Add qemu 2.4.0
[kvmfornfv.git] / qemu / target-arm / kvm32.c
diff --git a/qemu/target-arm/kvm32.c b/qemu/target-arm/kvm32.c
new file mode 100644 (file)
index 0000000..421ce0e
--- /dev/null
@@ -0,0 +1,478 @@
+/*
+ * ARM implementation of KVM hooks, 32 bit specific code.
+ *
+ * Copyright Christoffer Dall 2009-2010
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include <stdio.h>
+#include <sys/types.h>
+#include <sys/ioctl.h>
+#include <sys/mman.h>
+
+#include <linux/kvm.h>
+
+#include "qemu-common.h"
+#include "qemu/timer.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/kvm.h"
+#include "kvm_arm.h"
+#include "cpu.h"
+#include "internals.h"
+#include "hw/arm/arm.h"
+
+static inline void set_feature(uint64_t *features, int feature)
+{
+    *features |= 1ULL << feature;
+}
+
+bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
+{
+    /* Identify the feature bits corresponding to the host CPU, and
+     * fill out the ARMHostCPUClass fields accordingly. To do this
+     * we have to create a scratch VM, create a single CPU inside it,
+     * and then query that CPU for the relevant ID registers.
+     */
+    int i, ret, fdarray[3];
+    uint32_t midr, id_pfr0, id_isar0, mvfr1;
+    uint64_t features = 0;
+    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
+     * we know these will only support creating one kind of guest CPU,
+     * which is its preferred CPU type.
+     */
+    static const uint32_t cpus_to_try[] = {
+        QEMU_KVM_ARM_TARGET_CORTEX_A15,
+        QEMU_KVM_ARM_TARGET_NONE
+    };
+    struct kvm_vcpu_init init;
+    struct kvm_one_reg idregs[] = {
+        {
+            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
+            | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
+            .addr = (uintptr_t)&midr,
+        },
+        {
+            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
+            | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
+            .addr = (uintptr_t)&id_pfr0,
+        },
+        {
+            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
+            | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
+            .addr = (uintptr_t)&id_isar0,
+        },
+        {
+            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
+            | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
+            .addr = (uintptr_t)&mvfr1,
+        },
+    };
+
+    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
+        return false;
+    }
+
+    ahcc->target = init.target;
+
+    /* This is not strictly blessed by the device tree binding docs yet,
+     * but in practice the kernel does not care about this string so
+     * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
+     */
+    ahcc->dtb_compatible = "arm,arm-v7";
+
+    for (i = 0; i < ARRAY_SIZE(idregs); i++) {
+        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
+        if (ret) {
+            break;
+        }
+    }
+
+    kvm_arm_destroy_scratch_host_vcpu(fdarray);
+
+    if (ret) {
+        return false;
+    }
+
+    /* Now we've retrieved all the register information we can
+     * set the feature bits based on the ID register fields.
+     * We can assume any KVM supporting CPU is at least a v7
+     * with VFPv3, LPAE and the generic timers; this in turn implies
+     * most of the other feature bits, but a few must be tested.
+     */
+    set_feature(&features, ARM_FEATURE_V7);
+    set_feature(&features, ARM_FEATURE_VFP3);
+    set_feature(&features, ARM_FEATURE_LPAE);
+    set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
+
+    switch (extract32(id_isar0, 24, 4)) {
+    case 1:
+        set_feature(&features, ARM_FEATURE_THUMB_DIV);
+        break;
+    case 2:
+        set_feature(&features, ARM_FEATURE_ARM_DIV);
+        set_feature(&features, ARM_FEATURE_THUMB_DIV);
+        break;
+    default:
+        break;
+    }
+
+    if (extract32(id_pfr0, 12, 4) == 1) {
+        set_feature(&features, ARM_FEATURE_THUMB2EE);
+    }
+    if (extract32(mvfr1, 20, 4) == 1) {
+        set_feature(&features, ARM_FEATURE_VFP_FP16);
+    }
+    if (extract32(mvfr1, 12, 4) == 1) {
+        set_feature(&features, ARM_FEATURE_NEON);
+    }
+    if (extract32(mvfr1, 28, 4) == 1) {
+        /* FMAC support implies VFPv4 */
+        set_feature(&features, ARM_FEATURE_VFP4);
+    }
+
+    ahcc->features = features;
+
+    return true;
+}
+
+bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+    /* Return true if the regidx is a register we should synchronize
+     * via the cpreg_tuples array (ie is not a core reg we sync by
+     * hand in kvm_arch_get/put_registers())
+     */
+    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+    case KVM_REG_ARM_CORE:
+    case KVM_REG_ARM_VFP:
+        return false;
+    default:
+        return true;
+    }
+}
+
+typedef struct CPRegStateLevel {
+    uint64_t regidx;
+    int level;
+} CPRegStateLevel;
+
+/* All coprocessor registers not listed in the following table are assumed to
+ * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
+ * often, you must add it to this table with a state of either
+ * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
+ */
+static const CPRegStateLevel non_runtime_cpregs[] = {
+    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
+};
+
+int kvm_arm_cpreg_level(uint64_t regidx)
+{
+    int i;
+
+    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
+        const CPRegStateLevel *l = &non_runtime_cpregs[i];
+        if (l->regidx == regidx) {
+            return l->level;
+        }
+    }
+
+    return KVM_PUT_RUNTIME_STATE;
+}
+
+#define ARM_MPIDR_HWID_BITMASK 0xFFFFFF
+#define ARM_CPU_ID_MPIDR       0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    int ret;
+    uint64_t v;
+    uint32_t mpidr;
+    struct kvm_one_reg r;
+    ARMCPU *cpu = ARM_CPU(cs);
+
+    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
+        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
+        return -EINVAL;
+    }
+
+    /* Determine init features for this CPU */
+    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+    if (cpu->start_powered_off) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+    }
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+        cpu->psci_version = 2;
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+    }
+
+    /* Do KVM_ARM_VCPU_INIT ioctl */
+    ret = kvm_arm_vcpu_init(cs);
+    if (ret) {
+        return ret;
+    }
+
+    /* Query the kernel to make sure it supports 32 VFP
+     * registers: QEMU's "cortex-a15" CPU is always a
+     * VFP-D32 core. The simplest way to do this is just
+     * to attempt to read register d31.
+     */
+    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
+    r.addr = (uintptr_t)(&v);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+    if (ret == -ENOENT) {
+        return -EINVAL;
+    }
+
+    /*
+     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+     * Currently KVM has its own idea about MPIDR assignment, so we
+     * override our defaults with what we get from KVM.
+     */
+    ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
+    if (ret) {
+        return ret;
+    }
+    cpu->mp_affinity = mpidr & ARM_MPIDR_HWID_BITMASK;
+
+    return kvm_arm_init_cpreg_list(cpu);
+}
+
+typedef struct Reg {
+    uint64_t id;
+    int offset;
+} Reg;
+
+#define COREREG(KERNELNAME, QEMUFIELD)                       \
+    {                                                        \
+        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
+        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
+        offsetof(CPUARMState, QEMUFIELD)                     \
+    }
+
+#define VFPSYSREG(R)                                       \
+    {                                                      \
+        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
+        KVM_REG_ARM_VFP_##R,                               \
+        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
+    }
+
+/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
+#define COREREG64(KERNELNAME, QEMUFIELD)                     \
+    {                                                        \
+        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
+        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
+        offsetoflow32(CPUARMState, QEMUFIELD)                \
+    }
+
+static const Reg regs[] = {
+    /* R0_usr .. R14_usr */
+    COREREG(usr_regs.uregs[0], regs[0]),
+    COREREG(usr_regs.uregs[1], regs[1]),
+    COREREG(usr_regs.uregs[2], regs[2]),
+    COREREG(usr_regs.uregs[3], regs[3]),
+    COREREG(usr_regs.uregs[4], regs[4]),
+    COREREG(usr_regs.uregs[5], regs[5]),
+    COREREG(usr_regs.uregs[6], regs[6]),
+    COREREG(usr_regs.uregs[7], regs[7]),
+    COREREG(usr_regs.uregs[8], usr_regs[0]),
+    COREREG(usr_regs.uregs[9], usr_regs[1]),
+    COREREG(usr_regs.uregs[10], usr_regs[2]),
+    COREREG(usr_regs.uregs[11], usr_regs[3]),
+    COREREG(usr_regs.uregs[12], usr_regs[4]),
+    COREREG(usr_regs.uregs[13], banked_r13[0]),
+    COREREG(usr_regs.uregs[14], banked_r14[0]),
+    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
+    COREREG(svc_regs[0], banked_r13[1]),
+    COREREG(svc_regs[1], banked_r14[1]),
+    COREREG64(svc_regs[2], banked_spsr[1]),
+    COREREG(abt_regs[0], banked_r13[2]),
+    COREREG(abt_regs[1], banked_r14[2]),
+    COREREG64(abt_regs[2], banked_spsr[2]),
+    COREREG(und_regs[0], banked_r13[3]),
+    COREREG(und_regs[1], banked_r14[3]),
+    COREREG64(und_regs[2], banked_spsr[3]),
+    COREREG(irq_regs[0], banked_r13[4]),
+    COREREG(irq_regs[1], banked_r14[4]),
+    COREREG64(irq_regs[2], banked_spsr[4]),
+    /* R8_fiq .. R14_fiq and SPSR_fiq */
+    COREREG(fiq_regs[0], fiq_regs[0]),
+    COREREG(fiq_regs[1], fiq_regs[1]),
+    COREREG(fiq_regs[2], fiq_regs[2]),
+    COREREG(fiq_regs[3], fiq_regs[3]),
+    COREREG(fiq_regs[4], fiq_regs[4]),
+    COREREG(fiq_regs[5], banked_r13[5]),
+    COREREG(fiq_regs[6], banked_r14[5]),
+    COREREG64(fiq_regs[7], banked_spsr[5]),
+    /* R15 */
+    COREREG(usr_regs.uregs[15], regs[15]),
+    /* VFP system registers */
+    VFPSYSREG(FPSID),
+    VFPSYSREG(MVFR1),
+    VFPSYSREG(MVFR0),
+    VFPSYSREG(FPEXC),
+    VFPSYSREG(FPINST),
+    VFPSYSREG(FPINST2),
+};
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    struct kvm_one_reg r;
+    int mode, bn;
+    int ret, i;
+    uint32_t cpsr, fpscr;
+
+    /* Make sure the banked regs are properly set */
+    mode = env->uncached_cpsr & CPSR_M;
+    bn = bank_number(mode);
+    if (mode == ARM_CPU_MODE_FIQ) {
+        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
+    } else {
+        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
+    }
+    env->banked_r13[bn] = env->regs[13];
+    env->banked_r14[bn] = env->regs[14];
+    env->banked_spsr[bn] = env->spsr;
+
+    /* Now we can safely copy stuff down to the kernel */
+    for (i = 0; i < ARRAY_SIZE(regs); i++) {
+        r.id = regs[i].id;
+        r.addr = (uintptr_t)(env) + regs[i].offset;
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* Special cases which aren't a single CPUARMState field */
+    cpsr = cpsr_read(env);
+    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
+        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
+    r.addr = (uintptr_t)(&cpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
+    if (ret) {
+        return ret;
+    }
+
+    /* VFP registers */
+    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
+    for (i = 0; i < 32; i++) {
+        r.addr = (uintptr_t)(&env->vfp.regs[i]);
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
+        if (ret) {
+            return ret;
+        }
+        r.id++;
+    }
+
+    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
+        KVM_REG_ARM_VFP_FPSCR;
+    fpscr = vfp_get_fpscr(env);
+    r.addr = (uintptr_t)&fpscr;
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
+    if (ret) {
+        return ret;
+    }
+
+    /* Note that we do not call write_cpustate_to_list()
+     * here, so we are only writing the tuple list back to
+     * KVM. This is safe because nothing can change the
+     * CPUARMState cp15 fields (in particular gdb accesses cannot)
+     * and so there are no changes to sync. In fact syncing would
+     * be wrong at this point: for a constant register where TCG and
+     * KVM disagree about its value, the preceding write_list_to_cpustate()
+     * would not have had any effect on the CPUARMState value (since the
+     * register is read-only), and a write_cpustate_to_list() here would
+     * then try to write the TCG value back into KVM -- this would either
+     * fail or incorrectly change the value the guest sees.
+     *
+     * If we ever want to allow the user to modify cp15 registers via
+     * the gdb stub, we would need to be more clever here (for instance
+     * tracking the set of registers kvm_arch_get_registers() successfully
+     * managed to update the CPUARMState with, and only allowing those
+     * to be written back up into the kernel).
+     */
+    if (!write_list_to_kvmstate(cpu, level)) {
+        return EINVAL;
+    }
+
+    kvm_arm_sync_mpstate_to_kvm(cpu);
+
+    return ret;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    struct kvm_one_reg r;
+    int mode, bn;
+    int ret, i;
+    uint32_t cpsr, fpscr;
+
+    for (i = 0; i < ARRAY_SIZE(regs); i++) {
+        r.id = regs[i].id;
+        r.addr = (uintptr_t)(env) + regs[i].offset;
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* Special cases which aren't a single CPUARMState field */
+    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
+        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
+    r.addr = (uintptr_t)(&cpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+    if (ret) {
+        return ret;
+    }
+    cpsr_write(env, cpsr, 0xffffffff);
+
+    /* Make sure the current mode regs are properly set */
+    mode = env->uncached_cpsr & CPSR_M;
+    bn = bank_number(mode);
+    if (mode == ARM_CPU_MODE_FIQ) {
+        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
+    } else {
+        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
+    }
+    env->regs[13] = env->banked_r13[bn];
+    env->regs[14] = env->banked_r14[bn];
+    env->spsr = env->banked_spsr[bn];
+
+    /* VFP registers */
+    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
+    for (i = 0; i < 32; i++) {
+        r.addr = (uintptr_t)(&env->vfp.regs[i]);
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+        if (ret) {
+            return ret;
+        }
+        r.id++;
+    }
+
+    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
+        KVM_REG_ARM_VFP_FPSCR;
+    r.addr = (uintptr_t)&fpscr;
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpscr(env, fpscr);
+
+    if (!write_kvmstate_to_list(cpu)) {
+        return EINVAL;
+    }
+    /* Note that it's OK to have registers which aren't in CPUState,
+     * so we can ignore a failure return here.
+     */
+    write_list_to_cpustate(cpu);
+
+    kvm_arm_sync_mpstate_to_qemu(cpu);
+
+    return 0;
+}