Add qemu 2.4.0
[kvmfornfv.git] / qemu / target-arm / neon_helper.c
diff --git a/qemu/target-arm/neon_helper.c b/qemu/target-arm/neon_helper.c
new file mode 100644 (file)
index 0000000..47d13e9
--- /dev/null
@@ -0,0 +1,2243 @@
+/*
+ * ARM NEON vector operations.
+ *
+ * Copyright (c) 2007, 2008 CodeSourcery.
+ * Written by Paul Brook
+ *
+ * This code is licensed under the GNU GPL v2.
+ */
+#include <stdlib.h>
+#include <stdio.h>
+
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/helper-proto.h"
+
+#define SIGNBIT (uint32_t)0x80000000
+#define SIGNBIT64 ((uint64_t)1 << 63)
+
+#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
+
+#define NEON_TYPE1(name, type) \
+typedef struct \
+{ \
+    type v1; \
+} neon_##name;
+#ifdef HOST_WORDS_BIGENDIAN
+#define NEON_TYPE2(name, type) \
+typedef struct \
+{ \
+    type v2; \
+    type v1; \
+} neon_##name;
+#define NEON_TYPE4(name, type) \
+typedef struct \
+{ \
+    type v4; \
+    type v3; \
+    type v2; \
+    type v1; \
+} neon_##name;
+#else
+#define NEON_TYPE2(name, type) \
+typedef struct \
+{ \
+    type v1; \
+    type v2; \
+} neon_##name;
+#define NEON_TYPE4(name, type) \
+typedef struct \
+{ \
+    type v1; \
+    type v2; \
+    type v3; \
+    type v4; \
+} neon_##name;
+#endif
+
+NEON_TYPE4(s8, int8_t)
+NEON_TYPE4(u8, uint8_t)
+NEON_TYPE2(s16, int16_t)
+NEON_TYPE2(u16, uint16_t)
+NEON_TYPE1(s32, int32_t)
+NEON_TYPE1(u32, uint32_t)
+#undef NEON_TYPE4
+#undef NEON_TYPE2
+#undef NEON_TYPE1
+
+/* Copy from a uint32_t to a vector structure type.  */
+#define NEON_UNPACK(vtype, dest, val) do { \
+    union { \
+        vtype v; \
+        uint32_t i; \
+    } conv_u; \
+    conv_u.i = (val); \
+    dest = conv_u.v; \
+    } while(0)
+
+/* Copy from a vector structure type to a uint32_t.  */
+#define NEON_PACK(vtype, dest, val) do { \
+    union { \
+        vtype v; \
+        uint32_t i; \
+    } conv_u; \
+    conv_u.v = (val); \
+    dest = conv_u.i; \
+    } while(0)
+
+#define NEON_DO1 \
+    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
+#define NEON_DO2 \
+    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
+    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
+#define NEON_DO4 \
+    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
+    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
+    NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
+    NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
+
+#define NEON_VOP_BODY(vtype, n) \
+{ \
+    uint32_t res; \
+    vtype vsrc1; \
+    vtype vsrc2; \
+    vtype vdest; \
+    NEON_UNPACK(vtype, vsrc1, arg1); \
+    NEON_UNPACK(vtype, vsrc2, arg2); \
+    NEON_DO##n; \
+    NEON_PACK(vtype, res, vdest); \
+    return res; \
+}
+
+#define NEON_VOP(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
+NEON_VOP_BODY(vtype, n)
+
+#define NEON_VOP_ENV(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
+NEON_VOP_BODY(vtype, n)
+
+/* Pairwise operations.  */
+/* For 32-bit elements each segment only contains a single element, so
+   the elementwise and pairwise operations are the same.  */
+#define NEON_PDO2 \
+    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
+    NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
+#define NEON_PDO4 \
+    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
+    NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
+    NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
+    NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
+
+#define NEON_POP(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
+{ \
+    uint32_t res; \
+    vtype vsrc1; \
+    vtype vsrc2; \
+    vtype vdest; \
+    NEON_UNPACK(vtype, vsrc1, arg1); \
+    NEON_UNPACK(vtype, vsrc2, arg2); \
+    NEON_PDO##n; \
+    NEON_PACK(vtype, res, vdest); \
+    return res; \
+}
+
+/* Unary operators.  */
+#define NEON_VOP1(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
+{ \
+    vtype vsrc1; \
+    vtype vdest; \
+    NEON_UNPACK(vtype, vsrc1, arg); \
+    NEON_DO##n; \
+    NEON_PACK(vtype, arg, vdest); \
+    return arg; \
+}
+
+
+#define NEON_USAT(dest, src1, src2, type) do { \
+    uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
+    if (tmp != (type)tmp) { \
+        SET_QC(); \
+        dest = ~0; \
+    } else { \
+        dest = tmp; \
+    }} while(0)
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
+NEON_VOP_ENV(qadd_u8, neon_u8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
+NEON_VOP_ENV(qadd_u16, neon_u16, 2)
+#undef NEON_FN
+#undef NEON_USAT
+
+uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    uint32_t res = a + b;
+    if (res < a) {
+        SET_QC();
+        res = ~0;
+    }
+    return res;
+}
+
+uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+    uint64_t res;
+
+    res = src1 + src2;
+    if (res < src1) {
+        SET_QC();
+        res = ~(uint64_t)0;
+    }
+    return res;
+}
+
+#define NEON_SSAT(dest, src1, src2, type) do { \
+    int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
+    if (tmp != (type)tmp) { \
+        SET_QC(); \
+        if (src2 > 0) { \
+            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
+        } else { \
+            tmp = 1 << (sizeof(type) * 8 - 1); \
+        } \
+    } \
+    dest = tmp; \
+    } while(0)
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
+NEON_VOP_ENV(qadd_s8, neon_s8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
+NEON_VOP_ENV(qadd_s16, neon_s16, 2)
+#undef NEON_FN
+#undef NEON_SSAT
+
+uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    uint32_t res = a + b;
+    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
+        SET_QC();
+        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
+    }
+    return res;
+}
+
+uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+    uint64_t res;
+
+    res = src1 + src2;
+    if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
+        SET_QC();
+        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
+    }
+    return res;
+}
+
+/* Unsigned saturating accumulate of signed value
+ *
+ * Op1/Rn is treated as signed
+ * Op2/Rd is treated as unsigned
+ *
+ * Explicit casting is used to ensure the correct sign extension of
+ * inputs. The result is treated as a unsigned value and saturated as such.
+ *
+ * We use a macro for the 8/16 bit cases which expects signed integers of va,
+ * vb, and vr for interim calculation and an unsigned 32 bit result value r.
+ */
+
+#define USATACC(bits, shift) \
+    do { \
+        va = sextract32(a, shift, bits);                                \
+        vb = extract32(b, shift, bits);                                 \
+        vr = va + vb;                                                   \
+        if (vr > UINT##bits##_MAX) {                                    \
+            SET_QC();                                                   \
+            vr = UINT##bits##_MAX;                                      \
+        } else if (vr < 0) {                                            \
+            SET_QC();                                                   \
+            vr = 0;                                                     \
+        }                                                               \
+        r = deposit32(r, shift, bits, vr);                              \
+   } while (0)
+
+uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    int16_t va, vb, vr;
+    uint32_t r = 0;
+
+    USATACC(8, 0);
+    USATACC(8, 8);
+    USATACC(8, 16);
+    USATACC(8, 24);
+    return r;
+}
+
+uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    int32_t va, vb, vr;
+    uint64_t r = 0;
+
+    USATACC(16, 0);
+    USATACC(16, 16);
+    return r;
+}
+
+#undef USATACC
+
+uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    int64_t va = (int32_t)a;
+    int64_t vb = (uint32_t)b;
+    int64_t vr = va + vb;
+    if (vr > UINT32_MAX) {
+        SET_QC();
+        vr = UINT32_MAX;
+    } else if (vr < 0) {
+        SET_QC();
+        vr = 0;
+    }
+    return vr;
+}
+
+uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+    uint64_t res;
+    res = a + b;
+    /* We only need to look at the pattern of SIGN bits to detect
+     * +ve/-ve saturation
+     */
+    if (~a & b & ~res & SIGNBIT64) {
+        SET_QC();
+        res = UINT64_MAX;
+    } else if (a & ~b & res & SIGNBIT64) {
+        SET_QC();
+        res = 0;
+    }
+    return res;
+}
+
+/* Signed saturating accumulate of unsigned value
+ *
+ * Op1/Rn is treated as unsigned
+ * Op2/Rd is treated as signed
+ *
+ * The result is treated as a signed value and saturated as such
+ *
+ * We use a macro for the 8/16 bit cases which expects signed integers of va,
+ * vb, and vr for interim calculation and an unsigned 32 bit result value r.
+ */
+
+#define SSATACC(bits, shift) \
+    do { \
+        va = extract32(a, shift, bits);                                 \
+        vb = sextract32(b, shift, bits);                                \
+        vr = va + vb;                                                   \
+        if (vr > INT##bits##_MAX) {                                     \
+            SET_QC();                                                   \
+            vr = INT##bits##_MAX;                                       \
+        } else if (vr < INT##bits##_MIN) {                              \
+            SET_QC();                                                   \
+            vr = INT##bits##_MIN;                                       \
+        }                                                               \
+        r = deposit32(r, shift, bits, vr);                              \
+    } while (0)
+
+uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    int16_t va, vb, vr;
+    uint32_t r = 0;
+
+    SSATACC(8, 0);
+    SSATACC(8, 8);
+    SSATACC(8, 16);
+    SSATACC(8, 24);
+    return r;
+}
+
+uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    int32_t va, vb, vr;
+    uint32_t r = 0;
+
+    SSATACC(16, 0);
+    SSATACC(16, 16);
+
+    return r;
+}
+
+#undef SSATACC
+
+uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    int64_t res;
+    int64_t op1 = (uint32_t)a;
+    int64_t op2 = (int32_t)b;
+    res = op1 + op2;
+    if (res > INT32_MAX) {
+        SET_QC();
+        res = INT32_MAX;
+    } else if (res < INT32_MIN) {
+        SET_QC();
+        res = INT32_MIN;
+    }
+    return res;
+}
+
+uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+    uint64_t res;
+    res = a + b;
+    /* We only need to look at the pattern of SIGN bits to detect an overflow */
+    if (((a & res)
+         | (~b & res)
+         | (a & ~b)) & SIGNBIT64) {
+        SET_QC();
+        res = INT64_MAX;
+    }
+    return res;
+}
+
+
+#define NEON_USAT(dest, src1, src2, type) do { \
+    uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
+    if (tmp != (type)tmp) { \
+        SET_QC(); \
+        dest = 0; \
+    } else { \
+        dest = tmp; \
+    }} while(0)
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
+NEON_VOP_ENV(qsub_u8, neon_u8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
+NEON_VOP_ENV(qsub_u16, neon_u16, 2)
+#undef NEON_FN
+#undef NEON_USAT
+
+uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    uint32_t res = a - b;
+    if (res > a) {
+        SET_QC();
+        res = 0;
+    }
+    return res;
+}
+
+uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+    uint64_t res;
+
+    if (src1 < src2) {
+        SET_QC();
+        res = 0;
+    } else {
+        res = src1 - src2;
+    }
+    return res;
+}
+
+#define NEON_SSAT(dest, src1, src2, type) do { \
+    int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
+    if (tmp != (type)tmp) { \
+        SET_QC(); \
+        if (src2 < 0) { \
+            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
+        } else { \
+            tmp = 1 << (sizeof(type) * 8 - 1); \
+        } \
+    } \
+    dest = tmp; \
+    } while(0)
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
+NEON_VOP_ENV(qsub_s8, neon_s8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
+NEON_VOP_ENV(qsub_s16, neon_s16, 2)
+#undef NEON_FN
+#undef NEON_SSAT
+
+uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+    uint32_t res = a - b;
+    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
+        SET_QC();
+        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
+    }
+    return res;
+}
+
+uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+    uint64_t res;
+
+    res = src1 - src2;
+    if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
+        SET_QC();
+        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
+    }
+    return res;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
+NEON_VOP(hadd_s8, neon_s8, 4)
+NEON_VOP(hadd_u8, neon_u8, 4)
+NEON_VOP(hadd_s16, neon_s16, 2)
+NEON_VOP(hadd_u16, neon_u16, 2)
+#undef NEON_FN
+
+int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
+{
+    int32_t dest;
+
+    dest = (src1 >> 1) + (src2 >> 1);
+    if (src1 & src2 & 1)
+        dest++;
+    return dest;
+}
+
+uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
+{
+    uint32_t dest;
+
+    dest = (src1 >> 1) + (src2 >> 1);
+    if (src1 & src2 & 1)
+        dest++;
+    return dest;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
+NEON_VOP(rhadd_s8, neon_s8, 4)
+NEON_VOP(rhadd_u8, neon_u8, 4)
+NEON_VOP(rhadd_s16, neon_s16, 2)
+NEON_VOP(rhadd_u16, neon_u16, 2)
+#undef NEON_FN
+
+int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
+{
+    int32_t dest;
+
+    dest = (src1 >> 1) + (src2 >> 1);
+    if ((src1 | src2) & 1)
+        dest++;
+    return dest;
+}
+
+uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
+{
+    uint32_t dest;
+
+    dest = (src1 >> 1) + (src2 >> 1);
+    if ((src1 | src2) & 1)
+        dest++;
+    return dest;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
+NEON_VOP(hsub_s8, neon_s8, 4)
+NEON_VOP(hsub_u8, neon_u8, 4)
+NEON_VOP(hsub_s16, neon_s16, 2)
+NEON_VOP(hsub_u16, neon_u16, 2)
+#undef NEON_FN
+
+int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
+{
+    int32_t dest;
+
+    dest = (src1 >> 1) - (src2 >> 1);
+    if ((~src1) & src2 & 1)
+        dest--;
+    return dest;
+}
+
+uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
+{
+    uint32_t dest;
+
+    dest = (src1 >> 1) - (src2 >> 1);
+    if ((~src1) & src2 & 1)
+        dest--;
+    return dest;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
+NEON_VOP(cgt_s8, neon_s8, 4)
+NEON_VOP(cgt_u8, neon_u8, 4)
+NEON_VOP(cgt_s16, neon_s16, 2)
+NEON_VOP(cgt_u16, neon_u16, 2)
+NEON_VOP(cgt_s32, neon_s32, 1)
+NEON_VOP(cgt_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
+NEON_VOP(cge_s8, neon_s8, 4)
+NEON_VOP(cge_u8, neon_u8, 4)
+NEON_VOP(cge_s16, neon_s16, 2)
+NEON_VOP(cge_u16, neon_u16, 2)
+NEON_VOP(cge_s32, neon_s32, 1)
+NEON_VOP(cge_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
+NEON_VOP(min_s8, neon_s8, 4)
+NEON_VOP(min_u8, neon_u8, 4)
+NEON_VOP(min_s16, neon_s16, 2)
+NEON_VOP(min_u16, neon_u16, 2)
+NEON_VOP(min_s32, neon_s32, 1)
+NEON_VOP(min_u32, neon_u32, 1)
+NEON_POP(pmin_s8, neon_s8, 4)
+NEON_POP(pmin_u8, neon_u8, 4)
+NEON_POP(pmin_s16, neon_s16, 2)
+NEON_POP(pmin_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
+NEON_VOP(max_s8, neon_s8, 4)
+NEON_VOP(max_u8, neon_u8, 4)
+NEON_VOP(max_s16, neon_s16, 2)
+NEON_VOP(max_u16, neon_u16, 2)
+NEON_VOP(max_s32, neon_s32, 1)
+NEON_VOP(max_u32, neon_u32, 1)
+NEON_POP(pmax_s8, neon_s8, 4)
+NEON_POP(pmax_u8, neon_u8, 4)
+NEON_POP(pmax_s16, neon_s16, 2)
+NEON_POP(pmax_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) \
+    dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
+NEON_VOP(abd_s8, neon_s8, 4)
+NEON_VOP(abd_u8, neon_u8, 4)
+NEON_VOP(abd_s16, neon_s16, 2)
+NEON_VOP(abd_u16, neon_u16, 2)
+NEON_VOP(abd_s32, neon_s32, 1)
+NEON_VOP(abd_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
+        tmp <= -(ssize_t)sizeof(src1) * 8) { \
+        dest = 0; \
+    } else if (tmp < 0) { \
+        dest = src1 >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+    }} while (0)
+NEON_VOP(shl_u8, neon_u8, 4)
+NEON_VOP(shl_u16, neon_u16, 2)
+NEON_VOP(shl_u32, neon_u32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
+{
+    int8_t shift = (int8_t)shiftop;
+    if (shift >= 64 || shift <= -64) {
+        val = 0;
+    } else if (shift < 0) {
+        val >>= -shift;
+    } else {
+        val <<= shift;
+    }
+    return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+        dest = 0; \
+    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+        dest = src1 >> (sizeof(src1) * 8 - 1); \
+    } else if (tmp < 0) { \
+        dest = src1 >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+    }} while (0)
+NEON_VOP(shl_s8, neon_s8, 4)
+NEON_VOP(shl_s16, neon_s16, 2)
+NEON_VOP(shl_s32, neon_s32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
+{
+    int8_t shift = (int8_t)shiftop;
+    int64_t val = valop;
+    if (shift >= 64) {
+        val = 0;
+    } else if (shift <= -64) {
+        val >>= 63;
+    } else if (shift < 0) {
+        val >>= -shift;
+    } else {
+        val <<= shift;
+    }
+    return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if ((tmp >= (ssize_t)sizeof(src1) * 8) \
+        || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
+        dest = 0; \
+    } else if (tmp < 0) { \
+        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+    }} while (0)
+NEON_VOP(rshl_s8, neon_s8, 4)
+NEON_VOP(rshl_s16, neon_s16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator.  */
+uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
+{
+    int32_t dest;
+    int32_t val = (int32_t)valop;
+    int8_t shift = (int8_t)shiftop;
+    if ((shift >= 32) || (shift <= -32)) {
+        dest = 0;
+    } else if (shift < 0) {
+        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
+        dest = big_dest >> -shift;
+    } else {
+        dest = val << shift;
+    }
+    return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values.  */
+uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
+{
+    int8_t shift = (int8_t)shiftop;
+    int64_t val = valop;
+    if ((shift >= 64) || (shift <= -64)) {
+        val = 0;
+    } else if (shift < 0) {
+        val >>= (-shift - 1);
+        if (val == INT64_MAX) {
+            /* In this case, it means that the rounding constant is 1,
+             * and the addition would overflow. Return the actual
+             * result directly.  */
+            val = 0x4000000000000000LL;
+        } else {
+            val++;
+            val >>= 1;
+        }
+    } else {
+        val <<= shift;
+    }
+    return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
+        tmp < -(ssize_t)sizeof(src1) * 8) { \
+        dest = 0; \
+    } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
+        dest = src1 >> (-tmp - 1); \
+    } else if (tmp < 0) { \
+        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+    }} while (0)
+NEON_VOP(rshl_u8, neon_u8, 4)
+NEON_VOP(rshl_u16, neon_u16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator.  */
+uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
+{
+    uint32_t dest;
+    int8_t shift = (int8_t)shiftop;
+    if (shift >= 32 || shift < -32) {
+        dest = 0;
+    } else if (shift == -32) {
+        dest = val >> 31;
+    } else if (shift < 0) {
+        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
+        dest = big_dest >> -shift;
+    } else {
+        dest = val << shift;
+    }
+    return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values.  */
+uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
+{
+    int8_t shift = (uint8_t)shiftop;
+    if (shift >= 64 || shift < -64) {
+        val = 0;
+    } else if (shift == -64) {
+        /* Rounding a 1-bit result just preserves that bit.  */
+        val >>= 63;
+    } else if (shift < 0) {
+        val >>= (-shift - 1);
+        if (val == UINT64_MAX) {
+            /* In this case, it means that the rounding constant is 1,
+             * and the addition would overflow. Return the actual
+             * result directly.  */
+            val = 0x8000000000000000ULL;
+        } else {
+            val++;
+            val >>= 1;
+        }
+    } else {
+        val <<= shift;
+    }
+    return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+        if (src1) { \
+            SET_QC(); \
+            dest = ~0; \
+        } else { \
+            dest = 0; \
+        } \
+    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+        dest = 0; \
+    } else if (tmp < 0) { \
+        dest = src1 >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+        if ((dest >> tmp) != src1) { \
+            SET_QC(); \
+            dest = ~0; \
+        } \
+    }} while (0)
+NEON_VOP_ENV(qshl_u8, neon_u8, 4)
+NEON_VOP_ENV(qshl_u16, neon_u16, 2)
+NEON_VOP_ENV(qshl_u32, neon_u32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
+{
+    int8_t shift = (int8_t)shiftop;
+    if (shift >= 64) {
+        if (val) {
+            val = ~(uint64_t)0;
+            SET_QC();
+        }
+    } else if (shift <= -64) {
+        val = 0;
+    } else if (shift < 0) {
+        val >>= -shift;
+    } else {
+        uint64_t tmp = val;
+        val <<= shift;
+        if ((val >> shift) != tmp) {
+            SET_QC();
+            val = ~(uint64_t)0;
+        }
+    }
+    return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+        if (src1) { \
+            SET_QC(); \
+            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
+            if (src1 > 0) { \
+                dest--; \
+            } \
+        } else { \
+            dest = src1; \
+        } \
+    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+        dest = src1 >> 31; \
+    } else if (tmp < 0) { \
+        dest = src1 >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+        if ((dest >> tmp) != src1) { \
+            SET_QC(); \
+            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
+            if (src1 > 0) { \
+                dest--; \
+            } \
+        } \
+    }} while (0)
+NEON_VOP_ENV(qshl_s8, neon_s8, 4)
+NEON_VOP_ENV(qshl_s16, neon_s16, 2)
+NEON_VOP_ENV(qshl_s32, neon_s32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
+{
+    int8_t shift = (uint8_t)shiftop;
+    int64_t val = valop;
+    if (shift >= 64) {
+        if (val) {
+            SET_QC();
+            val = (val >> 63) ^ ~SIGNBIT64;
+        }
+    } else if (shift <= -64) {
+        val >>= 63;
+    } else if (shift < 0) {
+        val >>= -shift;
+    } else {
+        int64_t tmp = val;
+        val <<= shift;
+        if ((val >> shift) != tmp) {
+            SET_QC();
+            val = (tmp >> 63) ^ ~SIGNBIT64;
+        }
+    }
+    return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
+        SET_QC(); \
+        dest = 0; \
+    } else { \
+        int8_t tmp; \
+        tmp = (int8_t)src2; \
+        if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+            if (src1) { \
+                SET_QC(); \
+                dest = ~0; \
+            } else { \
+                dest = 0; \
+            } \
+        } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+            dest = 0; \
+        } else if (tmp < 0) { \
+            dest = src1 >> -tmp; \
+        } else { \
+            dest = src1 << tmp; \
+            if ((dest >> tmp) != src1) { \
+                SET_QC(); \
+                dest = ~0; \
+            } \
+        } \
+    }} while (0)
+NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
+NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
+#undef NEON_FN
+
+uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
+{
+    if ((int32_t)valop < 0) {
+        SET_QC();
+        return 0;
+    }
+    return helper_neon_qshl_u32(env, valop, shiftop);
+}
+
+uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
+{
+    if ((int64_t)valop < 0) {
+        SET_QC();
+        return 0;
+    }
+    return helper_neon_qshl_u64(env, valop, shiftop);
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+        if (src1) { \
+            SET_QC(); \
+            dest = ~0; \
+        } else { \
+            dest = 0; \
+        } \
+    } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
+        dest = 0; \
+    } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
+        dest = src1 >> (sizeof(src1) * 8 - 1); \
+    } else if (tmp < 0) { \
+        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+        if ((dest >> tmp) != src1) { \
+            SET_QC(); \
+            dest = ~0; \
+        } \
+    }} while (0)
+NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
+NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator.  */
+uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
+{
+    uint32_t dest;
+    int8_t shift = (int8_t)shiftop;
+    if (shift >= 32) {
+        if (val) {
+            SET_QC();
+            dest = ~0;
+        } else {
+            dest = 0;
+        }
+    } else if (shift < -32) {
+        dest = 0;
+    } else if (shift == -32) {
+        dest = val >> 31;
+    } else if (shift < 0) {
+        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
+        dest = big_dest >> -shift;
+    } else {
+        dest = val << shift;
+        if ((dest >> shift) != val) {
+            SET_QC();
+            dest = ~0;
+        }
+    }
+    return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values.  */
+uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
+{
+    int8_t shift = (int8_t)shiftop;
+    if (shift >= 64) {
+        if (val) {
+            SET_QC();
+            val = ~0;
+        }
+    } else if (shift < -64) {
+        val = 0;
+    } else if (shift == -64) {
+        val >>= 63;
+    } else if (shift < 0) {
+        val >>= (-shift - 1);
+        if (val == UINT64_MAX) {
+            /* In this case, it means that the rounding constant is 1,
+             * and the addition would overflow. Return the actual
+             * result directly.  */
+            val = 0x8000000000000000ULL;
+        } else {
+            val++;
+            val >>= 1;
+        }
+    } else { \
+        uint64_t tmp = val;
+        val <<= shift;
+        if ((val >> shift) != tmp) {
+            SET_QC();
+            val = ~0;
+        }
+    }
+    return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+    int8_t tmp; \
+    tmp = (int8_t)src2; \
+    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+        if (src1) { \
+            SET_QC(); \
+            dest = (1 << (sizeof(src1) * 8 - 1)); \
+            if (src1 > 0) { \
+                dest--; \
+            } \
+        } else { \
+            dest = 0; \
+        } \
+    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+        dest = 0; \
+    } else if (tmp < 0) { \
+        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+    } else { \
+        dest = src1 << tmp; \
+        if ((dest >> tmp) != src1) { \
+            SET_QC(); \
+            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
+            if (src1 > 0) { \
+                dest--; \
+            } \
+        } \
+    }} while (0)
+NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
+NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator.  */
+uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
+{
+    int32_t dest;
+    int32_t val = (int32_t)valop;
+    int8_t shift = (int8_t)shiftop;
+    if (shift >= 32) {
+        if (val) {
+            SET_QC();
+            dest = (val >> 31) ^ ~SIGNBIT;
+        } else {
+            dest = 0;
+        }
+    } else if (shift <= -32) {
+        dest = 0;
+    } else if (shift < 0) {
+        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
+        dest = big_dest >> -shift;
+    } else {
+        dest = val << shift;
+        if ((dest >> shift) != val) {
+            SET_QC();
+            dest = (val >> 31) ^ ~SIGNBIT;
+        }
+    }
+    return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values.  */
+uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
+{
+    int8_t shift = (uint8_t)shiftop;
+    int64_t val = valop;
+
+    if (shift >= 64) {
+        if (val) {
+            SET_QC();
+            val = (val >> 63) ^ ~SIGNBIT64;
+        }
+    } else if (shift <= -64) {
+        val = 0;
+    } else if (shift < 0) {
+        val >>= (-shift - 1);
+        if (val == INT64_MAX) {
+            /* In this case, it means that the rounding constant is 1,
+             * and the addition would overflow. Return the actual
+             * result directly.  */
+            val = 0x4000000000000000ULL;
+        } else {
+            val++;
+            val >>= 1;
+        }
+    } else {
+        int64_t tmp = val;
+        val <<= shift;
+        if ((val >> shift) != tmp) {
+            SET_QC();
+            val = (tmp >> 63) ^ ~SIGNBIT64;
+        }
+    }
+    return val;
+}
+
+uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
+{
+    uint32_t mask;
+    mask = (a ^ b) & 0x80808080u;
+    a &= ~0x80808080u;
+    b &= ~0x80808080u;
+    return (a + b) ^ mask;
+}
+
+uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
+{
+    uint32_t mask;
+    mask = (a ^ b) & 0x80008000u;
+    a &= ~0x80008000u;
+    b &= ~0x80008000u;
+    return (a + b) ^ mask;
+}
+
+#define NEON_FN(dest, src1, src2) dest = src1 + src2
+NEON_POP(padd_u8, neon_u8, 4)
+NEON_POP(padd_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = src1 - src2
+NEON_VOP(sub_u8, neon_u8, 4)
+NEON_VOP(sub_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = src1 * src2
+NEON_VOP(mul_u8, neon_u8, 4)
+NEON_VOP(mul_u16, neon_u16, 2)
+#undef NEON_FN
+
+/* Polynomial multiplication is like integer multiplication except the
+   partial products are XORed, not added.  */
+uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
+{
+    uint32_t mask;
+    uint32_t result;
+    result = 0;
+    while (op1) {
+        mask = 0;
+        if (op1 & 1)
+            mask |= 0xff;
+        if (op1 & (1 << 8))
+            mask |= (0xff << 8);
+        if (op1 & (1 << 16))
+            mask |= (0xff << 16);
+        if (op1 & (1 << 24))
+            mask |= (0xff << 24);
+        result ^= op2 & mask;
+        op1 = (op1 >> 1) & 0x7f7f7f7f;
+        op2 = (op2 << 1) & 0xfefefefe;
+    }
+    return result;
+}
+
+uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
+{
+    uint64_t result = 0;
+    uint64_t mask;
+    uint64_t op2ex = op2;
+    op2ex = (op2ex & 0xff) |
+        ((op2ex & 0xff00) << 8) |
+        ((op2ex & 0xff0000) << 16) |
+        ((op2ex & 0xff000000) << 24);
+    while (op1) {
+        mask = 0;
+        if (op1 & 1) {
+            mask |= 0xffff;
+        }
+        if (op1 & (1 << 8)) {
+            mask |= (0xffffU << 16);
+        }
+        if (op1 & (1 << 16)) {
+            mask |= (0xffffULL << 32);
+        }
+        if (op1 & (1 << 24)) {
+            mask |= (0xffffULL << 48);
+        }
+        result ^= op2ex & mask;
+        op1 = (op1 >> 1) & 0x7f7f7f7f;
+        op2ex <<= 1;
+    }
+    return result;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
+NEON_VOP(tst_u8, neon_u8, 4)
+NEON_VOP(tst_u16, neon_u16, 2)
+NEON_VOP(tst_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
+NEON_VOP(ceq_u8, neon_u8, 4)
+NEON_VOP(ceq_u16, neon_u16, 2)
+NEON_VOP(ceq_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
+NEON_VOP1(abs_s8, neon_s8, 4)
+NEON_VOP1(abs_s16, neon_s16, 2)
+#undef NEON_FN
+
+/* Count Leading Sign/Zero Bits.  */
+static inline int do_clz8(uint8_t x)
+{
+    int n;
+    for (n = 8; x; n--)
+        x >>= 1;
+    return n;
+}
+
+static inline int do_clz16(uint16_t x)
+{
+    int n;
+    for (n = 16; x; n--)
+        x >>= 1;
+    return n;
+}
+
+#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
+NEON_VOP1(clz_u8, neon_u8, 4)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
+NEON_VOP1(clz_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
+NEON_VOP1(cls_s8, neon_s8, 4)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
+NEON_VOP1(cls_s16, neon_s16, 2)
+#undef NEON_FN
+
+uint32_t HELPER(neon_cls_s32)(uint32_t x)
+{
+    int count;
+    if ((int32_t)x < 0)
+        x = ~x;
+    for (count = 32; x; count--)
+        x = x >> 1;
+    return count - 1;
+}
+
+/* Bit count.  */
+uint32_t HELPER(neon_cnt_u8)(uint32_t x)
+{
+    x = (x & 0x55555555) + ((x >>  1) & 0x55555555);
+    x = (x & 0x33333333) + ((x >>  2) & 0x33333333);
+    x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f);
+    return x;
+}
+
+/* Reverse bits in each 8 bit word */
+uint32_t HELPER(neon_rbit_u8)(uint32_t x)
+{
+    x =  ((x & 0xf0f0f0f0) >> 4)
+       | ((x & 0x0f0f0f0f) << 4);
+    x =  ((x & 0x88888888) >> 3)
+       | ((x & 0x44444444) >> 1)
+       | ((x & 0x22222222) << 1)
+       | ((x & 0x11111111) << 3);
+    return x;
+}
+
+#define NEON_QDMULH16(dest, src1, src2, round) do { \
+    uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
+    if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
+        SET_QC(); \
+        tmp = (tmp >> 31) ^ ~SIGNBIT; \
+    } else { \
+        tmp <<= 1; \
+    } \
+    if (round) { \
+        int32_t old = tmp; \
+        tmp += 1 << 15; \
+        if ((int32_t)tmp < old) { \
+            SET_QC(); \
+            tmp = SIGNBIT - 1; \
+        } \
+    } \
+    dest = tmp >> 16; \
+    } while(0)
+#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
+NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
+NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
+#undef NEON_FN
+#undef NEON_QDMULH16
+
+#define NEON_QDMULH32(dest, src1, src2, round) do { \
+    uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
+    if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
+        SET_QC(); \
+        tmp = (tmp >> 63) ^ ~SIGNBIT64; \
+    } else { \
+        tmp <<= 1; \
+    } \
+    if (round) { \
+        int64_t old = tmp; \
+        tmp += (int64_t)1 << 31; \
+        if ((int64_t)tmp < old) { \
+            SET_QC(); \
+            tmp = SIGNBIT64 - 1; \
+        } \
+    } \
+    dest = tmp >> 32; \
+    } while(0)
+#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
+NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
+NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
+#undef NEON_FN
+#undef NEON_QDMULH32
+
+uint32_t HELPER(neon_narrow_u8)(uint64_t x)
+{
+    return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
+           | ((x >> 24) & 0xff000000u);
+}
+
+uint32_t HELPER(neon_narrow_u16)(uint64_t x)
+{
+    return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
+}
+
+uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
+{
+    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
+            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
+}
+
+uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
+{
+    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
+}
+
+uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
+{
+    x &= 0xff80ff80ff80ff80ull;
+    x += 0x0080008000800080ull;
+    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
+            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
+}
+
+uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
+{
+    x &= 0xffff8000ffff8000ull;
+    x += 0x0000800000008000ull;
+    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
+}
+
+uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
+{
+    uint16_t s;
+    uint8_t d;
+    uint32_t res = 0;
+#define SAT8(n) \
+    s = x >> n; \
+    if (s & 0x8000) { \
+        SET_QC(); \
+    } else { \
+        if (s > 0xff) { \
+            d = 0xff; \
+            SET_QC(); \
+        } else  { \
+            d = s; \
+        } \
+        res |= (uint32_t)d << (n / 2); \
+    }
+
+    SAT8(0);
+    SAT8(16);
+    SAT8(32);
+    SAT8(48);
+#undef SAT8
+    return res;
+}
+
+uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
+{
+    uint16_t s;
+    uint8_t d;
+    uint32_t res = 0;
+#define SAT8(n) \
+    s = x >> n; \
+    if (s > 0xff) { \
+        d = 0xff; \
+        SET_QC(); \
+    } else  { \
+        d = s; \
+    } \
+    res |= (uint32_t)d << (n / 2);
+
+    SAT8(0);
+    SAT8(16);
+    SAT8(32);
+    SAT8(48);
+#undef SAT8
+    return res;
+}
+
+uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
+{
+    int16_t s;
+    uint8_t d;
+    uint32_t res = 0;
+#define SAT8(n) \
+    s = x >> n; \
+    if (s != (int8_t)s) { \
+        d = (s >> 15) ^ 0x7f; \
+        SET_QC(); \
+    } else  { \
+        d = s; \
+    } \
+    res |= (uint32_t)d << (n / 2);
+
+    SAT8(0);
+    SAT8(16);
+    SAT8(32);
+    SAT8(48);
+#undef SAT8
+    return res;
+}
+
+uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
+{
+    uint32_t high;
+    uint32_t low;
+    low = x;
+    if (low & 0x80000000) {
+        low = 0;
+        SET_QC();
+    } else if (low > 0xffff) {
+        low = 0xffff;
+        SET_QC();
+    }
+    high = x >> 32;
+    if (high & 0x80000000) {
+        high = 0;
+        SET_QC();
+    } else if (high > 0xffff) {
+        high = 0xffff;
+        SET_QC();
+    }
+    return low | (high << 16);
+}
+
+uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
+{
+    uint32_t high;
+    uint32_t low;
+    low = x;
+    if (low > 0xffff) {
+        low = 0xffff;
+        SET_QC();
+    }
+    high = x >> 32;
+    if (high > 0xffff) {
+        high = 0xffff;
+        SET_QC();
+    }
+    return low | (high << 16);
+}
+
+uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
+{
+    int32_t low;
+    int32_t high;
+    low = x;
+    if (low != (int16_t)low) {
+        low = (low >> 31) ^ 0x7fff;
+        SET_QC();
+    }
+    high = x >> 32;
+    if (high != (int16_t)high) {
+        high = (high >> 31) ^ 0x7fff;
+        SET_QC();
+    }
+    return (uint16_t)low | (high << 16);
+}
+
+uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
+{
+    if (x & 0x8000000000000000ull) {
+        SET_QC();
+        return 0;
+    }
+    if (x > 0xffffffffu) {
+        SET_QC();
+        return 0xffffffffu;
+    }
+    return x;
+}
+
+uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
+{
+    if (x > 0xffffffffu) {
+        SET_QC();
+        return 0xffffffffu;
+    }
+    return x;
+}
+
+uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
+{
+    if ((int64_t)x != (int32_t)x) {
+        SET_QC();
+        return ((int64_t)x >> 63) ^ 0x7fffffff;
+    }
+    return x;
+}
+
+uint64_t HELPER(neon_widen_u8)(uint32_t x)
+{
+    uint64_t tmp;
+    uint64_t ret;
+    ret = (uint8_t)x;
+    tmp = (uint8_t)(x >> 8);
+    ret |= tmp << 16;
+    tmp = (uint8_t)(x >> 16);
+    ret |= tmp << 32;
+    tmp = (uint8_t)(x >> 24);
+    ret |= tmp << 48;
+    return ret;
+}
+
+uint64_t HELPER(neon_widen_s8)(uint32_t x)
+{
+    uint64_t tmp;
+    uint64_t ret;
+    ret = (uint16_t)(int8_t)x;
+    tmp = (uint16_t)(int8_t)(x >> 8);
+    ret |= tmp << 16;
+    tmp = (uint16_t)(int8_t)(x >> 16);
+    ret |= tmp << 32;
+    tmp = (uint16_t)(int8_t)(x >> 24);
+    ret |= tmp << 48;
+    return ret;
+}
+
+uint64_t HELPER(neon_widen_u16)(uint32_t x)
+{
+    uint64_t high = (uint16_t)(x >> 16);
+    return ((uint16_t)x) | (high << 32);
+}
+
+uint64_t HELPER(neon_widen_s16)(uint32_t x)
+{
+    uint64_t high = (int16_t)(x >> 16);
+    return ((uint32_t)(int16_t)x) | (high << 32);
+}
+
+uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
+{
+    uint64_t mask;
+    mask = (a ^ b) & 0x8000800080008000ull;
+    a &= ~0x8000800080008000ull;
+    b &= ~0x8000800080008000ull;
+    return (a + b) ^ mask;
+}
+
+uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
+{
+    uint64_t mask;
+    mask = (a ^ b) & 0x8000000080000000ull;
+    a &= ~0x8000000080000000ull;
+    b &= ~0x8000000080000000ull;
+    return (a + b) ^ mask;
+}
+
+uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
+{
+    uint64_t tmp;
+    uint64_t tmp2;
+
+    tmp = a & 0x0000ffff0000ffffull;
+    tmp += (a >> 16) & 0x0000ffff0000ffffull;
+    tmp2 = b & 0xffff0000ffff0000ull;
+    tmp2 += (b << 16) & 0xffff0000ffff0000ull;
+    return    ( tmp         & 0xffff)
+            | ((tmp  >> 16) & 0xffff0000ull)
+            | ((tmp2 << 16) & 0xffff00000000ull)
+            | ( tmp2        & 0xffff000000000000ull);
+}
+
+uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
+{
+    uint32_t low = a + (a >> 32);
+    uint32_t high = b + (b >> 32);
+    return low + ((uint64_t)high << 32);
+}
+
+uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
+{
+    uint64_t mask;
+    mask = (a ^ ~b) & 0x8000800080008000ull;
+    a |= 0x8000800080008000ull;
+    b &= ~0x8000800080008000ull;
+    return (a - b) ^ mask;
+}
+
+uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
+{
+    uint64_t mask;
+    mask = (a ^ ~b) & 0x8000000080000000ull;
+    a |= 0x8000000080000000ull;
+    b &= ~0x8000000080000000ull;
+    return (a - b) ^ mask;
+}
+
+uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+    uint32_t x, y;
+    uint32_t low, high;
+
+    x = a;
+    y = b;
+    low = x + y;
+    if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
+        SET_QC();
+        low = ((int32_t)x >> 31) ^ ~SIGNBIT;
+    }
+    x = a >> 32;
+    y = b >> 32;
+    high = x + y;
+    if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
+        SET_QC();
+        high = ((int32_t)x >> 31) ^ ~SIGNBIT;
+    }
+    return low | ((uint64_t)high << 32);
+}
+
+uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+    uint64_t result;
+
+    result = a + b;
+    if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
+        SET_QC();
+        result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
+    }
+    return result;
+}
+
+/* We have to do the arithmetic in a larger type than
+ * the input type, because for example with a signed 32 bit
+ * op the absolute difference can overflow a signed 32 bit value.
+ */
+#define DO_ABD(dest, x, y, intype, arithtype) do {            \
+    arithtype tmp_x = (intype)(x);                            \
+    arithtype tmp_y = (intype)(y);                            \
+    dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
+    } while(0)
+
+uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+    DO_ABD(result, a, b, uint8_t, uint32_t);
+    DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
+    result |= tmp << 16;
+    DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
+    result |= tmp << 32;
+    DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
+    result |= tmp << 48;
+    return result;
+}
+
+uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+    DO_ABD(result, a, b, int8_t, int32_t);
+    DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
+    result |= tmp << 16;
+    DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
+    result |= tmp << 32;
+    DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
+    result |= tmp << 48;
+    return result;
+}
+
+uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+    DO_ABD(result, a, b, uint16_t, uint32_t);
+    DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
+    return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+    DO_ABD(result, a, b, int16_t, int32_t);
+    DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
+    return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
+{
+    uint64_t result;
+    DO_ABD(result, a, b, uint32_t, uint64_t);
+    return result;
+}
+
+uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
+{
+    uint64_t result;
+    DO_ABD(result, a, b, int32_t, int64_t);
+    return result;
+}
+#undef DO_ABD
+
+/* Widening multiply. Named type is the source type.  */
+#define DO_MULL(dest, x, y, type1, type2) do { \
+    type1 tmp_x = x; \
+    type1 tmp_y = y; \
+    dest = (type2)((type2)tmp_x * (type2)tmp_y); \
+    } while(0)
+
+uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+
+    DO_MULL(result, a, b, uint8_t, uint16_t);
+    DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
+    result |= tmp << 16;
+    DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
+    result |= tmp << 32;
+    DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
+    result |= tmp << 48;
+    return result;
+}
+
+uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+
+    DO_MULL(result, a, b, int8_t, uint16_t);
+    DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
+    result |= tmp << 16;
+    DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
+    result |= tmp << 32;
+    DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
+    result |= tmp << 48;
+    return result;
+}
+
+uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+
+    DO_MULL(result, a, b, uint16_t, uint32_t);
+    DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
+    return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
+{
+    uint64_t tmp;
+    uint64_t result;
+
+    DO_MULL(result, a, b, int16_t, uint32_t);
+    DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
+    return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_negl_u16)(uint64_t x)
+{
+    uint16_t tmp;
+    uint64_t result;
+    result = (uint16_t)-x;
+    tmp = -(x >> 16);
+    result |= (uint64_t)tmp << 16;
+    tmp = -(x >> 32);
+    result |= (uint64_t)tmp << 32;
+    tmp = -(x >> 48);
+    result |= (uint64_t)tmp << 48;
+    return result;
+}
+
+uint64_t HELPER(neon_negl_u32)(uint64_t x)
+{
+    uint32_t low = -x;
+    uint32_t high = -(x >> 32);
+    return low | ((uint64_t)high << 32);
+}
+
+/* Saturating sign manipulation.  */
+/* ??? Make these use NEON_VOP1 */
+#define DO_QABS8(x) do { \
+    if (x == (int8_t)0x80) { \
+        x = 0x7f; \
+        SET_QC(); \
+    } else if (x < 0) { \
+        x = -x; \
+    }} while (0)
+uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
+{
+    neon_s8 vec;
+    NEON_UNPACK(neon_s8, vec, x);
+    DO_QABS8(vec.v1);
+    DO_QABS8(vec.v2);
+    DO_QABS8(vec.v3);
+    DO_QABS8(vec.v4);
+    NEON_PACK(neon_s8, x, vec);
+    return x;
+}
+#undef DO_QABS8
+
+#define DO_QNEG8(x) do { \
+    if (x == (int8_t)0x80) { \
+        x = 0x7f; \
+        SET_QC(); \
+    } else { \
+        x = -x; \
+    }} while (0)
+uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
+{
+    neon_s8 vec;
+    NEON_UNPACK(neon_s8, vec, x);
+    DO_QNEG8(vec.v1);
+    DO_QNEG8(vec.v2);
+    DO_QNEG8(vec.v3);
+    DO_QNEG8(vec.v4);
+    NEON_PACK(neon_s8, x, vec);
+    return x;
+}
+#undef DO_QNEG8
+
+#define DO_QABS16(x) do { \
+    if (x == (int16_t)0x8000) { \
+        x = 0x7fff; \
+        SET_QC(); \
+    } else if (x < 0) { \
+        x = -x; \
+    }} while (0)
+uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
+{
+    neon_s16 vec;
+    NEON_UNPACK(neon_s16, vec, x);
+    DO_QABS16(vec.v1);
+    DO_QABS16(vec.v2);
+    NEON_PACK(neon_s16, x, vec);
+    return x;
+}
+#undef DO_QABS16
+
+#define DO_QNEG16(x) do { \
+    if (x == (int16_t)0x8000) { \
+        x = 0x7fff; \
+        SET_QC(); \
+    } else { \
+        x = -x; \
+    }} while (0)
+uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
+{
+    neon_s16 vec;
+    NEON_UNPACK(neon_s16, vec, x);
+    DO_QNEG16(vec.v1);
+    DO_QNEG16(vec.v2);
+    NEON_PACK(neon_s16, x, vec);
+    return x;
+}
+#undef DO_QNEG16
+
+uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
+{
+    if (x == SIGNBIT) {
+        SET_QC();
+        x = ~SIGNBIT;
+    } else if ((int32_t)x < 0) {
+        x = -x;
+    }
+    return x;
+}
+
+uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
+{
+    if (x == SIGNBIT) {
+        SET_QC();
+        x = ~SIGNBIT;
+    } else {
+        x = -x;
+    }
+    return x;
+}
+
+uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
+{
+    if (x == SIGNBIT64) {
+        SET_QC();
+        x = ~SIGNBIT64;
+    } else if ((int64_t)x < 0) {
+        x = -x;
+    }
+    return x;
+}
+
+uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
+{
+    if (x == SIGNBIT64) {
+        SET_QC();
+        x = ~SIGNBIT64;
+    } else {
+        x = -x;
+    }
+    return x;
+}
+
+/* NEON Float helpers.  */
+uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float32 f0 = make_float32(a);
+    float32 f1 = make_float32(b);
+    return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
+}
+
+/* Floating point comparisons produce an integer result.
+ * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
+ * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
+ */
+uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
+}
+
+uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float32_le(make_float32(b), make_float32(a), fpst);
+}
+
+uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float32_lt(make_float32(b), make_float32(a), fpst);
+}
+
+uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float32 f0 = float32_abs(make_float32(a));
+    float32 f1 = float32_abs(make_float32(b));
+    return -float32_le(f1, f0, fpst);
+}
+
+uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float32 f0 = float32_abs(make_float32(a));
+    float32 f1 = float32_abs(make_float32(b));
+    return -float32_lt(f1, f0, fpst);
+}
+
+uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float64 f0 = float64_abs(make_float64(a));
+    float64 f1 = float64_abs(make_float64(b));
+    return -float64_le(f1, f0, fpst);
+}
+
+uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float64 f0 = float64_abs(make_float64(a));
+    float64 f1 = float64_abs(make_float64(b));
+    return -float64_lt(f1, f0, fpst);
+}
+
+#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
+
+void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
+        | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
+        | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
+        | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
+    uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
+        | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
+        | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
+        | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
+    uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
+        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
+        | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
+        | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
+    uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
+        | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
+        | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
+        | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rm + 1] = make_float64(m1);
+    env->vfp.regs[rd] = make_float64(d0);
+    env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
+        | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
+    uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
+        | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
+    uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
+        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
+    uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
+        | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rm + 1] = make_float64(m1);
+    env->vfp.regs[rd] = make_float64(d0);
+    env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
+    uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
+    uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
+    uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rm + 1] = make_float64(m1);
+    env->vfp.regs[rd] = make_float64(d0);
+    env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm = float64_val(env->vfp.regs[rm]);
+    uint64_t zd = float64_val(env->vfp.regs[rd]);
+    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
+        | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
+        | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
+        | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
+    uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
+        | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
+        | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
+        | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rd] = make_float64(d0);
+}
+
+void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm = float64_val(env->vfp.regs[rm]);
+    uint64_t zd = float64_val(env->vfp.regs[rd]);
+    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
+        | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
+    uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
+        | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rd] = make_float64(d0);
+}
+
+void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
+        | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
+        | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
+        | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
+    uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
+        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
+        | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
+        | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
+    uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
+        | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
+        | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
+        | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
+    uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
+        | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
+        | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
+        | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rm + 1] = make_float64(m1);
+    env->vfp.regs[rd] = make_float64(d0);
+    env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
+        | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
+    uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
+        | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
+    uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
+        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
+    uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
+        | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rm + 1] = make_float64(m1);
+    env->vfp.regs[rd] = make_float64(d0);
+    env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
+    uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
+    uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
+    uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rm + 1] = make_float64(m1);
+    env->vfp.regs[rd] = make_float64(d0);
+    env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm = float64_val(env->vfp.regs[rm]);
+    uint64_t zd = float64_val(env->vfp.regs[rd]);
+    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
+        | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
+        | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
+        | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
+    uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
+        | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
+        | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
+        | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rd] = make_float64(d0);
+}
+
+void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+    uint64_t zm = float64_val(env->vfp.regs[rm]);
+    uint64_t zd = float64_val(env->vfp.regs[rd]);
+    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
+        | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
+    uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
+        | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
+    env->vfp.regs[rm] = make_float64(m0);
+    env->vfp.regs[rd] = make_float64(d0);
+}
+
+/* Helper function for 64 bit polynomial multiply case:
+ * perform PolynomialMult(op1, op2) and return either the top or
+ * bottom half of the 128 bit result.
+ */
+uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
+{
+    int bitnum;
+    uint64_t res = 0;
+
+    for (bitnum = 0; bitnum < 64; bitnum++) {
+        if (op1 & (1ULL << bitnum)) {
+            res ^= op2 << bitnum;
+        }
+    }
+    return res;
+}
+uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
+{
+    int bitnum;
+    uint64_t res = 0;
+
+    /* bit 0 of op1 can't influence the high 64 bits at all */
+    for (bitnum = 1; bitnum < 64; bitnum++) {
+        if (op1 & (1ULL << bitnum)) {
+            res ^= op2 >> (64 - bitnum);
+        }
+    }
+    return res;
+}