case 1: /* Not in I-MMU */
+            case 2:
+                return;
+            case 3: /* SFSR */
+                if ((val & 1) == 0) {
+                    val = 0; /* Clear SFSR */
+                }
+                env->immu.sfsr = val;
+                break;
+            case 4: /* RO */
+                return;
+            case 5: /* TSB access */
+                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", env->immu.tsb, val);
+                env->immu.tsb = val;
+                break;
+            case 6: /* Tag access */
+                env->immu.tag_access = val;
+                break;
+            case 7:
+            case 8:
+                return;
+            default:
+                break;
+            }
+
+            if (oldreg != env->immuregs[reg]) {
+                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case 0x54: /* I-MMU data in */
+        replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
+        return;
+    case 0x55: /* I-MMU data access */
+        {
+            /* TODO: auto demap */
+
+            unsigned int i = (addr >> 3) & 0x3f;
+
+            replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
+
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case 0x57: /* I-MMU demap */
+        demap_tlb(env->itlb, addr, "immu", env);
+        return;
+    case 0x58: /* D-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+            uint64_t oldreg;
+
+            oldreg = env->dmmuregs[reg];
+            switch (reg) {
+            case 0: /* RO */
+            case 4:
+                return;
+            case 3: /* SFSR */
+                if ((val & 1) == 0) {
+                    val = 0; /* Clear SFSR, Fault address */
+                    env->dmmu.sfar = 0;
+                }
+                env->dmmu.sfsr = val;
+                break;
+            case 1: /* Primary context */
+                env->dmmu.mmu_primary_context = val;
+                /* can be optimized to only flush MMU_USER_IDX
+                   and MMU_KERNEL_IDX entries */
+                tlb_flush(CPU(cpu), 1);
+                break;
+            case 2: /* Secondary context */
+                env->dmmu.mmu_secondary_context = val;
+                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
+                   and MMU_KERNEL_SECONDARY_IDX entries */
+                tlb_flush(CPU(cpu), 1);
+                break;
+            case 5: /* TSB access */
+                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", env->dmmu.tsb, val);
+                env->dmmu.tsb = val;
+                break;
+            case 6: /* Tag access */
+                env->dmmu.tag_access = val;
+                break;
+            case 7: /* Virtual Watchpoint */
+            case 8: /* Physical Watchpoint */
+            default:
+                env->dmmuregs[reg] = val;
+                break;
+            }
+
+            if (oldreg != env->dmmuregs[reg]) {
+                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case 0x5c: /* D-MMU data in */
+        replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
+        return;
+    case 0x5d: /* D-MMU data access */
+        {
+            unsigned int i = (addr >> 3) & 0x3f;
+
+            replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
+
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case 0x5f: /* D-MMU demap */
+        demap_tlb(env->dtlb, addr, "dmmu", env);
+        return;
+    case 0x49: /* Interrupt data receive */
+        env->ivec_status = val & 0x20;
+        return;
+    case 0x46: /* D-cache data */
+    case 0x47: /* D-cache tag access */
+    case 0x4b: /* E-cache error enable */
+    case 0x4c: /* E-cache asynchronous fault status */
+    case 0x4d: /* E-cache asynchronous fault address */
+    case 0x4e: /* E-cache tag data */
+    case 0x66: /* I-cache instruction access */
+    case 0x67: /* I-cache tag access */
+    case 0x6e: /* I-cache predecode */
+    case 0x6f: /* I-cache LRU etc. */
+    case 0x76: /* E-cache tag */
+    case 0x7e: /* E-cache tag */
+        return;
+    case 0x51: /* I-MMU 8k TSB pointer, RO */
+    case 0x52: /* I-MMU 64k TSB pointer, RO */
+    case 0x56: /* I-MMU tag read, RO */
+    case 0x59: /* D-MMU 8k TSB pointer, RO */
+    case 0x5a: /* D-MMU 64k TSB pointer, RO */
+    case 0x5b: /* D-MMU data pointer, RO */
+    case 0x5e: /* D-MMU tag read, RO */
+    case 0x48: /* Interrupt dispatch, RO */
+    case 0x7f: /* Incoming interrupt vector, RO */
+    case 0x82: /* Primary no-fault, RO */
+    case 0x83: /* Secondary no-fault, RO */
+    case 0x8a: /* Primary no-fault LE, RO */
+    case 0x8b: /* Secondary no-fault LE, RO */
+    default:
+        cpu_unassigned_access(cs, addr, true, false, 1, size);
+        return;
+    }
+}
+#endif /* CONFIG_USER_ONLY */
+
+void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
+{
+    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+        || (cpu_has_hypervisor(env)
+            && asi >= 0x30 && asi < 0x80
+            && !(env->hpstate & HS_PRIV))) {
+        helper_raise_exception(env, TT_PRIV_ACT);
+    }
+
+    addr = asi_address_mask(env, asi, addr);
+
+    switch (asi) {
+#if !defined(CONFIG_USER_ONLY)
+    case 0x24: /* Nucleus quad LDD 128 bit atomic */
+    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
+        helper_check_align(env, addr, 0xf);
+        if (rd == 0) {
+            env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
+            if (asi == 0x2c) {
+                bswap64s(&env->gregs[1]);
+            }
+        } else if (rd < 8) {
+            env->gregs[rd] = cpu_ldq_nucleus(env, addr);
+            env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
+            if (asi == 0x2c) {
+                bswap64s(&env->gregs[rd]);
+                bswap64s(&env->gregs[rd + 1]);
+            }
+        } else {
+            env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
+            env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
+            if (asi == 0x2c) {
+                bswap64s(&env->regwptr[rd]);
+                bswap64s(&env->regwptr[rd + 1]);
+            }
+        }
+        break;
+#endif
+    default:
+        helper_check_align(env, addr, 0x3);
+        if (rd == 0) {
+            env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
+        } else if (rd < 8) {
+            env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
+            env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
+        } else {
+            env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
+            env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
+        }
+        break;
+    }
+}
+
+void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
+                    int rd)
+{
+    unsigned int i;
+    target_ulong val;
+
+    helper_check_align(env, addr, 3);
+    addr = asi_address_mask(env, asi, addr);
+
+    switch (asi) {
+    case 0xf0: /* UA2007/JPS1 Block load primary */
+    case 0xf1: /* UA2007/JPS1 Block load secondary */
+    case 0xf8: /* UA2007/JPS1 Block load primary LE */
+    case 0xf9: /* UA2007/JPS1 Block load secondary LE */
+        if (rd & 7) {
+            helper_raise_exception(env, TT_ILL_INSN);
+            return;
+        }
+        helper_check_align(env, addr, 0x3f);
+        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
+            env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
+        }
+        return;
+
+    case 0x16: /* UA2007 Block load primary, user privilege */
+    case 0x17: /* UA2007 Block load secondary, user privilege */
+    case 0x1e: /* UA2007 Block load primary LE, user privilege */
+    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
+    case 0x70: /* JPS1 Block load primary, user privilege */
+    case 0x71: /* JPS1 Block load secondary, user privilege */
+    case 0x78: /* JPS1 Block load primary LE, user privilege */
+    case 0x79: /* JPS1 Block load secondary LE, user privilege */
+        if (rd & 7) {
+            helper_raise_exception(env, TT_ILL_INSN);
+            return;
+        }
+        helper_check_align(env, addr, 0x3f);
+        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
+            env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
+        }
+        return;
+
+    default:
+        break;
+    }
+
+    switch (size) {
+    default:
+    case 4:
+        val = helper_ld_asi(env, addr, asi, size, 0);
+        if (rd & 1) {
+            env->fpr[rd / 2].l.lower = val;
+        } else {
+            env->fpr[rd / 2].l.upper = val;
+        }
+        break;
+    case 8:
+        env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
+        break;
+    case 16:
+        env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
+        env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
+        break;
+    }
+}
+
+void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
+                    int rd)
+{
+    unsigned int i;
+    target_ulong val;
+
+    addr = asi_address_mask(env, asi, addr);
+
+    switch (asi) {
+    case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
+    case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
+    case 0xf0: /* UA2007/JPS1 Block store primary */
+    case 0xf1: /* UA2007/JPS1 Block store secondary */
+    case 0xf8: /* UA2007/JPS1 Block store primary LE */
+    case 0xf9: /* UA2007/JPS1 Block store secondary LE */
+        if (rd & 7) {
+            helper_raise_exception(env, TT_ILL_INSN);
+            return;
+        }
+        helper_check_align(env, addr, 0x3f);
+        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
+            helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
+        }
+
+        return;
+    case 0x16: /* UA2007 Block load primary, user privilege */
+    case 0x17: /* UA2007 Block load secondary, user privilege */
+    case 0x1e: /* UA2007 Block load primary LE, user privilege */
+    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
+    case 0x70: /* JPS1 Block store primary, user privilege */
+    case 0x71: /* JPS1 Block store secondary, user privilege */
+    case 0x78: /* JPS1 Block load primary LE, user privilege */
+    case 0x79: /* JPS1 Block load secondary LE, user privilege */
+        if (rd & 7) {
+            helper_raise_exception(env, TT_ILL_INSN);
+            return;
+        }
+        helper_check_align(env, addr, 0x3f);
+        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
+            helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
+        }
+
+        return;
+    case 0xd2: /* 16-bit floating point load primary */
+    case 0xd3: /* 16-bit floating point load secondary */
+    case 0xda: /* 16-bit floating point load primary, LE */
+    case 0xdb: /* 16-bit floating point load secondary, LE */
+        helper_check_align(env, addr, 1);
+        /* Fall through */
+    case 0xd0: /* 8-bit floating point load primary */
+    case 0xd1: /* 8-bit floating point load secondary */
+    case 0xd8: /* 8-bit floating point load primary, LE */
+    case 0xd9: /* 8-bit floating point load secondary, LE */
+        val = env->fpr[rd / 2].l.lower;
+        helper_st_asi(env, addr, val, asi & 0x8d, ((asi & 2) >> 1) + 1);
+        return;
+    default:
+        helper_check_align(env, addr, 3);
+        break;
+    }
+
+    switch (size) {
+    default:
+    case 4:
+        if (rd & 1) {
+            val = env->fpr[rd / 2].l.lower;
+        } else {
+            val = env->fpr[rd / 2].l.upper;
+        }
+        helper_st_asi(env, addr, val, asi, size);
+        break;
+    case 8:
+        helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
+        break;
+    case 16:
+        helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
+        helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
+        break;
+    }
+}
+
+target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
+                             target_ulong val1, target_ulong val2,
+                             uint32_t asi)
+{
+    target_ulong ret;
+
+    ret = helper_ld_asi(env, addr, asi, 8, 0);
+    if (val2 == ret) {
+        helper_st_asi(env, addr, val1, asi, 8);
+    }
+    return ret;
+}
+#endif /* TARGET_SPARC64 */
+
+#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
+target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
+                            target_ulong val1, target_ulong val2, uint32_t asi)
+{
+    target_ulong ret;
+
+    val2 &= 0xffffffffUL;
+    ret = helper_ld_asi(env, addr, asi, 4, 0);
+    ret &= 0xffffffffUL;
+    if (val2 == ret) {
+        helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
+    }
+    return ret;
+}
+#endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
+
+void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
+{
+    /* XXX add 128 bit load */
+    CPU_QuadU u;
+
+    helper_check_align(env, addr, 7);
+#if !defined(CONFIG_USER_ONLY)
+    switch (mem_idx) {
+    case MMU_USER_IDX:
+        u.ll.upper = cpu_ldq_user(env, addr);
+        u.ll.lower = cpu_ldq_user(env, addr + 8);
+        QT0 = u.q;
+        break;
+    case MMU_KERNEL_IDX:
+        u.ll.upper = cpu_ldq_kernel(env, addr);
+        u.ll.lower = cpu_ldq_kernel(env, addr + 8);
+        QT0 = u.q;
+        break;
+#ifdef TARGET_SPARC64
+    case MMU_HYPV_IDX:
+        u.ll.upper = cpu_ldq_hypv(env, addr);
+        u.ll.lower = cpu_ldq_hypv(env, addr + 8);
+        QT0 = u.q;
+        break;
+#endif
+    default:
+        DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
+        break;
+    }
+#else
+    u.ll.upper = cpu_ldq_data(env, address_mask(env, addr));
+    u.ll.lower = cpu_ldq_data(env, address_mask(env, addr + 8));
+    QT0 = u.q;
+#endif
+}
+
+void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
+{
+    /* XXX add 128 bit store */
+    CPU_QuadU u;
+
+    helper_check_align(env, addr, 7);
+#if !defined(CONFIG_USER_ONLY)
+    switch (mem_idx) {
+    case MMU_USER_IDX:
+        u.q = QT0;
+        cpu_stq_user(env, addr, u.ll.upper);
+        cpu_stq_user(env, addr + 8, u.ll.lower);
+        break;
+    case MMU_KERNEL_IDX:
+        u.q = QT0;
+        cpu_stq_kernel(env, addr, u.ll.upper);
+        cpu_stq_kernel(env, addr + 8, u.ll.lower);
+        break;
+#ifdef TARGET_SPARC64
+    case MMU_HYPV_IDX:
+        u.q = QT0;
+        cpu_stq_hypv(env, addr, u.ll.upper);
+        cpu_stq_hypv(env, addr + 8, u.ll.lower);
+        break;
+#endif
+    default:
+        DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
+        break;
+    }
+#else
+    u.q = QT0;
+    cpu_stq_data(env, address_mask(env, addr), u.ll.upper);
+    cpu_stq_data(env, address_mask(env, addr + 8), u.ll.lower);
+#endif
+}
+
+#if !defined(CONFIG_USER_ONLY)
+#ifndef TARGET_SPARC64
+void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
+                                 bool is_write, bool is_exec, int is_asi,
+                                 unsigned size)
+{
+    SPARCCPU *cpu = SPARC_CPU(cs);
+    CPUSPARCState *env = &cpu->env;
+    int fault_type;
+
+#ifdef DEBUG_UNASSIGNED
+    if (is_asi) {
+        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+               " asi 0x%02x from " TARGET_FMT_lx "\n",
+               is_exec ? "exec" : is_write ? "write" : "read", size,
+               size == 1 ? "" : "s", addr, is_asi, env->pc);
+    } else {
+        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+               " from " TARGET_FMT_lx "\n",
+               is_exec ? "exec" : is_write ? "write" : "read", size,
+               size == 1 ? "" : "s", addr, env->pc);
+    }
+#endif
+    /* Don't overwrite translation and access faults */
+    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
+    if ((fault_type > 4) || (fault_type == 0)) {
+        env->mmuregs[3] = 0; /* Fault status register */
+        if (is_asi) {
+            env->mmuregs[3] |= 1 << 16;
+        }
+        if (env->psrs) {
+            env->mmuregs[3] |= 1 << 5;
+        }
+        if (is_exec) {
+            env->mmuregs[3] |= 1 << 6;
+        }
+        if (is_write) {
+            env->mmuregs[3] |= 1 << 7;
+        }
+        env->mmuregs[3] |= (5 << 2) | 2;
+        /* SuperSPARC will never place instruction fault addresses in the FAR */
+        if (!is_exec) {
+            env->mmuregs[4] = addr; /* Fault address register */
+        }
+    }
+    /* overflow (same type fault was not read before another fault) */
+    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
+        env->mmuregs[3] |= 1;
+    }
+
+    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
+        if (is_exec) {
+            helper_raise_exception(env, TT_CODE_ACCESS);
+        } else {
+            helper_raise_exception(env, TT_DATA_ACCESS);
+        }
+    }
+
+    /* flush neverland mappings created during no-fault mode,
+       so the sequential MMU faults report proper fault types */
+    if (env->mmuregs[0] & MMU_NF) {
+        tlb_flush(cs, 1);
+    }
+}
+#else
+void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
+                                 bool is_write, bool is_exec, int is_asi,
+                                 unsigned size)
+{
+    SPARCCPU *cpu = SPARC_CPU(cs);
+    CPUSPARCState *env = &cpu->env;
+
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
+           "\n", addr, env->pc);
+#endif
+
+    if (is_exec) {
+        helper_raise_exception(env, TT_CODE_ACCESS);
+    } else {
+        helper_raise_exception(env, TT_DATA_ACCESS);
+    }
+}
+#endif
+#endif
+
+#if !defined(CONFIG_USER_ONLY)
+void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs,
+                                                 vaddr addr, int is_write,
+                                                 int is_user, uintptr_t retaddr)
+{
+    SPARCCPU *cpu = SPARC_CPU(cs);
+    CPUSPARCState *env = &cpu->env;
+
+#ifdef DEBUG_UNALIGNED
+    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
+           "\n", addr, env->pc);
+#endif
+    if (retaddr) {
+        cpu_restore_state(CPU(cpu), retaddr);
+    }
+    helper_raise_exception(env, TT_UNALIGNED);
+}
+
+/* try to fill the TLB and return an exception if error. If retaddr is
+   NULL, it means that the function was called in C code (i.e. not
+   from generated code or from helper.c) */
+/* XXX: fix it to restore all registers */
+void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
+              uintptr_t retaddr)
+{
+    int ret;
+
+    ret = sparc_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
+    if (ret) {
+        if (retaddr) {
+            cpu_restore_state(cs, retaddr);
+        }
+        cpu_loop_exit(cs);
+    }
+}
+#endif