Add qemu 2.4.0
[kvmfornfv.git] / qemu / target-arm / kvm64.c
diff --git a/qemu/target-arm/kvm64.c b/qemu/target-arm/kvm64.c
new file mode 100644 (file)
index 0000000..bd60889
--- /dev/null
@@ -0,0 +1,466 @@
+/*
+ * ARM implementation of KVM hooks, 64 bit specific code
+ *
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include <stdio.h>
+#include <sys/types.h>
+#include <sys/ioctl.h>
+#include <sys/mman.h>
+
+#include <linux/kvm.h>
+
+#include "config-host.h"
+#include "qemu-common.h"
+#include "qemu/timer.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/kvm.h"
+#include "kvm_arm.h"
+#include "cpu.h"
+#include "internals.h"
+#include "hw/arm/arm.h"
+
+static inline void set_feature(uint64_t *features, int feature)
+{
+    *features |= 1ULL << feature;
+}
+
+bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
+{
+    /* Identify the feature bits corresponding to the host CPU, and
+     * fill out the ARMHostCPUClass fields accordingly. To do this
+     * we have to create a scratch VM, create a single CPU inside it,
+     * and then query that CPU for the relevant ID registers.
+     * For AArch64 we currently don't care about ID registers at
+     * all; we just want to know the CPU type.
+     */
+    int fdarray[3];
+    uint64_t features = 0;
+    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
+     * we know these will only support creating one kind of guest CPU,
+     * which is its preferred CPU type. Fortunately these old kernels
+     * support only a very limited number of CPUs.
+     */
+    static const uint32_t cpus_to_try[] = {
+        KVM_ARM_TARGET_AEM_V8,
+        KVM_ARM_TARGET_FOUNDATION_V8,
+        KVM_ARM_TARGET_CORTEX_A57,
+        QEMU_KVM_ARM_TARGET_NONE
+    };
+    struct kvm_vcpu_init init;
+
+    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
+        return false;
+    }
+
+    ahcc->target = init.target;
+    ahcc->dtb_compatible = "arm,arm-v8";
+
+    kvm_arm_destroy_scratch_host_vcpu(fdarray);
+
+   /* We can assume any KVM supporting CPU is at least a v8
+     * with VFPv4+Neon; this in turn implies most of the other
+     * feature bits.
+     */
+    set_feature(&features, ARM_FEATURE_V8);
+    set_feature(&features, ARM_FEATURE_VFP4);
+    set_feature(&features, ARM_FEATURE_NEON);
+    set_feature(&features, ARM_FEATURE_AARCH64);
+
+    ahcc->features = features;
+
+    return true;
+}
+
+#define ARM_MPIDR_HWID_BITMASK 0xFF00FFFFFFULL
+#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    int ret;
+    uint64_t mpidr;
+    ARMCPU *cpu = ARM_CPU(cs);
+
+    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
+        return -EINVAL;
+    }
+
+    /* Determine init features for this CPU */
+    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+    if (cpu->start_powered_off) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+    }
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+        cpu->psci_version = 2;
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+    }
+    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+    }
+
+    /* Do KVM_ARM_VCPU_INIT ioctl */
+    ret = kvm_arm_vcpu_init(cs);
+    if (ret) {
+        return ret;
+    }
+
+    /*
+     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+     * Currently KVM has its own idea about MPIDR assignment, so we
+     * override our defaults with what we get from KVM.
+     */
+    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+    if (ret) {
+        return ret;
+    }
+    cpu->mp_affinity = mpidr & ARM_MPIDR_HWID_BITMASK;
+
+    return kvm_arm_init_cpreg_list(cpu);
+}
+
+bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+    /* Return true if the regidx is a register we should synchronize
+     * via the cpreg_tuples array (ie is not a core reg we sync by
+     * hand in kvm_arch_get/put_registers())
+     */
+    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+    case KVM_REG_ARM_CORE:
+        return false;
+    default:
+        return true;
+    }
+}
+
+typedef struct CPRegStateLevel {
+    uint64_t regidx;
+    int level;
+} CPRegStateLevel;
+
+/* All system registers not listed in the following table are assumed to be
+ * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
+ * often, you must add it to this table with a state of either
+ * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
+ */
+static const CPRegStateLevel non_runtime_cpregs[] = {
+    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
+};
+
+int kvm_arm_cpreg_level(uint64_t regidx)
+{
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
+        const CPRegStateLevel *l = &non_runtime_cpregs[i];
+        if (l->regidx == regidx) {
+            return l->level;
+        }
+    }
+
+    return KVM_PUT_RUNTIME_STATE;
+}
+
+#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    struct kvm_one_reg reg;
+    uint32_t fpr;
+    uint64_t val;
+    int i;
+    int ret;
+    unsigned int el;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+     * AArch64 registers before pushing them out to 64-bit KVM.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_32_to_64(env);
+    }
+
+    for (i = 0; i < 31; i++) {
+        reg.id = AARCH64_CORE_REG(regs.regs[i]);
+        reg.addr = (uintptr_t) &env->xregs[i];
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_save_sp(env, 1);
+
+    reg.id = AARCH64_CORE_REG(regs.sp);
+    reg.addr = (uintptr_t) &env->sp_el[0];
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    reg.id = AARCH64_CORE_REG(sp_el1);
+    reg.addr = (uintptr_t) &env->sp_el[1];
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+    if (is_a64(env)) {
+        val = pstate_read(env);
+    } else {
+        val = cpsr_read(env);
+    }
+    reg.id = AARCH64_CORE_REG(regs.pstate);
+    reg.addr = (uintptr_t) &val;
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    reg.id = AARCH64_CORE_REG(regs.pc);
+    reg.addr = (uintptr_t) &env->pc;
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    reg.id = AARCH64_CORE_REG(elr_el1);
+    reg.addr = (uintptr_t) &env->elr_el[1];
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    /* Saved Program State Registers
+     *
+     * Before we restore from the banked_spsr[] array we need to
+     * ensure that any modifications to env->spsr are correctly
+     * reflected in the banks.
+     */
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->banked_spsr[i] = env->spsr;
+    }
+
+    /* KVM 0-4 map to QEMU banks 1-5 */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        reg.id = AARCH64_CORE_REG(spsr[i]);
+        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* Advanced SIMD and FP registers
+     * We map Qn = regs[2n+1]:regs[2n]
+     */
+    for (i = 0; i < 32; i++) {
+        int rd = i << 1;
+        uint64_t fp_val[2];
+#ifdef HOST_WORDS_BIGENDIAN
+        fp_val[0] = env->vfp.regs[rd + 1];
+        fp_val[1] = env->vfp.regs[rd];
+#else
+        fp_val[1] = env->vfp.regs[rd + 1];
+        fp_val[0] = env->vfp.regs[rd];
+#endif
+        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
+        reg.addr = (uintptr_t)(&fp_val);
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    reg.addr = (uintptr_t)(&fpr);
+    fpr = vfp_get_fpsr(env);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpcr(env);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    if (!write_list_to_kvmstate(cpu, level)) {
+        return EINVAL;
+    }
+
+    kvm_arm_sync_mpstate_to_kvm(cpu);
+
+    return ret;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    struct kvm_one_reg reg;
+    uint64_t val;
+    uint32_t fpr;
+    unsigned int el;
+    int i;
+    int ret;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    for (i = 0; i < 31; i++) {
+        reg.id = AARCH64_CORE_REG(regs.regs[i]);
+        reg.addr = (uintptr_t) &env->xregs[i];
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    reg.id = AARCH64_CORE_REG(regs.sp);
+    reg.addr = (uintptr_t) &env->sp_el[0];
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    reg.id = AARCH64_CORE_REG(sp_el1);
+    reg.addr = (uintptr_t) &env->sp_el[1];
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    reg.id = AARCH64_CORE_REG(regs.pstate);
+    reg.addr = (uintptr_t) &val;
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    env->aarch64 = ((val & PSTATE_nRW) == 0);
+    if (is_a64(env)) {
+        pstate_write(env, val);
+    } else {
+        env->uncached_cpsr = val & CPSR_M;
+        cpsr_write(env, val, 0xffffffff);
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_restore_sp(env, 1);
+
+    reg.id = AARCH64_CORE_REG(regs.pc);
+    reg.addr = (uintptr_t) &env->pc;
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+     * incoming AArch64 regs received from 64-bit KVM.
+     * We must perform this after all of the registers have been acquired from
+     * the kernel.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_64_to_32(env);
+    }
+
+    reg.id = AARCH64_CORE_REG(elr_el1);
+    reg.addr = (uintptr_t) &env->elr_el[1];
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    /* Fetch the SPSR registers
+     *
+     * KVM SPSRs 0-4 map to QEMU banks 1-5
+     */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        reg.id = AARCH64_CORE_REG(spsr[i]);
+        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->spsr = env->banked_spsr[i];
+    }
+
+    /* Advanced SIMD and FP registers
+     * We map Qn = regs[2n+1]:regs[2n]
+     */
+    for (i = 0; i < 32; i++) {
+        uint64_t fp_val[2];
+        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
+        reg.addr = (uintptr_t)(&fp_val);
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        } else {
+            int rd = i << 1;
+#ifdef HOST_WORDS_BIGENDIAN
+            env->vfp.regs[rd + 1] = fp_val[0];
+            env->vfp.regs[rd] = fp_val[1];
+#else
+            env->vfp.regs[rd + 1] = fp_val[1];
+            env->vfp.regs[rd] = fp_val[0];
+#endif
+        }
+    }
+
+    reg.addr = (uintptr_t)(&fpr);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpcr(env, fpr);
+
+    if (!write_kvmstate_to_list(cpu)) {
+        return EINVAL;
+    }
+    /* Note that it's OK to have registers which aren't in CPUState,
+     * so we can ignore a failure return here.
+     */
+    write_list_to_cpustate(cpu);
+
+    kvm_arm_sync_mpstate_to_qemu(cpu);
+
+    /* TODO: other registers */
+    return ret;
+}