Add qemu 2.4.0
[kvmfornfv.git] / qemu / target-ppc / kvm.c
diff --git a/qemu/target-ppc/kvm.c b/qemu/target-ppc/kvm.c
new file mode 100644 (file)
index 0000000..110436d
--- /dev/null
@@ -0,0 +1,2486 @@
+/*
+ * PowerPC implementation of KVM hooks
+ *
+ * Copyright IBM Corp. 2007
+ * Copyright (C) 2011 Freescale Semiconductor, Inc.
+ *
+ * Authors:
+ *  Jerone Young <jyoung5@us.ibm.com>
+ *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
+ *  Hollis Blanchard <hollisb@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include <dirent.h>
+#include <sys/types.h>
+#include <sys/ioctl.h>
+#include <sys/mman.h>
+#include <sys/vfs.h>
+
+#include <linux/kvm.h>
+
+#include "qemu-common.h"
+#include "qemu/timer.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/kvm.h"
+#include "kvm_ppc.h"
+#include "cpu.h"
+#include "sysemu/cpus.h"
+#include "sysemu/device_tree.h"
+#include "mmu-hash64.h"
+
+#include "hw/sysbus.h"
+#include "hw/ppc/spapr.h"
+#include "hw/ppc/spapr_vio.h"
+#include "hw/ppc/ppc.h"
+#include "sysemu/watchdog.h"
+#include "trace.h"
+#include "exec/gdbstub.h"
+#include "exec/memattrs.h"
+#include "sysemu/hostmem.h"
+
+//#define DEBUG_KVM
+
+#ifdef DEBUG_KVM
+#define DPRINTF(fmt, ...) \
+    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF(fmt, ...) \
+    do { } while (0)
+#endif
+
+#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
+
+const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
+    KVM_CAP_LAST_INFO
+};
+
+static int cap_interrupt_unset = false;
+static int cap_interrupt_level = false;
+static int cap_segstate;
+static int cap_booke_sregs;
+static int cap_ppc_smt;
+static int cap_ppc_rma;
+static int cap_spapr_tce;
+static int cap_spapr_multitce;
+static int cap_spapr_vfio;
+static int cap_hior;
+static int cap_one_reg;
+static int cap_epr;
+static int cap_ppc_watchdog;
+static int cap_papr;
+static int cap_htab_fd;
+static int cap_fixup_hcalls;
+
+static uint32_t debug_inst_opcode;
+
+/* XXX We have a race condition where we actually have a level triggered
+ *     interrupt, but the infrastructure can't expose that yet, so the guest
+ *     takes but ignores it, goes to sleep and never gets notified that there's
+ *     still an interrupt pending.
+ *
+ *     As a quick workaround, let's just wake up again 20 ms after we injected
+ *     an interrupt. That way we can assure that we're always reinjecting
+ *     interrupts in case the guest swallowed them.
+ */
+static QEMUTimer *idle_timer;
+
+static void kvm_kick_cpu(void *opaque)
+{
+    PowerPCCPU *cpu = opaque;
+
+    qemu_cpu_kick(CPU(cpu));
+}
+
+static int kvm_ppc_register_host_cpu_type(void);
+
+int kvm_arch_init(MachineState *ms, KVMState *s)
+{
+    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
+    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
+    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
+    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
+    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
+    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
+    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
+    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
+    cap_spapr_vfio = false;
+    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
+    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
+    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
+    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
+    /* Note: we don't set cap_papr here, because this capability is
+     * only activated after this by kvmppc_set_papr() */
+    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
+    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
+
+    if (!cap_interrupt_level) {
+        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
+                        "VM to stall at times!\n");
+    }
+
+    kvm_ppc_register_host_cpu_type();
+
+    return 0;
+}
+
+static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
+{
+    CPUPPCState *cenv = &cpu->env;
+    CPUState *cs = CPU(cpu);
+    struct kvm_sregs sregs;
+    int ret;
+
+    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
+        /* What we're really trying to say is "if we're on BookE, we use
+           the native PVR for now". This is the only sane way to check
+           it though, so we potentially confuse users that they can run
+           BookE guests on BookS. Let's hope nobody dares enough :) */
+        return 0;
+    } else {
+        if (!cap_segstate) {
+            fprintf(stderr, "kvm error: missing PVR setting capability\n");
+            return -ENOSYS;
+        }
+    }
+
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
+    if (ret) {
+        return ret;
+    }
+
+    sregs.pvr = cenv->spr[SPR_PVR];
+    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
+}
+
+/* Set up a shared TLB array with KVM */
+static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
+{
+    CPUPPCState *env = &cpu->env;
+    CPUState *cs = CPU(cpu);
+    struct kvm_book3e_206_tlb_params params = {};
+    struct kvm_config_tlb cfg = {};
+    unsigned int entries = 0;
+    int ret, i;
+
+    if (!kvm_enabled() ||
+        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
+        return 0;
+    }
+
+    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
+
+    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
+        params.tlb_sizes[i] = booke206_tlb_size(env, i);
+        params.tlb_ways[i] = booke206_tlb_ways(env, i);
+        entries += params.tlb_sizes[i];
+    }
+
+    assert(entries == env->nb_tlb);
+    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
+
+    env->tlb_dirty = true;
+
+    cfg.array = (uintptr_t)env->tlb.tlbm;
+    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
+    cfg.params = (uintptr_t)&params;
+    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
+
+    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
+    if (ret < 0) {
+        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
+                __func__, strerror(-ret));
+        return ret;
+    }
+
+    env->kvm_sw_tlb = true;
+    return 0;
+}
+
+
+#if defined(TARGET_PPC64)
+static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
+                                       struct kvm_ppc_smmu_info *info)
+{
+    CPUPPCState *env = &cpu->env;
+    CPUState *cs = CPU(cpu);
+
+    memset(info, 0, sizeof(*info));
+
+    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
+     * need to "guess" what the supported page sizes are.
+     *
+     * For that to work we make a few assumptions:
+     *
+     * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
+     *   KVM which only supports 4K and 16M pages, but supports them
+     *   regardless of the backing store characteritics. We also don't
+     *   support 1T segments.
+     *
+     *   This is safe as if HV KVM ever supports that capability or PR
+     *   KVM grows supports for more page/segment sizes, those versions
+     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
+     *   will not hit this fallback
+     *
+     * - Else we are running HV KVM. This means we only support page
+     *   sizes that fit in the backing store. Additionally we only
+     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
+     *   P7 encodings for the SLB and hash table. Here too, we assume
+     *   support for any newer processor will mean a kernel that
+     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
+     *   this fallback.
+     */
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
+        /* No flags */
+        info->flags = 0;
+        info->slb_size = 64;
+
+        /* Standard 4k base page size segment */
+        info->sps[0].page_shift = 12;
+        info->sps[0].slb_enc = 0;
+        info->sps[0].enc[0].page_shift = 12;
+        info->sps[0].enc[0].pte_enc = 0;
+
+        /* Standard 16M large page size segment */
+        info->sps[1].page_shift = 24;
+        info->sps[1].slb_enc = SLB_VSID_L;
+        info->sps[1].enc[0].page_shift = 24;
+        info->sps[1].enc[0].pte_enc = 0;
+    } else {
+        int i = 0;
+
+        /* HV KVM has backing store size restrictions */
+        info->flags = KVM_PPC_PAGE_SIZES_REAL;
+
+        if (env->mmu_model & POWERPC_MMU_1TSEG) {
+            info->flags |= KVM_PPC_1T_SEGMENTS;
+        }
+
+        if (env->mmu_model == POWERPC_MMU_2_06) {
+            info->slb_size = 32;
+        } else {
+            info->slb_size = 64;
+        }
+
+        /* Standard 4k base page size segment */
+        info->sps[i].page_shift = 12;
+        info->sps[i].slb_enc = 0;
+        info->sps[i].enc[0].page_shift = 12;
+        info->sps[i].enc[0].pte_enc = 0;
+        i++;
+
+        /* 64K on MMU 2.06 */
+        if (env->mmu_model == POWERPC_MMU_2_06) {
+            info->sps[i].page_shift = 16;
+            info->sps[i].slb_enc = 0x110;
+            info->sps[i].enc[0].page_shift = 16;
+            info->sps[i].enc[0].pte_enc = 1;
+            i++;
+        }
+
+        /* Standard 16M large page size segment */
+        info->sps[i].page_shift = 24;
+        info->sps[i].slb_enc = SLB_VSID_L;
+        info->sps[i].enc[0].page_shift = 24;
+        info->sps[i].enc[0].pte_enc = 0;
+    }
+}
+
+static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
+{
+    CPUState *cs = CPU(cpu);
+    int ret;
+
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
+        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
+        if (ret == 0) {
+            return;
+        }
+    }
+
+    kvm_get_fallback_smmu_info(cpu, info);
+}
+
+static long gethugepagesize(const char *mem_path)
+{
+    struct statfs fs;
+    int ret;
+
+    do {
+        ret = statfs(mem_path, &fs);
+    } while (ret != 0 && errno == EINTR);
+
+    if (ret != 0) {
+        fprintf(stderr, "Couldn't statfs() memory path: %s\n",
+                strerror(errno));
+        exit(1);
+    }
+
+#define HUGETLBFS_MAGIC       0x958458f6
+
+    if (fs.f_type != HUGETLBFS_MAGIC) {
+        /* Explicit mempath, but it's ordinary pages */
+        return getpagesize();
+    }
+
+    /* It's hugepage, return the huge page size */
+    return fs.f_bsize;
+}
+
+static int find_max_supported_pagesize(Object *obj, void *opaque)
+{
+    char *mem_path;
+    long *hpsize_min = opaque;
+
+    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
+        mem_path = object_property_get_str(obj, "mem-path", NULL);
+        if (mem_path) {
+            long hpsize = gethugepagesize(mem_path);
+            if (hpsize < *hpsize_min) {
+                *hpsize_min = hpsize;
+            }
+        } else {
+            *hpsize_min = getpagesize();
+        }
+    }
+
+    return 0;
+}
+
+static long getrampagesize(void)
+{
+    long hpsize = LONG_MAX;
+    Object *memdev_root;
+
+    if (mem_path) {
+        return gethugepagesize(mem_path);
+    }
+
+    /* it's possible we have memory-backend objects with
+     * hugepage-backed RAM. these may get mapped into system
+     * address space via -numa parameters or memory hotplug
+     * hooks. we want to take these into account, but we
+     * also want to make sure these supported hugepage
+     * sizes are applicable across the entire range of memory
+     * we may boot from, so we take the min across all
+     * backends, and assume normal pages in cases where a
+     * backend isn't backed by hugepages.
+     */
+    memdev_root = object_resolve_path("/objects", NULL);
+    if (!memdev_root) {
+        return getpagesize();
+    }
+
+    object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
+
+    return (hpsize == LONG_MAX) ? getpagesize() : hpsize;
+}
+
+static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
+{
+    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
+        return true;
+    }
+
+    return (1ul << shift) <= rampgsize;
+}
+
+static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
+{
+    static struct kvm_ppc_smmu_info smmu_info;
+    static bool has_smmu_info;
+    CPUPPCState *env = &cpu->env;
+    long rampagesize;
+    int iq, ik, jq, jk;
+
+    /* We only handle page sizes for 64-bit server guests for now */
+    if (!(env->mmu_model & POWERPC_MMU_64)) {
+        return;
+    }
+
+    /* Collect MMU info from kernel if not already */
+    if (!has_smmu_info) {
+        kvm_get_smmu_info(cpu, &smmu_info);
+        has_smmu_info = true;
+    }
+
+    rampagesize = getrampagesize();
+
+    /* Convert to QEMU form */
+    memset(&env->sps, 0, sizeof(env->sps));
+
+    /*
+     * XXX This loop should be an entry wide AND of the capabilities that
+     *     the selected CPU has with the capabilities that KVM supports.
+     */
+    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
+        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
+        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
+
+        if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
+                                 ksps->page_shift)) {
+            continue;
+        }
+        qsps->page_shift = ksps->page_shift;
+        qsps->slb_enc = ksps->slb_enc;
+        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
+            if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
+                                     ksps->enc[jk].page_shift)) {
+                continue;
+            }
+            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
+            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
+            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
+                break;
+            }
+        }
+        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
+            break;
+        }
+    }
+    env->slb_nr = smmu_info.slb_size;
+    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
+        env->mmu_model &= ~POWERPC_MMU_1TSEG;
+    }
+}
+#else /* defined (TARGET_PPC64) */
+
+static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
+{
+}
+
+#endif /* !defined (TARGET_PPC64) */
+
+unsigned long kvm_arch_vcpu_id(CPUState *cpu)
+{
+    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
+}
+
+/* e500 supports 2 h/w breakpoint and 2 watchpoint.
+ * book3s supports only 1 watchpoint, so array size
+ * of 4 is sufficient for now.
+ */
+#define MAX_HW_BKPTS 4
+
+static struct HWBreakpoint {
+    target_ulong addr;
+    int type;
+} hw_debug_points[MAX_HW_BKPTS];
+
+static CPUWatchpoint hw_watchpoint;
+
+/* Default there is no breakpoint and watchpoint supported */
+static int max_hw_breakpoint;
+static int max_hw_watchpoint;
+static int nb_hw_breakpoint;
+static int nb_hw_watchpoint;
+
+static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
+{
+    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
+        max_hw_breakpoint = 2;
+        max_hw_watchpoint = 2;
+    }
+
+    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
+        fprintf(stderr, "Error initializing h/w breakpoints\n");
+        return;
+    }
+}
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *cenv = &cpu->env;
+    int ret;
+
+    /* Gather server mmu info from KVM and update the CPU state */
+    kvm_fixup_page_sizes(cpu);
+
+    /* Synchronize sregs with kvm */
+    ret = kvm_arch_sync_sregs(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
+
+    /* Some targets support access to KVM's guest TLB. */
+    switch (cenv->mmu_model) {
+    case POWERPC_MMU_BOOKE206:
+        ret = kvm_booke206_tlb_init(cpu);
+        break;
+    default:
+        break;
+    }
+
+    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
+    kvmppc_hw_debug_points_init(cenv);
+
+    return ret;
+}
+
+static void kvm_sw_tlb_put(PowerPCCPU *cpu)
+{
+    CPUPPCState *env = &cpu->env;
+    CPUState *cs = CPU(cpu);
+    struct kvm_dirty_tlb dirty_tlb;
+    unsigned char *bitmap;
+    int ret;
+
+    if (!env->kvm_sw_tlb) {
+        return;
+    }
+
+    bitmap = g_malloc((env->nb_tlb + 7) / 8);
+    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
+
+    dirty_tlb.bitmap = (uintptr_t)bitmap;
+    dirty_tlb.num_dirty = env->nb_tlb;
+
+    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
+    if (ret) {
+        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
+                __func__, strerror(-ret));
+    }
+
+    g_free(bitmap);
+}
+
+static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    union {
+        uint32_t u32;
+        uint64_t u64;
+    } val;
+    struct kvm_one_reg reg = {
+        .id = id,
+        .addr = (uintptr_t) &val,
+    };
+    int ret;
+
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret != 0) {
+        trace_kvm_failed_spr_get(spr, strerror(errno));
+    } else {
+        switch (id & KVM_REG_SIZE_MASK) {
+        case KVM_REG_SIZE_U32:
+            env->spr[spr] = val.u32;
+            break;
+
+        case KVM_REG_SIZE_U64:
+            env->spr[spr] = val.u64;
+            break;
+
+        default:
+            /* Don't handle this size yet */
+            abort();
+        }
+    }
+}
+
+static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    union {
+        uint32_t u32;
+        uint64_t u64;
+    } val;
+    struct kvm_one_reg reg = {
+        .id = id,
+        .addr = (uintptr_t) &val,
+    };
+    int ret;
+
+    switch (id & KVM_REG_SIZE_MASK) {
+    case KVM_REG_SIZE_U32:
+        val.u32 = env->spr[spr];
+        break;
+
+    case KVM_REG_SIZE_U64:
+        val.u64 = env->spr[spr];
+        break;
+
+    default:
+        /* Don't handle this size yet */
+        abort();
+    }
+
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret != 0) {
+        trace_kvm_failed_spr_set(spr, strerror(errno));
+    }
+}
+
+static int kvm_put_fp(CPUState *cs)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    struct kvm_one_reg reg;
+    int i;
+    int ret;
+
+    if (env->insns_flags & PPC_FLOAT) {
+        uint64_t fpscr = env->fpscr;
+        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
+
+        reg.id = KVM_REG_PPC_FPSCR;
+        reg.addr = (uintptr_t)&fpscr;
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret < 0) {
+            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
+            return ret;
+        }
+
+        for (i = 0; i < 32; i++) {
+            uint64_t vsr[2];
+
+            vsr[0] = float64_val(env->fpr[i]);
+            vsr[1] = env->vsr[i];
+            reg.addr = (uintptr_t) &vsr;
+            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
+
+            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+            if (ret < 0) {
+                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
+                        i, strerror(errno));
+                return ret;
+            }
+        }
+    }
+
+    if (env->insns_flags & PPC_ALTIVEC) {
+        reg.id = KVM_REG_PPC_VSCR;
+        reg.addr = (uintptr_t)&env->vscr;
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret < 0) {
+            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
+            return ret;
+        }
+
+        for (i = 0; i < 32; i++) {
+            reg.id = KVM_REG_PPC_VR(i);
+            reg.addr = (uintptr_t)&env->avr[i];
+            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+            if (ret < 0) {
+                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
+                return ret;
+            }
+        }
+    }
+
+    return 0;
+}
+
+static int kvm_get_fp(CPUState *cs)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    struct kvm_one_reg reg;
+    int i;
+    int ret;
+
+    if (env->insns_flags & PPC_FLOAT) {
+        uint64_t fpscr;
+        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
+
+        reg.id = KVM_REG_PPC_FPSCR;
+        reg.addr = (uintptr_t)&fpscr;
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret < 0) {
+            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
+            return ret;
+        } else {
+            env->fpscr = fpscr;
+        }
+
+        for (i = 0; i < 32; i++) {
+            uint64_t vsr[2];
+
+            reg.addr = (uintptr_t) &vsr;
+            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
+
+            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+            if (ret < 0) {
+                DPRINTF("Unable to get %s%d from KVM: %s\n",
+                        vsx ? "VSR" : "FPR", i, strerror(errno));
+                return ret;
+            } else {
+                env->fpr[i] = vsr[0];
+                if (vsx) {
+                    env->vsr[i] = vsr[1];
+                }
+            }
+        }
+    }
+
+    if (env->insns_flags & PPC_ALTIVEC) {
+        reg.id = KVM_REG_PPC_VSCR;
+        reg.addr = (uintptr_t)&env->vscr;
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret < 0) {
+            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
+            return ret;
+        }
+
+        for (i = 0; i < 32; i++) {
+            reg.id = KVM_REG_PPC_VR(i);
+            reg.addr = (uintptr_t)&env->avr[i];
+            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+            if (ret < 0) {
+                DPRINTF("Unable to get VR%d from KVM: %s\n",
+                        i, strerror(errno));
+                return ret;
+            }
+        }
+    }
+
+    return 0;
+}
+
+#if defined(TARGET_PPC64)
+static int kvm_get_vpa(CPUState *cs)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    struct kvm_one_reg reg;
+    int ret;
+
+    reg.id = KVM_REG_PPC_VPA_ADDR;
+    reg.addr = (uintptr_t)&env->vpa_addr;
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret < 0) {
+        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
+        return ret;
+    }
+
+    assert((uintptr_t)&env->slb_shadow_size
+           == ((uintptr_t)&env->slb_shadow_addr + 8));
+    reg.id = KVM_REG_PPC_VPA_SLB;
+    reg.addr = (uintptr_t)&env->slb_shadow_addr;
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret < 0) {
+        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
+                strerror(errno));
+        return ret;
+    }
+
+    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
+    reg.id = KVM_REG_PPC_VPA_DTL;
+    reg.addr = (uintptr_t)&env->dtl_addr;
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret < 0) {
+        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
+                strerror(errno));
+        return ret;
+    }
+
+    return 0;
+}
+
+static int kvm_put_vpa(CPUState *cs)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    struct kvm_one_reg reg;
+    int ret;
+
+    /* SLB shadow or DTL can't be registered unless a master VPA is
+     * registered.  That means when restoring state, if a VPA *is*
+     * registered, we need to set that up first.  If not, we need to
+     * deregister the others before deregistering the master VPA */
+    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));
+
+    if (env->vpa_addr) {
+        reg.id = KVM_REG_PPC_VPA_ADDR;
+        reg.addr = (uintptr_t)&env->vpa_addr;
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret < 0) {
+            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
+            return ret;
+        }
+    }
+
+    assert((uintptr_t)&env->slb_shadow_size
+           == ((uintptr_t)&env->slb_shadow_addr + 8));
+    reg.id = KVM_REG_PPC_VPA_SLB;
+    reg.addr = (uintptr_t)&env->slb_shadow_addr;
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret < 0) {
+        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
+        return ret;
+    }
+
+    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
+    reg.id = KVM_REG_PPC_VPA_DTL;
+    reg.addr = (uintptr_t)&env->dtl_addr;
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret < 0) {
+        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
+                strerror(errno));
+        return ret;
+    }
+
+    if (!env->vpa_addr) {
+        reg.id = KVM_REG_PPC_VPA_ADDR;
+        reg.addr = (uintptr_t)&env->vpa_addr;
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret < 0) {
+            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
+            return ret;
+        }
+    }
+
+    return 0;
+}
+#endif /* TARGET_PPC64 */
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    struct kvm_regs regs;
+    int ret;
+    int i;
+
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
+    if (ret < 0) {
+        return ret;
+    }
+
+    regs.ctr = env->ctr;
+    regs.lr  = env->lr;
+    regs.xer = cpu_read_xer(env);
+    regs.msr = env->msr;
+    regs.pc = env->nip;
+
+    regs.srr0 = env->spr[SPR_SRR0];
+    regs.srr1 = env->spr[SPR_SRR1];
+
+    regs.sprg0 = env->spr[SPR_SPRG0];
+    regs.sprg1 = env->spr[SPR_SPRG1];
+    regs.sprg2 = env->spr[SPR_SPRG2];
+    regs.sprg3 = env->spr[SPR_SPRG3];
+    regs.sprg4 = env->spr[SPR_SPRG4];
+    regs.sprg5 = env->spr[SPR_SPRG5];
+    regs.sprg6 = env->spr[SPR_SPRG6];
+    regs.sprg7 = env->spr[SPR_SPRG7];
+
+    regs.pid = env->spr[SPR_BOOKE_PID];
+
+    for (i = 0;i < 32; i++)
+        regs.gpr[i] = env->gpr[i];
+
+    regs.cr = 0;
+    for (i = 0; i < 8; i++) {
+        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
+    }
+
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
+    if (ret < 0)
+        return ret;
+
+    kvm_put_fp(cs);
+
+    if (env->tlb_dirty) {
+        kvm_sw_tlb_put(cpu);
+        env->tlb_dirty = false;
+    }
+
+    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
+        struct kvm_sregs sregs;
+
+        sregs.pvr = env->spr[SPR_PVR];
+
+        sregs.u.s.sdr1 = env->spr[SPR_SDR1];
+
+        /* Sync SLB */
+#ifdef TARGET_PPC64
+        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
+            sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
+            if (env->slb[i].esid & SLB_ESID_V) {
+                sregs.u.s.ppc64.slb[i].slbe |= i;
+            }
+            sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
+        }
+#endif
+
+        /* Sync SRs */
+        for (i = 0; i < 16; i++) {
+            sregs.u.s.ppc32.sr[i] = env->sr[i];
+        }
+
+        /* Sync BATs */
+        for (i = 0; i < 8; i++) {
+            /* Beware. We have to swap upper and lower bits here */
+            sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
+                | env->DBAT[1][i];
+            sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
+                | env->IBAT[1][i];
+        }
+
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
+        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
+    }
+
+    if (cap_one_reg) {
+        int i;
+
+        /* We deliberately ignore errors here, for kernels which have
+         * the ONE_REG calls, but don't support the specific
+         * registers, there's a reasonable chance things will still
+         * work, at least until we try to migrate. */
+        for (i = 0; i < 1024; i++) {
+            uint64_t id = env->spr_cb[i].one_reg_id;
+
+            if (id != 0) {
+                kvm_put_one_spr(cs, id, i);
+            }
+        }
+
+#ifdef TARGET_PPC64
+        if (msr_ts) {
+            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
+                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
+            }
+            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
+                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
+            }
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
+            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
+        }
+
+        if (cap_papr) {
+            if (kvm_put_vpa(cs) < 0) {
+                DPRINTF("Warning: Unable to set VPA information to KVM\n");
+            }
+        }
+
+        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
+#endif /* TARGET_PPC64 */
+    }
+
+    return ret;
+}
+
+static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
+{
+     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    struct kvm_regs regs;
+    struct kvm_sregs sregs;
+    uint32_t cr;
+    int i, ret;
+
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
+    if (ret < 0)
+        return ret;
+
+    cr = regs.cr;
+    for (i = 7; i >= 0; i--) {
+        env->crf[i] = cr & 15;
+        cr >>= 4;
+    }
+
+    env->ctr = regs.ctr;
+    env->lr = regs.lr;
+    cpu_write_xer(env, regs.xer);
+    env->msr = regs.msr;
+    env->nip = regs.pc;
+
+    env->spr[SPR_SRR0] = regs.srr0;
+    env->spr[SPR_SRR1] = regs.srr1;
+
+    env->spr[SPR_SPRG0] = regs.sprg0;
+    env->spr[SPR_SPRG1] = regs.sprg1;
+    env->spr[SPR_SPRG2] = regs.sprg2;
+    env->spr[SPR_SPRG3] = regs.sprg3;
+    env->spr[SPR_SPRG4] = regs.sprg4;
+    env->spr[SPR_SPRG5] = regs.sprg5;
+    env->spr[SPR_SPRG6] = regs.sprg6;
+    env->spr[SPR_SPRG7] = regs.sprg7;
+
+    env->spr[SPR_BOOKE_PID] = regs.pid;
+
+    for (i = 0;i < 32; i++)
+        env->gpr[i] = regs.gpr[i];
+
+    kvm_get_fp(cs);
+
+    if (cap_booke_sregs) {
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
+        if (ret < 0) {
+            return ret;
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_E_BASE) {
+            env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
+            env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
+            env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
+            env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
+            env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
+            env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
+            env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
+            env->spr[SPR_DECR] = sregs.u.e.dec;
+            env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
+            env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
+            env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
+            env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
+            env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
+            env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
+            env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
+            env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_E_64) {
+            env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
+            env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
+            env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
+            kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
+            env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
+            kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
+            env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
+            kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
+            env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
+            kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
+            env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
+            kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
+            env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
+            kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
+            env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
+            kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
+            env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
+            kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
+            env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
+            kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
+            env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
+            kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
+            env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
+            kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
+            env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
+            kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
+            env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
+            kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
+            env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
+            kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
+            env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
+            kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
+            env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
+            kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
+
+            if (sregs.u.e.features & KVM_SREGS_E_SPE) {
+                env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
+                kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
+                env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
+                kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
+                env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
+                kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
+            }
+
+            if (sregs.u.e.features & KVM_SREGS_E_PM) {
+                env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
+                kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
+            }
+
+            if (sregs.u.e.features & KVM_SREGS_E_PC) {
+                env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
+                kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
+                env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
+                kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
+            }
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
+            env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
+            env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
+            env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
+            env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
+            env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
+            env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
+            env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
+            env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
+            env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
+            env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_EXP) {
+            env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
+        }
+
+        if (sregs.u.e.features & KVM_SREGS_E_PD) {
+            env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
+            env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
+        }
+
+        if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
+            env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
+            env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
+            env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
+
+            if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
+                env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
+                env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
+            }
+        }
+    }
+
+    if (cap_segstate) {
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
+        if (ret < 0) {
+            return ret;
+        }
+
+        if (!env->external_htab) {
+            ppc_store_sdr1(env, sregs.u.s.sdr1);
+        }
+
+        /* Sync SLB */
+#ifdef TARGET_PPC64
+        /*
+         * The packed SLB array we get from KVM_GET_SREGS only contains
+         * information about valid entries. So we flush our internal
+         * copy to get rid of stale ones, then put all valid SLB entries
+         * back in.
+         */
+        memset(env->slb, 0, sizeof(env->slb));
+        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
+            target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
+            target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
+            /*
+             * Only restore valid entries
+             */
+            if (rb & SLB_ESID_V) {
+                ppc_store_slb(env, rb, rs);
+            }
+        }
+#endif
+
+        /* Sync SRs */
+        for (i = 0; i < 16; i++) {
+            env->sr[i] = sregs.u.s.ppc32.sr[i];
+        }
+
+        /* Sync BATs */
+        for (i = 0; i < 8; i++) {
+            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
+            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
+            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
+            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
+        }
+    }
+
+    if (cap_hior) {
+        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
+    }
+
+    if (cap_one_reg) {
+        int i;
+
+        /* We deliberately ignore errors here, for kernels which have
+         * the ONE_REG calls, but don't support the specific
+         * registers, there's a reasonable chance things will still
+         * work, at least until we try to migrate. */
+        for (i = 0; i < 1024; i++) {
+            uint64_t id = env->spr_cb[i].one_reg_id;
+
+            if (id != 0) {
+                kvm_get_one_spr(cs, id, i);
+            }
+        }
+
+#ifdef TARGET_PPC64
+        if (msr_ts) {
+            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
+                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
+            }
+            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
+                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
+            }
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
+            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
+        }
+
+        if (cap_papr) {
+            if (kvm_get_vpa(cs) < 0) {
+                DPRINTF("Warning: Unable to get VPA information from KVM\n");
+            }
+        }
+
+        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
+#endif
+    }
+
+    return 0;
+}
+
+int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
+{
+    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
+
+    if (irq != PPC_INTERRUPT_EXT) {
+        return 0;
+    }
+
+    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
+        return 0;
+    }
+
+    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
+
+    return 0;
+}
+
+#if defined(TARGET_PPCEMB)
+#define PPC_INPUT_INT PPC40x_INPUT_INT
+#elif defined(TARGET_PPC64)
+#define PPC_INPUT_INT PPC970_INPUT_INT
+#else
+#define PPC_INPUT_INT PPC6xx_INPUT_INT
+#endif
+
+void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    int r;
+    unsigned irq;
+
+    qemu_mutex_lock_iothread();
+
+    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
+     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
+    if (!cap_interrupt_level &&
+        run->ready_for_interrupt_injection &&
+        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
+        (env->irq_input_state & (1<<PPC_INPUT_INT)))
+    {
+        /* For now KVM disregards the 'irq' argument. However, in the
+         * future KVM could cache it in-kernel to avoid a heavyweight exit
+         * when reading the UIC.
+         */
+        irq = KVM_INTERRUPT_SET;
+
+        DPRINTF("injected interrupt %d\n", irq);
+        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
+        if (r < 0) {
+            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
+        }
+
+        /* Always wake up soon in case the interrupt was level based */
+        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+                       (get_ticks_per_sec() / 50));
+    }
+
+    /* We don't know if there are more interrupts pending after this. However,
+     * the guest will return to userspace in the course of handling this one
+     * anyways, so we will get a chance to deliver the rest. */
+
+    qemu_mutex_unlock_iothread();
+}
+
+MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
+{
+    return MEMTXATTRS_UNSPECIFIED;
+}
+
+int kvm_arch_process_async_events(CPUState *cs)
+{
+    return cs->halted;
+}
+
+static int kvmppc_handle_halt(PowerPCCPU *cpu)
+{
+    CPUState *cs = CPU(cpu);
+    CPUPPCState *env = &cpu->env;
+
+    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
+        cs->halted = 1;
+        cs->exception_index = EXCP_HLT;
+    }
+
+    return 0;
+}
+
+/* map dcr access to existing qemu dcr emulation */
+static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
+{
+    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
+        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
+
+    return 0;
+}
+
+static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
+{
+    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
+        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
+
+    return 0;
+}
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    /* Mixed endian case is not handled */
+    uint32_t sc = debug_inst_opcode;
+
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
+                            sizeof(sc), 0) ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
+        return -EINVAL;
+    }
+
+    return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    uint32_t sc;
+
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
+        sc != debug_inst_opcode ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
+                            sizeof(sc), 1)) {
+        return -EINVAL;
+    }
+
+    return 0;
+}
+
+static int find_hw_breakpoint(target_ulong addr, int type)
+{
+    int n;
+
+    assert((nb_hw_breakpoint + nb_hw_watchpoint)
+           <= ARRAY_SIZE(hw_debug_points));
+
+    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
+        if (hw_debug_points[n].addr == addr &&
+             hw_debug_points[n].type == type) {
+            return n;
+        }
+    }
+
+    return -1;
+}
+
+static int find_hw_watchpoint(target_ulong addr, int *flag)
+{
+    int n;
+
+    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
+    if (n >= 0) {
+        *flag = BP_MEM_ACCESS;
+        return n;
+    }
+
+    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
+    if (n >= 0) {
+        *flag = BP_MEM_WRITE;
+        return n;
+    }
+
+    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
+    if (n >= 0) {
+        *flag = BP_MEM_READ;
+        return n;
+    }
+
+    return -1;
+}
+
+int kvm_arch_insert_hw_breakpoint(target_ulong addr,
+                                  target_ulong len, int type)
+{
+    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
+        return -ENOBUFS;
+    }
+
+    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
+    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
+
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        if (nb_hw_breakpoint >= max_hw_breakpoint) {
+            return -ENOBUFS;
+        }
+
+        if (find_hw_breakpoint(addr, type) >= 0) {
+            return -EEXIST;
+        }
+
+        nb_hw_breakpoint++;
+        break;
+
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_ACCESS:
+        if (nb_hw_watchpoint >= max_hw_watchpoint) {
+            return -ENOBUFS;
+        }
+
+        if (find_hw_breakpoint(addr, type) >= 0) {
+            return -EEXIST;
+        }
+
+        nb_hw_watchpoint++;
+        break;
+
+    default:
+        return -ENOSYS;
+    }
+
+    return 0;
+}
+
+int kvm_arch_remove_hw_breakpoint(target_ulong addr,
+                                  target_ulong len, int type)
+{
+    int n;
+
+    n = find_hw_breakpoint(addr, type);
+    if (n < 0) {
+        return -ENOENT;
+    }
+
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        nb_hw_breakpoint--;
+        break;
+
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_ACCESS:
+        nb_hw_watchpoint--;
+        break;
+
+    default:
+        return -ENOSYS;
+    }
+    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
+
+    return 0;
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+    nb_hw_breakpoint = nb_hw_watchpoint = 0;
+}
+
+void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
+{
+    int n;
+
+    /* Software Breakpoint updates */
+    if (kvm_sw_breakpoints_active(cs)) {
+        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
+    }
+
+    assert((nb_hw_breakpoint + nb_hw_watchpoint)
+           <= ARRAY_SIZE(hw_debug_points));
+    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
+
+    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
+        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
+        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
+        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
+            switch (hw_debug_points[n].type) {
+            case GDB_BREAKPOINT_HW:
+                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
+                break;
+            case GDB_WATCHPOINT_WRITE:
+                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
+                break;
+            case GDB_WATCHPOINT_READ:
+                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
+                break;
+            case GDB_WATCHPOINT_ACCESS:
+                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
+                                        KVMPPC_DEBUG_WATCH_READ;
+                break;
+            default:
+                cpu_abort(cs, "Unsupported breakpoint type\n");
+            }
+            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
+        }
+    }
+}
+
+static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
+{
+    CPUState *cs = CPU(cpu);
+    CPUPPCState *env = &cpu->env;
+    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
+    int handle = 0;
+    int n;
+    int flag = 0;
+
+    if (cs->singlestep_enabled) {
+        handle = 1;
+    } else if (arch_info->status) {
+        if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
+            if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
+                n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
+                if (n >= 0) {
+                    handle = 1;
+                }
+            } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
+                                            KVMPPC_DEBUG_WATCH_WRITE)) {
+                n = find_hw_watchpoint(arch_info->address,  &flag);
+                if (n >= 0) {
+                    handle = 1;
+                    cs->watchpoint_hit = &hw_watchpoint;
+                    hw_watchpoint.vaddr = hw_debug_points[n].addr;
+                    hw_watchpoint.flags = flag;
+                }
+            }
+        }
+    } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
+        handle = 1;
+    } else {
+        /* QEMU is not able to handle debug exception, so inject
+         * program exception to guest;
+         * Yes program exception NOT debug exception !!
+         * When QEMU is using debug resources then debug exception must
+         * be always set. To achieve this we set MSR_DE and also set
+         * MSRP_DEP so guest cannot change MSR_DE.
+         * When emulating debug resource for guest we want guest
+         * to control MSR_DE (enable/disable debug interrupt on need).
+         * Supporting both configurations are NOT possible.
+         * So the result is that we cannot share debug resources
+         * between QEMU and Guest on BOOKE architecture.
+         * In the current design QEMU gets the priority over guest,
+         * this means that if QEMU is using debug resources then guest
+         * cannot use them;
+         * For software breakpoint QEMU uses a privileged instruction;
+         * So there cannot be any reason that we are here for guest
+         * set debug exception, only possibility is guest executed a
+         * privileged / illegal instruction and that's why we are
+         * injecting a program interrupt.
+         */
+
+        cpu_synchronize_state(cs);
+        /* env->nip is PC, so increment this by 4 to use
+         * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
+         */
+        env->nip += 4;
+        cs->exception_index = POWERPC_EXCP_PROGRAM;
+        env->error_code = POWERPC_EXCP_INVAL;
+        ppc_cpu_do_interrupt(cs);
+    }
+
+    return handle;
+}
+
+int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
+{
+    PowerPCCPU *cpu = POWERPC_CPU(cs);
+    CPUPPCState *env = &cpu->env;
+    int ret;
+
+    qemu_mutex_lock_iothread();
+
+    switch (run->exit_reason) {
+    case KVM_EXIT_DCR:
+        if (run->dcr.is_write) {
+            DPRINTF("handle dcr write\n");
+            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
+        } else {
+            DPRINTF("handle dcr read\n");
+            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
+        }
+        break;
+    case KVM_EXIT_HLT:
+        DPRINTF("handle halt\n");
+        ret = kvmppc_handle_halt(cpu);
+        break;
+#if defined(TARGET_PPC64)
+    case KVM_EXIT_PAPR_HCALL:
+        DPRINTF("handle PAPR hypercall\n");
+        run->papr_hcall.ret = spapr_hypercall(cpu,
+                                              run->papr_hcall.nr,
+                                              run->papr_hcall.args);
+        ret = 0;
+        break;
+#endif
+    case KVM_EXIT_EPR:
+        DPRINTF("handle epr\n");
+        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
+        ret = 0;
+        break;
+    case KVM_EXIT_WATCHDOG:
+        DPRINTF("handle watchdog expiry\n");
+        watchdog_perform_action();
+        ret = 0;
+        break;
+
+    case KVM_EXIT_DEBUG:
+        DPRINTF("handle debug exception\n");
+        if (kvm_handle_debug(cpu, run)) {
+            ret = EXCP_DEBUG;
+            break;
+        }
+        /* re-enter, this exception was guest-internal */
+        ret = 0;
+        break;
+
+    default:
+        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
+        ret = -1;
+        break;
+    }
+
+    qemu_mutex_unlock_iothread();
+    return ret;
+}
+
+int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
+{
+    CPUState *cs = CPU(cpu);
+    uint32_t bits = tsr_bits;
+    struct kvm_one_reg reg = {
+        .id = KVM_REG_PPC_OR_TSR,
+        .addr = (uintptr_t) &bits,
+    };
+
+    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+}
+
+int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
+{
+
+    CPUState *cs = CPU(cpu);
+    uint32_t bits = tsr_bits;
+    struct kvm_one_reg reg = {
+        .id = KVM_REG_PPC_CLEAR_TSR,
+        .addr = (uintptr_t) &bits,
+    };
+
+    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+}
+
+int kvmppc_set_tcr(PowerPCCPU *cpu)
+{
+    CPUState *cs = CPU(cpu);
+    CPUPPCState *env = &cpu->env;
+    uint32_t tcr = env->spr[SPR_BOOKE_TCR];
+
+    struct kvm_one_reg reg = {
+        .id = KVM_REG_PPC_TCR,
+        .addr = (uintptr_t) &tcr,
+    };
+
+    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+}
+
+int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
+{
+    CPUState *cs = CPU(cpu);
+    int ret;
+
+    if (!kvm_enabled()) {
+        return -1;
+    }
+
+    if (!cap_ppc_watchdog) {
+        printf("warning: KVM does not support watchdog");
+        return -1;
+    }
+
+    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
+    if (ret < 0) {
+        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
+                __func__, strerror(-ret));
+        return ret;
+    }
+
+    return ret;
+}
+
+static int read_cpuinfo(const char *field, char *value, int len)
+{
+    FILE *f;
+    int ret = -1;
+    int field_len = strlen(field);
+    char line[512];
+
+    f = fopen("/proc/cpuinfo", "r");
+    if (!f) {
+        return -1;
+    }
+
+    do {
+        if (!fgets(line, sizeof(line), f)) {
+            break;
+        }
+        if (!strncmp(line, field, field_len)) {
+            pstrcpy(value, len, line);
+            ret = 0;
+            break;
+        }
+    } while(*line);
+
+    fclose(f);
+
+    return ret;
+}
+
+uint32_t kvmppc_get_tbfreq(void)
+{
+    char line[512];
+    char *ns;
+    uint32_t retval = get_ticks_per_sec();
+
+    if (read_cpuinfo("timebase", line, sizeof(line))) {
+        return retval;
+    }
+
+    if (!(ns = strchr(line, ':'))) {
+        return retval;
+    }
+
+    ns++;
+
+    retval = atoi(ns);
+    return retval;
+}
+
+bool kvmppc_get_host_serial(char **value)
+{
+    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
+                               NULL);
+}
+
+bool kvmppc_get_host_model(char **value)
+{
+    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
+}
+
+/* Try to find a device tree node for a CPU with clock-frequency property */
+static int kvmppc_find_cpu_dt(char *buf, int buf_len)
+{
+    struct dirent *dirp;
+    DIR *dp;
+
+    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
+        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
+        return -1;
+    }
+
+    buf[0] = '\0';
+    while ((dirp = readdir(dp)) != NULL) {
+        FILE *f;
+        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
+                 dirp->d_name);
+        f = fopen(buf, "r");
+        if (f) {
+            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
+            fclose(f);
+            break;
+        }
+        buf[0] = '\0';
+    }
+    closedir(dp);
+    if (buf[0] == '\0') {
+        printf("Unknown host!\n");
+        return -1;
+    }
+
+    return 0;
+}
+
+/* Read a CPU node property from the host device tree that's a single
+ * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
+ * (can't find or open the property, or doesn't understand the
+ * format) */
+static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
+{
+    char buf[PATH_MAX], *tmp;
+    union {
+        uint32_t v32;
+        uint64_t v64;
+    } u;
+    FILE *f;
+    int len;
+
+    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
+        return -1;
+    }
+
+    tmp = g_strdup_printf("%s/%s", buf, propname);
+
+    f = fopen(tmp, "rb");
+    g_free(tmp);
+    if (!f) {
+        return -1;
+    }
+
+    len = fread(&u, 1, sizeof(u), f);
+    fclose(f);
+    switch (len) {
+    case 4:
+        /* property is a 32-bit quantity */
+        return be32_to_cpu(u.v32);
+    case 8:
+        return be64_to_cpu(u.v64);
+    }
+
+    return 0;
+}
+
+uint64_t kvmppc_get_clockfreq(void)
+{
+    return kvmppc_read_int_cpu_dt("clock-frequency");
+}
+
+uint32_t kvmppc_get_vmx(void)
+{
+    return kvmppc_read_int_cpu_dt("ibm,vmx");
+}
+
+uint32_t kvmppc_get_dfp(void)
+{
+    return kvmppc_read_int_cpu_dt("ibm,dfp");
+}
+
+static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
+ {
+     PowerPCCPU *cpu = ppc_env_get_cpu(env);
+     CPUState *cs = CPU(cpu);
+
+    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
+        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
+        return 0;
+    }
+
+    return 1;
+}
+
+int kvmppc_get_hasidle(CPUPPCState *env)
+{
+    struct kvm_ppc_pvinfo pvinfo;
+
+    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
+        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
+        return 1;
+    }
+
+    return 0;
+}
+
+int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
+{
+    uint32_t *hc = (uint32_t*)buf;
+    struct kvm_ppc_pvinfo pvinfo;
+
+    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
+        memcpy(buf, pvinfo.hcall, buf_len);
+        return 0;
+    }
+
+    /*
+     * Fallback to always fail hypercalls regardless of endianness:
+     *
+     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
+     *     li r3, -1
+     *     b .+8       (becomes nop in wrong endian)
+     *     bswap32(li r3, -1)
+     */
+
+    hc[0] = cpu_to_be32(0x08000048);
+    hc[1] = cpu_to_be32(0x3860ffff);
+    hc[2] = cpu_to_be32(0x48000008);
+    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
+
+    return 0;
+}
+
+static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
+{
+    return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
+}
+
+void kvmppc_enable_logical_ci_hcalls(void)
+{
+    /*
+     * FIXME: it would be nice if we could detect the cases where
+     * we're using a device which requires the in kernel
+     * implementation of these hcalls, but the kernel lacks them and
+     * produce a warning.
+     */
+    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
+    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
+}
+
+void kvmppc_set_papr(PowerPCCPU *cpu)
+{
+    CPUState *cs = CPU(cpu);
+    int ret;
+
+    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
+    if (ret) {
+        cpu_abort(cs, "This KVM version does not support PAPR\n");
+    }
+
+    /* Update the capability flag so we sync the right information
+     * with kvm */
+    cap_papr = 1;
+}
+
+int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
+{
+    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
+}
+
+void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
+{
+    CPUState *cs = CPU(cpu);
+    int ret;
+
+    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
+    if (ret && mpic_proxy) {
+        cpu_abort(cs, "This KVM version does not support EPR\n");
+    }
+}
+
+int kvmppc_smt_threads(void)
+{
+    return cap_ppc_smt ? cap_ppc_smt : 1;
+}
+
+#ifdef TARGET_PPC64
+off_t kvmppc_alloc_rma(void **rma)
+{
+    off_t size;
+    int fd;
+    struct kvm_allocate_rma ret;
+
+    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
+     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
+     *                      not necessary on this hardware
+     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
+     *
+     * FIXME: We should allow the user to force contiguous RMA
+     * allocation in the cap_ppc_rma==1 case.
+     */
+    if (cap_ppc_rma < 2) {
+        return 0;
+    }
+
+    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
+    if (fd < 0) {
+        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
+                strerror(errno));
+        return -1;
+    }
+
+    size = MIN(ret.rma_size, 256ul << 20);
+
+    *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
+    if (*rma == MAP_FAILED) {
+        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
+        return -1;
+    };
+
+    return size;
+}
+
+uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
+{
+    struct kvm_ppc_smmu_info info;
+    long rampagesize, best_page_shift;
+    int i;
+
+    if (cap_ppc_rma >= 2) {
+        return current_size;
+    }
+
+    /* Find the largest hardware supported page size that's less than
+     * or equal to the (logical) backing page size of guest RAM */
+    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
+    rampagesize = getrampagesize();
+    best_page_shift = 0;
+
+    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
+        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
+
+        if (!sps->page_shift) {
+            continue;
+        }
+
+        if ((sps->page_shift > best_page_shift)
+            && ((1UL << sps->page_shift) <= rampagesize)) {
+            best_page_shift = sps->page_shift;
+        }
+    }
+
+    return MIN(current_size,
+               1ULL << (best_page_shift + hash_shift - 7));
+}
+#endif
+
+bool kvmppc_spapr_use_multitce(void)
+{
+    return cap_spapr_multitce;
+}
+
+void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
+                              bool vfio_accel)
+{
+    struct kvm_create_spapr_tce args = {
+        .liobn = liobn,
+        .window_size = window_size,
+    };
+    long len;
+    int fd;
+    void *table;
+
+    /* Must set fd to -1 so we don't try to munmap when called for
+     * destroying the table, which the upper layers -will- do
+     */
+    *pfd = -1;
+    if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) {
+        return NULL;
+    }
+
+    fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
+    if (fd < 0) {
+        fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
+                liobn);
+        return NULL;
+    }
+
+    len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
+    /* FIXME: round this up to page size */
+
+    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
+    if (table == MAP_FAILED) {
+        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
+                liobn);
+        close(fd);
+        return NULL;
+    }
+
+    *pfd = fd;
+    return table;
+}
+
+int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
+{
+    long len;
+
+    if (fd < 0) {
+        return -1;
+    }
+
+    len = nb_table * sizeof(uint64_t);
+    if ((munmap(table, len) < 0) ||
+        (close(fd) < 0)) {
+        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
+                strerror(errno));
+        /* Leak the table */
+    }
+
+    return 0;
+}
+
+int kvmppc_reset_htab(int shift_hint)
+{
+    uint32_t shift = shift_hint;
+
+    if (!kvm_enabled()) {
+        /* Full emulation, tell caller to allocate htab itself */
+        return 0;
+    }
+    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
+        int ret;
+        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
+        if (ret == -ENOTTY) {
+            /* At least some versions of PR KVM advertise the
+             * capability, but don't implement the ioctl().  Oops.
+             * Return 0 so that we allocate the htab in qemu, as is
+             * correct for PR. */
+            return 0;
+        } else if (ret < 0) {
+            return ret;
+        }
+        return shift;
+    }
+
+    /* We have a kernel that predates the htab reset calls.  For PR
+     * KVM, we need to allocate the htab ourselves, for an HV KVM of
+     * this era, it has allocated a 16MB fixed size hash table
+     * already.  Kernels of this era have the GET_PVINFO capability
+     * only on PR, so we use this hack to determine the right
+     * answer */
+    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
+        /* PR - tell caller to allocate htab */
+        return 0;
+    } else {
+        /* HV - assume 16MB kernel allocated htab */
+        return 24;
+    }
+}
+
+static inline uint32_t mfpvr(void)
+{
+    uint32_t pvr;
+
+    asm ("mfpvr %0"
+         : "=r"(pvr));
+    return pvr;
+}
+
+static void alter_insns(uint64_t *word, uint64_t flags, bool on)
+{
+    if (on) {
+        *word |= flags;
+    } else {
+        *word &= ~flags;
+    }
+}
+
+static void kvmppc_host_cpu_initfn(Object *obj)
+{
+    assert(kvm_enabled());
+}
+
+static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
+{
+    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
+    uint32_t vmx = kvmppc_get_vmx();
+    uint32_t dfp = kvmppc_get_dfp();
+    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
+    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
+
+    /* Now fix up the class with information we can query from the host */
+    pcc->pvr = mfpvr();
+
+    if (vmx != -1) {
+        /* Only override when we know what the host supports */
+        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
+        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
+    }
+    if (dfp != -1) {
+        /* Only override when we know what the host supports */
+        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
+    }
+
+    if (dcache_size != -1) {
+        pcc->l1_dcache_size = dcache_size;
+    }
+
+    if (icache_size != -1) {
+        pcc->l1_icache_size = icache_size;
+    }
+}
+
+bool kvmppc_has_cap_epr(void)
+{
+    return cap_epr;
+}
+
+bool kvmppc_has_cap_htab_fd(void)
+{
+    return cap_htab_fd;
+}
+
+bool kvmppc_has_cap_fixup_hcalls(void)
+{
+    return cap_fixup_hcalls;
+}
+
+static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
+{
+    ObjectClass *oc = OBJECT_CLASS(pcc);
+
+    while (oc && !object_class_is_abstract(oc)) {
+        oc = object_class_get_parent(oc);
+    }
+    assert(oc);
+
+    return POWERPC_CPU_CLASS(oc);
+}
+
+static int kvm_ppc_register_host_cpu_type(void)
+{
+    TypeInfo type_info = {
+        .name = TYPE_HOST_POWERPC_CPU,
+        .instance_init = kvmppc_host_cpu_initfn,
+        .class_init = kvmppc_host_cpu_class_init,
+    };
+    uint32_t host_pvr = mfpvr();
+    PowerPCCPUClass *pvr_pcc;
+    DeviceClass *dc;
+
+    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
+    if (pvr_pcc == NULL) {
+        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
+    }
+    if (pvr_pcc == NULL) {
+        return -1;
+    }
+    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
+    type_register(&type_info);
+
+    /* Register generic family CPU class for a family */
+    pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
+    dc = DEVICE_CLASS(pvr_pcc);
+    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
+    type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
+    type_register(&type_info);
+
+    return 0;
+}
+
+int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
+{
+    struct kvm_rtas_token_args args = {
+        .token = token,
+    };
+
+    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
+        return -ENOENT;
+    }
+
+    strncpy(args.name, function, sizeof(args.name));
+
+    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
+}
+
+int kvmppc_get_htab_fd(bool write)
+{
+    struct kvm_get_htab_fd s = {
+        .flags = write ? KVM_GET_HTAB_WRITE : 0,
+        .start_index = 0,
+    };
+
+    if (!cap_htab_fd) {
+        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
+        return -1;
+    }
+
+    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
+}
+
+int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
+{
+    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
+    uint8_t buf[bufsize];
+    ssize_t rc;
+
+    do {
+        rc = read(fd, buf, bufsize);
+        if (rc < 0) {
+            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
+                    strerror(errno));
+            return rc;
+        } else if (rc) {
+            uint8_t *buffer = buf;
+            ssize_t n = rc;
+            while (n) {
+                struct kvm_get_htab_header *head =
+                    (struct kvm_get_htab_header *) buffer;
+                size_t chunksize = sizeof(*head) +
+                     HASH_PTE_SIZE_64 * head->n_valid;
+
+                qemu_put_be32(f, head->index);
+                qemu_put_be16(f, head->n_valid);
+                qemu_put_be16(f, head->n_invalid);
+                qemu_put_buffer(f, (void *)(head + 1),
+                                HASH_PTE_SIZE_64 * head->n_valid);
+
+                buffer += chunksize;
+                n -= chunksize;
+            }
+        }
+    } while ((rc != 0)
+             && ((max_ns < 0)
+                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
+
+    return (rc == 0) ? 1 : 0;
+}
+
+int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
+                           uint16_t n_valid, uint16_t n_invalid)
+{
+    struct kvm_get_htab_header *buf;
+    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
+    ssize_t rc;
+
+    buf = alloca(chunksize);
+    buf->index = index;
+    buf->n_valid = n_valid;
+    buf->n_invalid = n_invalid;
+
+    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
+
+    rc = write(fd, buf, chunksize);
+    if (rc < 0) {
+        fprintf(stderr, "Error writing KVM hash table: %s\n",
+                strerror(errno));
+        return rc;
+    }
+    if (rc != chunksize) {
+        /* We should never get a short write on a single chunk */
+        fprintf(stderr, "Short write, restoring KVM hash table\n");
+        return -1;
+    }
+    return 0;
+}
+
+bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
+{
+    return true;
+}
+
+int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
+{
+    return 1;
+}
+
+int kvm_arch_on_sigbus(int code, void *addr)
+{
+    return 1;
+}
+
+void kvm_arch_init_irq_routing(KVMState *s)
+{
+}
+
+struct kvm_get_htab_buf {
+    struct kvm_get_htab_header header;
+    /*
+     * We require one extra byte for read
+     */
+    target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
+};
+
+uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
+{
+    int htab_fd;
+    struct kvm_get_htab_fd ghf;
+    struct kvm_get_htab_buf  *hpte_buf;
+
+    ghf.flags = 0;
+    ghf.start_index = pte_index;
+    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
+    if (htab_fd < 0) {
+        goto error_out;
+    }
+
+    hpte_buf = g_malloc0(sizeof(*hpte_buf));
+    /*
+     * Read the hpte group
+     */
+    if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
+        goto out_close;
+    }
+
+    close(htab_fd);
+    return (uint64_t)(uintptr_t) hpte_buf->hpte;
+
+out_close:
+    g_free(hpte_buf);
+    close(htab_fd);
+error_out:
+    return 0;
+}
+
+void kvmppc_hash64_free_pteg(uint64_t token)
+{
+    struct kvm_get_htab_buf *htab_buf;
+
+    htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
+                            hpte);
+    g_free(htab_buf);
+    return;
+}
+
+void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
+                             target_ulong pte0, target_ulong pte1)
+{
+    int htab_fd;
+    struct kvm_get_htab_fd ghf;
+    struct kvm_get_htab_buf hpte_buf;
+
+    ghf.flags = 0;
+    ghf.start_index = 0;     /* Ignored */
+    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
+    if (htab_fd < 0) {
+        goto error_out;
+    }
+
+    hpte_buf.header.n_valid = 1;
+    hpte_buf.header.n_invalid = 0;
+    hpte_buf.header.index = pte_index;
+    hpte_buf.hpte[0] = pte0;
+    hpte_buf.hpte[1] = pte1;
+    /*
+     * Write the hpte entry.
+     * CAUTION: write() has the warn_unused_result attribute. Hence we
+     * need to check the return value, even though we do nothing.
+     */
+    if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
+        goto out_close;
+    }
+
+out_close:
+    close(htab_fd);
+    return;
+
+error_out:
+    return;
+}
+
+int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
+                             uint64_t address, uint32_t data)
+{
+    return 0;
+}
+
+int kvm_arch_msi_data_to_gsi(uint32_t data)
+{
+    return data & 0xffff;
+}