Add qemu 2.4.0
[kvmfornfv.git] / qemu / target-arm / helper.c
diff --git a/qemu/target-arm/helper.c b/qemu/target-arm/helper.c
new file mode 100644 (file)
index 0000000..01f0d0d
--- /dev/null
@@ -0,0 +1,7642 @@
+#include "cpu.h"
+#include "internals.h"
+#include "exec/gdbstub.h"
+#include "exec/helper-proto.h"
+#include "qemu/host-utils.h"
+#include "sysemu/arch_init.h"
+#include "sysemu/sysemu.h"
+#include "qemu/bitops.h"
+#include "qemu/crc32c.h"
+#include "exec/cpu_ldst.h"
+#include "arm_ldst.h"
+#include <zlib.h> /* For crc32 */
+#include "exec/semihost.h"
+
+#ifndef CONFIG_USER_ONLY
+static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
+                                 int access_type, ARMMMUIdx mmu_idx,
+                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
+                                 target_ulong *page_size, uint32_t *fsr);
+
+/* Definitions for the PMCCNTR and PMCR registers */
+#define PMCRD   0x8
+#define PMCRC   0x4
+#define PMCRE   0x1
+#endif
+
+static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+    int nregs;
+
+    /* VFP data registers are always little-endian.  */
+    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
+    if (reg < nregs) {
+        stfq_le_p(buf, env->vfp.regs[reg]);
+        return 8;
+    }
+    if (arm_feature(env, ARM_FEATURE_NEON)) {
+        /* Aliases for Q regs.  */
+        nregs += 16;
+        if (reg < nregs) {
+            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
+            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
+            return 16;
+        }
+    }
+    switch (reg - nregs) {
+    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
+    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
+    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
+    }
+    return 0;
+}
+
+static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+    int nregs;
+
+    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
+    if (reg < nregs) {
+        env->vfp.regs[reg] = ldfq_le_p(buf);
+        return 8;
+    }
+    if (arm_feature(env, ARM_FEATURE_NEON)) {
+        nregs += 16;
+        if (reg < nregs) {
+            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
+            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
+            return 16;
+        }
+    }
+    switch (reg - nregs) {
+    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
+    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
+    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
+    }
+    return 0;
+}
+
+static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+    switch (reg) {
+    case 0 ... 31:
+        /* 128 bit FP register */
+        stfq_le_p(buf, env->vfp.regs[reg * 2]);
+        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
+        return 16;
+    case 32:
+        /* FPSR */
+        stl_p(buf, vfp_get_fpsr(env));
+        return 4;
+    case 33:
+        /* FPCR */
+        stl_p(buf, vfp_get_fpcr(env));
+        return 4;
+    default:
+        return 0;
+    }
+}
+
+static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+    switch (reg) {
+    case 0 ... 31:
+        /* 128 bit FP register */
+        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
+        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
+        return 16;
+    case 32:
+        /* FPSR */
+        vfp_set_fpsr(env, ldl_p(buf));
+        return 4;
+    case 33:
+        /* FPCR */
+        vfp_set_fpcr(env, ldl_p(buf));
+        return 4;
+    default:
+        return 0;
+    }
+}
+
+static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    assert(ri->fieldoffset);
+    if (cpreg_field_is_64bit(ri)) {
+        return CPREG_FIELD64(env, ri);
+    } else {
+        return CPREG_FIELD32(env, ri);
+    }
+}
+
+static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                      uint64_t value)
+{
+    assert(ri->fieldoffset);
+    if (cpreg_field_is_64bit(ri)) {
+        CPREG_FIELD64(env, ri) = value;
+    } else {
+        CPREG_FIELD32(env, ri) = value;
+    }
+}
+
+static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return (char *)env + ri->fieldoffset;
+}
+
+static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* Raw read of a coprocessor register (as needed for migration, etc). */
+    if (ri->type & ARM_CP_CONST) {
+        return ri->resetvalue;
+    } else if (ri->raw_readfn) {
+        return ri->raw_readfn(env, ri);
+    } else if (ri->readfn) {
+        return ri->readfn(env, ri);
+    } else {
+        return raw_read(env, ri);
+    }
+}
+
+static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t v)
+{
+    /* Raw write of a coprocessor register (as needed for migration, etc).
+     * Note that constant registers are treated as write-ignored; the
+     * caller should check for success by whether a readback gives the
+     * value written.
+     */
+    if (ri->type & ARM_CP_CONST) {
+        return;
+    } else if (ri->raw_writefn) {
+        ri->raw_writefn(env, ri, v);
+    } else if (ri->writefn) {
+        ri->writefn(env, ri, v);
+    } else {
+        raw_write(env, ri, v);
+    }
+}
+
+static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
+{
+   /* Return true if the regdef would cause an assertion if you called
+    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
+    * program bug for it not to have the NO_RAW flag).
+    * NB that returning false here doesn't necessarily mean that calling
+    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
+    * read/write access functions which are safe for raw use" from "has
+    * read/write access functions which have side effects but has forgotten
+    * to provide raw access functions".
+    * The tests here line up with the conditions in read/write_raw_cp_reg()
+    * and assertions in raw_read()/raw_write().
+    */
+    if ((ri->type & ARM_CP_CONST) ||
+        ri->fieldoffset ||
+        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
+        return false;
+    }
+    return true;
+}
+
+bool write_cpustate_to_list(ARMCPU *cpu)
+{
+    /* Write the coprocessor state from cpu->env to the (index,value) list. */
+    int i;
+    bool ok = true;
+
+    for (i = 0; i < cpu->cpreg_array_len; i++) {
+        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
+        const ARMCPRegInfo *ri;
+
+        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
+        if (!ri) {
+            ok = false;
+            continue;
+        }
+        if (ri->type & ARM_CP_NO_RAW) {
+            continue;
+        }
+        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
+    }
+    return ok;
+}
+
+bool write_list_to_cpustate(ARMCPU *cpu)
+{
+    int i;
+    bool ok = true;
+
+    for (i = 0; i < cpu->cpreg_array_len; i++) {
+        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
+        uint64_t v = cpu->cpreg_values[i];
+        const ARMCPRegInfo *ri;
+
+        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
+        if (!ri) {
+            ok = false;
+            continue;
+        }
+        if (ri->type & ARM_CP_NO_RAW) {
+            continue;
+        }
+        /* Write value and confirm it reads back as written
+         * (to catch read-only registers and partially read-only
+         * registers where the incoming migration value doesn't match)
+         */
+        write_raw_cp_reg(&cpu->env, ri, v);
+        if (read_raw_cp_reg(&cpu->env, ri) != v) {
+            ok = false;
+        }
+    }
+    return ok;
+}
+
+static void add_cpreg_to_list(gpointer key, gpointer opaque)
+{
+    ARMCPU *cpu = opaque;
+    uint64_t regidx;
+    const ARMCPRegInfo *ri;
+
+    regidx = *(uint32_t *)key;
+    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
+
+    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
+        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
+        /* The value array need not be initialized at this point */
+        cpu->cpreg_array_len++;
+    }
+}
+
+static void count_cpreg(gpointer key, gpointer opaque)
+{
+    ARMCPU *cpu = opaque;
+    uint64_t regidx;
+    const ARMCPRegInfo *ri;
+
+    regidx = *(uint32_t *)key;
+    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
+
+    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
+        cpu->cpreg_array_len++;
+    }
+}
+
+static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
+{
+    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
+    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
+
+    if (aidx > bidx) {
+        return 1;
+    }
+    if (aidx < bidx) {
+        return -1;
+    }
+    return 0;
+}
+
+void init_cpreg_list(ARMCPU *cpu)
+{
+    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
+     * Note that we require cpreg_tuples[] to be sorted by key ID.
+     */
+    GList *keys;
+    int arraylen;
+
+    keys = g_hash_table_get_keys(cpu->cp_regs);
+    keys = g_list_sort(keys, cpreg_key_compare);
+
+    cpu->cpreg_array_len = 0;
+
+    g_list_foreach(keys, count_cpreg, cpu);
+
+    arraylen = cpu->cpreg_array_len;
+    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
+    cpu->cpreg_values = g_new(uint64_t, arraylen);
+    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
+    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
+    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
+    cpu->cpreg_array_len = 0;
+
+    g_list_foreach(keys, add_cpreg_to_list, cpu);
+
+    assert(cpu->cpreg_array_len == arraylen);
+
+    g_list_free(keys);
+}
+
+static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    raw_write(env, ri, value);
+    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
+}
+
+static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    if (raw_read(env, ri) != value) {
+        /* Unlike real hardware the qemu TLB uses virtual addresses,
+         * not modified virtual addresses, so this causes a TLB flush.
+         */
+        tlb_flush(CPU(cpu), 1);
+        raw_write(env, ri, value);
+    }
+}
+
+static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
+        && !extended_addresses_enabled(env)) {
+        /* For VMSA (when not using the LPAE long descriptor page table
+         * format) this register includes the ASID, so do a TLB flush.
+         * For PMSA it is purely a process ID and no action is needed.
+         */
+        tlb_flush(CPU(cpu), 1);
+    }
+    raw_write(env, ri, value);
+}
+
+static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                          uint64_t value)
+{
+    /* Invalidate all (TLBIALL) */
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    tlb_flush(CPU(cpu), 1);
+}
+
+static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                          uint64_t value)
+{
+    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
+}
+
+static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                           uint64_t value)
+{
+    /* Invalidate by ASID (TLBIASID) */
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    tlb_flush(CPU(cpu), value == 0);
+}
+
+static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                           uint64_t value)
+{
+    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
+}
+
+/* IS variants of TLB operations must affect all cores */
+static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    CPUState *other_cs;
+
+    CPU_FOREACH(other_cs) {
+        tlb_flush(other_cs, 1);
+    }
+}
+
+static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    CPUState *other_cs;
+
+    CPU_FOREACH(other_cs) {
+        tlb_flush(other_cs, value == 0);
+    }
+}
+
+static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    CPUState *other_cs;
+
+    CPU_FOREACH(other_cs) {
+        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
+    }
+}
+
+static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    CPUState *other_cs;
+
+    CPU_FOREACH(other_cs) {
+        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
+    }
+}
+
+static const ARMCPRegInfo cp_reginfo[] = {
+    /* Define the secure and non-secure FCSE identifier CP registers
+     * separately because there is no secure bank in V8 (no _EL3).  This allows
+     * the secure register to be properly reset and migrated. There is also no
+     * v8 EL1 version of the register so the non-secure instance stands alone.
+     */
+    { .name = "FCSEIDR(NS)",
+      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
+      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
+      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
+      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
+    { .name = "FCSEIDR(S)",
+      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
+      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
+      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
+      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
+    /* Define the secure and non-secure context identifier CP registers
+     * separately because there is no secure bank in V8 (no _EL3).  This allows
+     * the secure register to be properly reset and migrated.  In the
+     * non-secure case, the 32-bit register will have reset and migration
+     * disabled during registration as it is handled by the 64-bit instance.
+     */
+    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
+      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
+      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
+      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
+    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
+      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
+      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
+      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
+      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo not_v8_cp_reginfo[] = {
+    /* NB: Some of these registers exist in v8 but with more precise
+     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
+     */
+    /* MMU Domain access control / MPU write buffer control */
+    { .name = "DACR",
+      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
+      .access = PL1_RW, .resetvalue = 0,
+      .writefn = dacr_write, .raw_writefn = raw_write,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
+                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
+    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
+     * For v6 and v5, these mappings are overly broad.
+     */
+    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
+      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
+      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
+      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
+      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+    /* Cache maintenance ops; some of this space may be overridden later. */
+    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
+      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo not_v6_cp_reginfo[] = {
+    /* Not all pre-v6 cores implemented this WFI, so this is slightly
+     * over-broad.
+     */
+    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
+      .access = PL1_W, .type = ARM_CP_WFI },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo not_v7_cp_reginfo[] = {
+    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
+     * is UNPREDICTABLE; we choose to NOP as most implementations do).
+     */
+    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+      .access = PL1_W, .type = ARM_CP_WFI },
+    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
+     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
+     * OMAPCP will override this space.
+     */
+    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
+      .resetvalue = 0 },
+    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
+      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
+      .resetvalue = 0 },
+    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
+    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
+      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+      .resetvalue = 0 },
+    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
+     * implementing it as RAZ means the "debug architecture version" bits
+     * will read as a reserved value, which should cause Linux to not try
+     * to use the debug hardware.
+     */
+    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+    /* MMU TLB control. Note that the wildcarding means we cover not just
+     * the unified TLB ops but also the dside/iside/inner-shareable variants.
+     */
+    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
+      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
+      .type = ARM_CP_NO_RAW },
+    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
+      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
+      .type = ARM_CP_NO_RAW },
+    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
+      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
+      .type = ARM_CP_NO_RAW },
+    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
+      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
+      .type = ARM_CP_NO_RAW },
+    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
+      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
+    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
+      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
+    REGINFO_SENTINEL
+};
+
+static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                        uint64_t value)
+{
+    uint32_t mask = 0;
+
+    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
+    if (!arm_feature(env, ARM_FEATURE_V8)) {
+        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
+         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
+         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
+         */
+        if (arm_feature(env, ARM_FEATURE_VFP)) {
+            /* VFP coprocessor: cp10 & cp11 [23:20] */
+            mask |= (1 << 31) | (1 << 30) | (0xf << 20);
+
+            if (!arm_feature(env, ARM_FEATURE_NEON)) {
+                /* ASEDIS [31] bit is RAO/WI */
+                value |= (1 << 31);
+            }
+
+            /* VFPv3 and upwards with NEON implement 32 double precision
+             * registers (D0-D31).
+             */
+            if (!arm_feature(env, ARM_FEATURE_NEON) ||
+                    !arm_feature(env, ARM_FEATURE_VFP3)) {
+                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
+                value |= (1 << 30);
+            }
+        }
+        value &= mask;
+    }
+    env->cp15.cpacr_el1 = value;
+}
+
+static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    if (arm_feature(env, ARM_FEATURE_V8)) {
+        /* Check if CPACR accesses are to be trapped to EL2 */
+        if (arm_current_el(env) == 1 &&
+            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
+            return CP_ACCESS_TRAP_EL2;
+        /* Check if CPACR accesses are to be trapped to EL3 */
+        } else if (arm_current_el(env) < 3 &&
+                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
+            return CP_ACCESS_TRAP_EL3;
+        }
+    }
+
+    return CP_ACCESS_OK;
+}
+
+static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* Check if CPTR accesses are set to trap to EL3 */
+    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
+        return CP_ACCESS_TRAP_EL3;
+    }
+
+    return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo v6_cp_reginfo[] = {
+    /* prefetch by MVA in v6, NOP in v7 */
+    { .name = "MVA_prefetch",
+      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
+      .access = PL0_W, .type = ARM_CP_NOP },
+    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
+      .access = PL0_W, .type = ARM_CP_NOP },
+    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
+      .access = PL0_W, .type = ARM_CP_NOP },
+    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
+      .access = PL1_RW,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
+                             offsetof(CPUARMState, cp15.ifar_ns) },
+      .resetvalue = 0, },
+    /* Watchpoint Fault Address Register : should actually only be present
+     * for 1136, 1176, 11MPCore.
+     */
+    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
+      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
+    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
+      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
+      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
+      .resetvalue = 0, .writefn = cpacr_write },
+    REGINFO_SENTINEL
+};
+
+static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* Performance monitor registers user accessibility is controlled
+     * by PMUSERENR.
+     */
+    if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+#ifndef CONFIG_USER_ONLY
+
+static inline bool arm_ccnt_enabled(CPUARMState *env)
+{
+    /* This does not support checking PMCCFILTR_EL0 register */
+
+    if (!(env->cp15.c9_pmcr & PMCRE)) {
+        return false;
+    }
+
+    return true;
+}
+
+void pmccntr_sync(CPUARMState *env)
+{
+    uint64_t temp_ticks;
+
+    temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
+                          get_ticks_per_sec(), 1000000);
+
+    if (env->cp15.c9_pmcr & PMCRD) {
+        /* Increment once every 64 processor clock cycles */
+        temp_ticks /= 64;
+    }
+
+    if (arm_ccnt_enabled(env)) {
+        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
+    }
+}
+
+static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                       uint64_t value)
+{
+    pmccntr_sync(env);
+
+    if (value & PMCRC) {
+        /* The counter has been reset */
+        env->cp15.c15_ccnt = 0;
+    }
+
+    /* only the DP, X, D and E bits are writable */
+    env->cp15.c9_pmcr &= ~0x39;
+    env->cp15.c9_pmcr |= (value & 0x39);
+
+    pmccntr_sync(env);
+}
+
+static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    uint64_t total_ticks;
+
+    if (!arm_ccnt_enabled(env)) {
+        /* Counter is disabled, do not change value */
+        return env->cp15.c15_ccnt;
+    }
+
+    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
+                           get_ticks_per_sec(), 1000000);
+
+    if (env->cp15.c9_pmcr & PMCRD) {
+        /* Increment once every 64 processor clock cycles */
+        total_ticks /= 64;
+    }
+    return total_ticks - env->cp15.c15_ccnt;
+}
+
+static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                        uint64_t value)
+{
+    uint64_t total_ticks;
+
+    if (!arm_ccnt_enabled(env)) {
+        /* Counter is disabled, set the absolute value */
+        env->cp15.c15_ccnt = value;
+        return;
+    }
+
+    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
+                           get_ticks_per_sec(), 1000000);
+
+    if (env->cp15.c9_pmcr & PMCRD) {
+        /* Increment once every 64 processor clock cycles */
+        total_ticks /= 64;
+    }
+    env->cp15.c15_ccnt = total_ticks - value;
+}
+
+static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    uint64_t cur_val = pmccntr_read(env, NULL);
+
+    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
+}
+
+#else /* CONFIG_USER_ONLY */
+
+void pmccntr_sync(CPUARMState *env)
+{
+}
+
+#endif
+
+static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    pmccntr_sync(env);
+    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
+    pmccntr_sync(env);
+}
+
+static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    value &= (1 << 31);
+    env->cp15.c9_pmcnten |= value;
+}
+
+static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    value &= (1 << 31);
+    env->cp15.c9_pmcnten &= ~value;
+}
+
+static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    env->cp15.c9_pmovsr &= ~value;
+}
+
+static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    env->cp15.c9_pmxevtyper = value & 0xff;
+}
+
+static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    env->cp15.c9_pmuserenr = value & 1;
+}
+
+static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    /* We have no event counters so only the C bit can be changed */
+    value &= (1 << 31);
+    env->cp15.c9_pminten |= value;
+}
+
+static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    value &= (1 << 31);
+    env->cp15.c9_pminten &= ~value;
+}
+
+static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                       uint64_t value)
+{
+    /* Note that even though the AArch64 view of this register has bits
+     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
+     * architectural requirements for bits which are RES0 only in some
+     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
+     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
+     */
+    raw_write(env, ri, value & ~0x1FULL);
+}
+
+static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
+     * For bits that vary between AArch32/64, code needs to check the
+     * current execution mode before directly using the feature bit.
+     */
+    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
+
+    if (!arm_feature(env, ARM_FEATURE_EL2)) {
+        valid_mask &= ~SCR_HCE;
+
+        /* On ARMv7, SMD (or SCD as it is called in v7) is only
+         * supported if EL2 exists. The bit is UNK/SBZP when
+         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
+         * when EL2 is unavailable.
+         * On ARMv8, this bit is always available.
+         */
+        if (arm_feature(env, ARM_FEATURE_V7) &&
+            !arm_feature(env, ARM_FEATURE_V8)) {
+            valid_mask &= ~SCR_SMD;
+        }
+    }
+
+    /* Clear all-context RES0 bits.  */
+    value &= valid_mask;
+    raw_write(env, ri, value);
+}
+
+static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
+     * bank
+     */
+    uint32_t index = A32_BANKED_REG_GET(env, csselr,
+                                        ri->secure & ARM_CP_SECSTATE_S);
+
+    return cpu->ccsidr[index];
+}
+
+static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    raw_write(env, ri, value & 0xf);
+}
+
+static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    CPUState *cs = ENV_GET_CPU(env);
+    uint64_t ret = 0;
+
+    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
+        ret |= CPSR_I;
+    }
+    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
+        ret |= CPSR_F;
+    }
+    /* External aborts are not possible in QEMU so A bit is always clear */
+    return ret;
+}
+
+static const ARMCPRegInfo v7_cp_reginfo[] = {
+    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
+    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    /* Performance monitors are implementation defined in v7,
+     * but with an ARM recommended set of registers, which we
+     * follow (although we don't actually implement any counters)
+     *
+     * Performance registers fall into three categories:
+     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
+     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
+     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
+     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
+     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
+     */
+    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
+      .access = PL0_RW, .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
+      .writefn = pmcntenset_write,
+      .accessfn = pmreg_access,
+      .raw_writefn = raw_write },
+    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
+      .access = PL0_RW, .accessfn = pmreg_access,
+      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
+      .writefn = pmcntenset_write, .raw_writefn = raw_write },
+    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
+      .access = PL0_RW,
+      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
+      .accessfn = pmreg_access,
+      .writefn = pmcntenclr_write,
+      .type = ARM_CP_ALIAS },
+    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
+      .access = PL0_RW, .accessfn = pmreg_access,
+      .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
+      .writefn = pmcntenclr_write },
+    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
+      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
+      .accessfn = pmreg_access,
+      .writefn = pmovsr_write,
+      .raw_writefn = raw_write },
+    /* Unimplemented so WI. */
+    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
+      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
+    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
+     * We choose to RAZ/WI.
+     */
+    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
+      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
+      .accessfn = pmreg_access },
+#ifndef CONFIG_USER_ONLY
+    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
+      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
+      .readfn = pmccntr_read, .writefn = pmccntr_write32,
+      .accessfn = pmreg_access },
+    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
+      .access = PL0_RW, .accessfn = pmreg_access,
+      .type = ARM_CP_IO,
+      .readfn = pmccntr_read, .writefn = pmccntr_write, },
+#endif
+    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
+      .writefn = pmccfiltr_write,
+      .access = PL0_RW, .accessfn = pmreg_access,
+      .type = ARM_CP_IO,
+      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
+      .resetvalue = 0, },
+    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
+      .access = PL0_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
+      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
+      .raw_writefn = raw_write },
+    /* Unimplemented, RAZ/WI. */
+    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
+      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
+      .accessfn = pmreg_access },
+    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
+      .access = PL0_R | PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
+      .resetvalue = 0,
+      .writefn = pmuserenr_write, .raw_writefn = raw_write },
+    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+      .resetvalue = 0,
+      .writefn = pmintenset_write, .raw_writefn = raw_write },
+    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
+      .access = PL1_RW, .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+      .writefn = pmintenclr_write, },
+    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .writefn = vbar_write,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
+                             offsetof(CPUARMState, cp15.vbar_ns) },
+      .resetvalue = 0 },
+    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
+      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
+    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
+      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
+                             offsetof(CPUARMState, cp15.csselr_ns) } },
+    /* Auxiliary ID register: this actually has an IMPDEF value but for now
+     * just RAZ for all cores:
+     */
+    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
+      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+    /* Auxiliary fault status registers: these also are IMPDEF, and we
+     * choose to RAZ/WI for all cores.
+     */
+    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
+      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    /* MAIR can just read-as-written because we don't implement caches
+     * and so don't need to care about memory attributes.
+     */
+    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
+      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
+      .resetvalue = 0 },
+    /* For non-long-descriptor page tables these are PRRR and NMRR;
+     * regardless they still act as reads-as-written for QEMU.
+     */
+     /* MAIR0/1 are defined separately from their 64-bit counterpart which
+      * allows them to assign the correct fieldoffset based on the endianness
+      * handled in the field definitions.
+      */
+    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
+      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
+                             offsetof(CPUARMState, cp15.mair0_ns) },
+      .resetfn = arm_cp_reset_ignore },
+    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
+      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
+                             offsetof(CPUARMState, cp15.mair1_ns) },
+      .resetfn = arm_cp_reset_ignore },
+    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
+      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
+    /* 32 bit ITLB invalidates */
+    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
+    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
+    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
+    /* 32 bit DTLB invalidates */
+    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
+    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
+    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
+    /* 32 bit TLB invalidates */
+    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
+    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
+    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
+    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo v7mp_cp_reginfo[] = {
+    /* 32 bit TLB invalidates, Inner Shareable */
+    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
+    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
+    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
+      .type = ARM_CP_NO_RAW, .access = PL1_W,
+      .writefn = tlbiasid_is_write },
+    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
+      .type = ARM_CP_NO_RAW, .access = PL1_W,
+      .writefn = tlbimvaa_is_write },
+    REGINFO_SENTINEL
+};
+
+static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                        uint64_t value)
+{
+    value &= 1;
+    env->teecr = value;
+}
+
+static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo t2ee_cp_reginfo[] = {
+    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
+      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
+      .resetvalue = 0,
+      .writefn = teecr_write },
+    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
+      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
+      .accessfn = teehbr_access, .resetvalue = 0 },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo v6k_cp_reginfo[] = {
+    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
+      .access = PL0_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
+    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
+      .access = PL0_RW,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
+                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
+      .resetfn = arm_cp_reset_ignore },
+    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
+      .access = PL0_R|PL1_W,
+      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
+      .resetvalue = 0},
+    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
+      .access = PL0_R|PL1_W,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
+                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
+      .resetfn = arm_cp_reset_ignore },
+    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
+    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
+      .access = PL1_RW,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
+                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
+      .resetvalue = 0 },
+    REGINFO_SENTINEL
+};
+
+#ifndef CONFIG_USER_ONLY
+
+static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
+    if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
+{
+    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
+    if (arm_current_el(env) == 0 &&
+        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
+{
+    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
+     * EL0[PV]TEN is zero.
+     */
+    if (arm_current_el(env) == 0 &&
+        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+static CPAccessResult gt_pct_access(CPUARMState *env,
+                                         const ARMCPRegInfo *ri)
+{
+    return gt_counter_access(env, GTIMER_PHYS);
+}
+
+static CPAccessResult gt_vct_access(CPUARMState *env,
+                                         const ARMCPRegInfo *ri)
+{
+    return gt_counter_access(env, GTIMER_VIRT);
+}
+
+static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return gt_timer_access(env, GTIMER_PHYS);
+}
+
+static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return gt_timer_access(env, GTIMER_VIRT);
+}
+
+static uint64_t gt_get_countervalue(CPUARMState *env)
+{
+    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
+}
+
+static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
+{
+    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
+
+    if (gt->ctl & 1) {
+        /* Timer enabled: calculate and set current ISTATUS, irq, and
+         * reset timer to when ISTATUS next has to change
+         */
+        uint64_t count = gt_get_countervalue(&cpu->env);
+        /* Note that this must be unsigned 64 bit arithmetic: */
+        int istatus = count >= gt->cval;
+        uint64_t nexttick;
+
+        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
+        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
+                     (istatus && !(gt->ctl & 2)));
+        if (istatus) {
+            /* Next transition is when count rolls back over to zero */
+            nexttick = UINT64_MAX;
+        } else {
+            /* Next transition is when we hit cval */
+            nexttick = gt->cval;
+        }
+        /* Note that the desired next expiry time might be beyond the
+         * signed-64-bit range of a QEMUTimer -- in this case we just
+         * set the timer for as far in the future as possible. When the
+         * timer expires we will reset the timer for any remaining period.
+         */
+        if (nexttick > INT64_MAX / GTIMER_SCALE) {
+            nexttick = INT64_MAX / GTIMER_SCALE;
+        }
+        timer_mod(cpu->gt_timer[timeridx], nexttick);
+    } else {
+        /* Timer disabled: ISTATUS and timer output always clear */
+        gt->ctl &= ~4;
+        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
+        timer_del(cpu->gt_timer[timeridx]);
+    }
+}
+
+static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int timeridx = ri->opc1 & 1;
+
+    timer_del(cpu->gt_timer[timeridx]);
+}
+
+static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return gt_get_countervalue(env);
+}
+
+static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                          uint64_t value)
+{
+    int timeridx = ri->opc1 & 1;
+
+    env->cp15.c14_timer[timeridx].cval = value;
+    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
+}
+
+static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    int timeridx = ri->crm & 1;
+
+    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
+                      gt_get_countervalue(env));
+}
+
+static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                          uint64_t value)
+{
+    int timeridx = ri->crm & 1;
+
+    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
+                                         sextract64(value, 0, 32);
+    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
+}
+
+static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int timeridx = ri->crm & 1;
+    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
+
+    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
+    if ((oldval ^ value) & 1) {
+        /* Enable toggled */
+        gt_recalc_timer(cpu, timeridx);
+    } else if ((oldval ^ value) & 2) {
+        /* IMASK toggled: don't need to recalculate,
+         * just set the interrupt line based on ISTATUS
+         */
+        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
+                     (oldval & 4) && !(value & 2));
+    }
+}
+
+void arm_gt_ptimer_cb(void *opaque)
+{
+    ARMCPU *cpu = opaque;
+
+    gt_recalc_timer(cpu, GTIMER_PHYS);
+}
+
+void arm_gt_vtimer_cb(void *opaque)
+{
+    ARMCPU *cpu = opaque;
+
+    gt_recalc_timer(cpu, GTIMER_VIRT);
+}
+
+static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
+    /* Note that CNTFRQ is purely reads-as-written for the benefit
+     * of software; writing it doesn't actually change the timer frequency.
+     * Our reset value matches the fixed frequency we implement the timer at.
+     */
+    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .type = ARM_CP_ALIAS,
+      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
+      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
+    },
+    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
+      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
+      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
+    },
+    /* overall control: mostly access permissions */
+    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
+      .resetvalue = 0,
+    },
+    /* per-timer control */
+    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
+      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
+      .accessfn = gt_ptimer_access,
+      .fieldoffset = offsetoflow32(CPUARMState,
+                                   cp15.c14_timer[GTIMER_PHYS].ctl),
+      .writefn = gt_ctl_write, .raw_writefn = raw_write,
+    },
+    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
+      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
+      .accessfn = gt_ptimer_access,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
+      .resetvalue = 0,
+      .writefn = gt_ctl_write, .raw_writefn = raw_write,
+    },
+    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
+      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
+      .accessfn = gt_vtimer_access,
+      .fieldoffset = offsetoflow32(CPUARMState,
+                                   cp15.c14_timer[GTIMER_VIRT].ctl),
+      .writefn = gt_ctl_write, .raw_writefn = raw_write,
+    },
+    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
+      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
+      .accessfn = gt_vtimer_access,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
+      .resetvalue = 0,
+      .writefn = gt_ctl_write, .raw_writefn = raw_write,
+    },
+    /* TimerValue views: a 32 bit downcounting view of the underlying state */
+    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
+      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
+      .accessfn = gt_ptimer_access,
+      .readfn = gt_tval_read, .writefn = gt_tval_write,
+    },
+    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
+      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
+      .accessfn = gt_ptimer_access,
+      .readfn = gt_tval_read, .writefn = gt_tval_write,
+    },
+    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
+      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
+      .accessfn = gt_vtimer_access,
+      .readfn = gt_tval_read, .writefn = gt_tval_write,
+    },
+    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
+      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
+      .accessfn = gt_vtimer_access,
+      .readfn = gt_tval_read, .writefn = gt_tval_write,
+    },
+    /* The counter itself */
+    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
+      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
+      .accessfn = gt_pct_access,
+      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
+    },
+    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
+      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+      .accessfn = gt_pct_access,
+      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
+    },
+    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
+      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
+      .accessfn = gt_vct_access,
+      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
+    },
+    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
+      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+      .accessfn = gt_vct_access,
+      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
+    },
+    /* Comparison value, indicating when the timer goes off */
+    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
+      .access = PL1_RW | PL0_R,
+      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
+      .accessfn = gt_ptimer_access,
+      .writefn = gt_cval_write, .raw_writefn = raw_write,
+    },
+    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
+      .access = PL1_RW | PL0_R,
+      .type = ARM_CP_IO,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
+      .resetvalue = 0, .accessfn = gt_ptimer_access,
+      .writefn = gt_cval_write, .raw_writefn = raw_write,
+    },
+    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
+      .access = PL1_RW | PL0_R,
+      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
+      .accessfn = gt_vtimer_access,
+      .writefn = gt_cval_write, .raw_writefn = raw_write,
+    },
+    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
+      .access = PL1_RW | PL0_R,
+      .type = ARM_CP_IO,
+      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
+      .resetvalue = 0, .accessfn = gt_vtimer_access,
+      .writefn = gt_cval_write, .raw_writefn = raw_write,
+    },
+    REGINFO_SENTINEL
+};
+
+#else
+/* In user-mode none of the generic timer registers are accessible,
+ * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
+ * so instead just don't register any of them.
+ */
+static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
+    REGINFO_SENTINEL
+};
+
+#endif
+
+static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+    if (arm_feature(env, ARM_FEATURE_LPAE)) {
+        raw_write(env, ri, value);
+    } else if (arm_feature(env, ARM_FEATURE_V7)) {
+        raw_write(env, ri, value & 0xfffff6ff);
+    } else {
+        raw_write(env, ri, value & 0xfffff1ff);
+    }
+}
+
+#ifndef CONFIG_USER_ONLY
+/* get_phys_addr() isn't present for user-mode-only targets */
+
+static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    if (ri->opc2 & 4) {
+        /* Other states are only available with TrustZone; in
+         * a non-TZ implementation these registers don't exist
+         * at all, which is an Uncategorized trap. This underdecoding
+         * is safe because the reginfo is NO_RAW.
+         */
+        return CP_ACCESS_TRAP_UNCATEGORIZED;
+    }
+    return CP_ACCESS_OK;
+}
+
+static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
+                             int access_type, ARMMMUIdx mmu_idx)
+{
+    hwaddr phys_addr;
+    target_ulong page_size;
+    int prot;
+    uint32_t fsr;
+    bool ret;
+    uint64_t par64;
+    MemTxAttrs attrs = {};
+
+    ret = get_phys_addr(env, value, access_type, mmu_idx,
+                        &phys_addr, &attrs, &prot, &page_size, &fsr);
+    if (extended_addresses_enabled(env)) {
+        /* fsr is a DFSR/IFSR value for the long descriptor
+         * translation table format, but with WnR always clear.
+         * Convert it to a 64-bit PAR.
+         */
+        par64 = (1 << 11); /* LPAE bit always set */
+        if (!ret) {
+            par64 |= phys_addr & ~0xfffULL;
+            if (!attrs.secure) {
+                par64 |= (1 << 9); /* NS */
+            }
+            /* We don't set the ATTR or SH fields in the PAR. */
+        } else {
+            par64 |= 1; /* F */
+            par64 |= (fsr & 0x3f) << 1; /* FS */
+            /* Note that S2WLK and FSTAGE are always zero, because we don't
+             * implement virtualization and therefore there can't be a stage 2
+             * fault.
+             */
+        }
+    } else {
+        /* fsr is a DFSR/IFSR value for the short descriptor
+         * translation table format (with WnR always clear).
+         * Convert it to a 32-bit PAR.
+         */
+        if (!ret) {
+            /* We do not set any attribute bits in the PAR */
+            if (page_size == (1 << 24)
+                && arm_feature(env, ARM_FEATURE_V7)) {
+                par64 = (phys_addr & 0xff000000) | (1 << 1);
+            } else {
+                par64 = phys_addr & 0xfffff000;
+            }
+            if (!attrs.secure) {
+                par64 |= (1 << 9); /* NS */
+            }
+        } else {
+            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
+                    ((fsr & 0xf) << 1) | 1;
+        }
+    }
+    return par64;
+}
+
+static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+    int access_type = ri->opc2 & 1;
+    uint64_t par64;
+    ARMMMUIdx mmu_idx;
+    int el = arm_current_el(env);
+    bool secure = arm_is_secure_below_el3(env);
+
+    switch (ri->opc2 & 6) {
+    case 0:
+        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
+        switch (el) {
+        case 3:
+            mmu_idx = ARMMMUIdx_S1E3;
+            break;
+        case 2:
+            mmu_idx = ARMMMUIdx_S1NSE1;
+            break;
+        case 1:
+            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
+            break;
+        default:
+            g_assert_not_reached();
+        }
+        break;
+    case 2:
+        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
+        switch (el) {
+        case 3:
+            mmu_idx = ARMMMUIdx_S1SE0;
+            break;
+        case 2:
+            mmu_idx = ARMMMUIdx_S1NSE0;
+            break;
+        case 1:
+            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
+            break;
+        default:
+            g_assert_not_reached();
+        }
+        break;
+    case 4:
+        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
+        mmu_idx = ARMMMUIdx_S12NSE1;
+        break;
+    case 6:
+        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
+        mmu_idx = ARMMMUIdx_S12NSE0;
+        break;
+    default:
+        g_assert_not_reached();
+    }
+
+    par64 = do_ats_write(env, value, access_type, mmu_idx);
+
+    A32_BANKED_CURRENT_REG_SET(env, par, par64);
+}
+
+static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
+                        uint64_t value)
+{
+    int access_type = ri->opc2 & 1;
+    ARMMMUIdx mmu_idx;
+    int secure = arm_is_secure_below_el3(env);
+
+    switch (ri->opc2 & 6) {
+    case 0:
+        switch (ri->opc1) {
+        case 0: /* AT S1E1R, AT S1E1W */
+            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
+            break;
+        case 4: /* AT S1E2R, AT S1E2W */
+            mmu_idx = ARMMMUIdx_S1E2;
+            break;
+        case 6: /* AT S1E3R, AT S1E3W */
+            mmu_idx = ARMMMUIdx_S1E3;
+            break;
+        default:
+            g_assert_not_reached();
+        }
+        break;
+    case 2: /* AT S1E0R, AT S1E0W */
+        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
+        break;
+    case 4: /* AT S12E1R, AT S12E1W */
+        mmu_idx = ARMMMUIdx_S12NSE1;
+        break;
+    case 6: /* AT S12E0R, AT S12E0W */
+        mmu_idx = ARMMMUIdx_S12NSE0;
+        break;
+    default:
+        g_assert_not_reached();
+    }
+
+    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
+}
+#endif
+
+static const ARMCPRegInfo vapa_cp_reginfo[] = {
+    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .resetvalue = 0,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
+                             offsetoflow32(CPUARMState, cp15.par_ns) },
+      .writefn = par_write },
+#ifndef CONFIG_USER_ONLY
+    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
+      .access = PL1_W, .accessfn = ats_access,
+      .writefn = ats_write, .type = ARM_CP_NO_RAW },
+#endif
+    REGINFO_SENTINEL
+};
+
+/* Return basic MPU access permission bits.  */
+static uint32_t simple_mpu_ap_bits(uint32_t val)
+{
+    uint32_t ret;
+    uint32_t mask;
+    int i;
+    ret = 0;
+    mask = 3;
+    for (i = 0; i < 16; i += 2) {
+        ret |= (val >> i) & mask;
+        mask <<= 2;
+    }
+    return ret;
+}
+
+/* Pad basic MPU access permission bits to extended format.  */
+static uint32_t extended_mpu_ap_bits(uint32_t val)
+{
+    uint32_t ret;
+    uint32_t mask;
+    int i;
+    ret = 0;
+    mask = 3;
+    for (i = 0; i < 16; i += 2) {
+        ret |= (val & mask) << i;
+        mask <<= 2;
+    }
+    return ret;
+}
+
+static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                 uint64_t value)
+{
+    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
+}
+
+static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
+}
+
+static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                 uint64_t value)
+{
+    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
+}
+
+static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
+}
+
+static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
+
+    if (!u32p) {
+        return 0;
+    }
+
+    u32p += env->cp15.c6_rgnr;
+    return *u32p;
+}
+
+static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
+
+    if (!u32p) {
+        return;
+    }
+
+    u32p += env->cp15.c6_rgnr;
+    tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
+    *u32p = value;
+}
+
+static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
+
+    if (!u32p) {
+        return;
+    }
+
+    memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
+}
+
+static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                              uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    uint32_t nrgs = cpu->pmsav7_dregion;
+
+    if (value >= nrgs) {
+        qemu_log_mask(LOG_GUEST_ERROR,
+                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
+                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
+        return;
+    }
+
+    raw_write(env, ri, value);
+}
+
+static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
+    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_NO_RAW,
+      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
+      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
+    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
+      .access = PL1_RW, .type = ARM_CP_NO_RAW,
+      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
+      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
+    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
+      .access = PL1_RW, .type = ARM_CP_NO_RAW,
+      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
+      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
+    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
+      .writefn = pmsav7_rgnr_write },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
+    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
+      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
+    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+      .access = PL1_RW, .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
+      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
+    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
+      .resetvalue = 0, },
+    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
+      .resetvalue = 0, },
+    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
+    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
+    /* Protection region base and size registers */
+    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
+    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
+    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
+    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
+    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
+    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
+    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
+    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
+      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
+    REGINFO_SENTINEL
+};
+
+static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                 uint64_t value)
+{
+    TCR *tcr = raw_ptr(env, ri);
+    int maskshift = extract32(value, 0, 3);
+
+    if (!arm_feature(env, ARM_FEATURE_V8)) {
+        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
+            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
+             * using Long-desciptor translation table format */
+            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
+        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
+            /* In an implementation that includes the Security Extensions
+             * TTBCR has additional fields PD0 [4] and PD1 [5] for
+             * Short-descriptor translation table format.
+             */
+            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
+        } else {
+            value &= TTBCR_N;
+        }
+    }
+
+    /* Update the masks corresponding to the the TCR bank being written
+     * Note that we always calculate mask and base_mask, but
+     * they are only used for short-descriptor tables (ie if EAE is 0);
+     * for long-descriptor tables the TCR fields are used differently
+     * and the mask and base_mask values are meaningless.
+     */
+    tcr->raw_tcr = value;
+    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
+    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
+}
+
+static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                             uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    if (arm_feature(env, ARM_FEATURE_LPAE)) {
+        /* With LPAE the TTBCR could result in a change of ASID
+         * via the TTBCR.A1 bit, so do a TLB flush.
+         */
+        tlb_flush(CPU(cpu), 1);
+    }
+    vmsa_ttbcr_raw_write(env, ri, value);
+}
+
+static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    TCR *tcr = raw_ptr(env, ri);
+
+    /* Reset both the TCR as well as the masks corresponding to the bank of
+     * the TCR being reset.
+     */
+    tcr->raw_tcr = 0;
+    tcr->mask = 0;
+    tcr->base_mask = 0xffffc000u;
+}
+
+static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                               uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    TCR *tcr = raw_ptr(env, ri);
+
+    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
+    tlb_flush(CPU(cpu), 1);
+    tcr->raw_tcr = value;
+}
+
+static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    /* 64 bit accesses to the TTBRs can change the ASID and so we
+     * must flush the TLB.
+     */
+    if (cpreg_field_is_64bit(ri)) {
+        ARMCPU *cpu = arm_env_get_cpu(env);
+
+        tlb_flush(CPU(cpu), 1);
+    }
+    raw_write(env, ri, value);
+}
+
+static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
+    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_ALIAS,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
+                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
+    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+      .access = PL1_RW, .resetvalue = 0,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
+                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
+    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
+      .access = PL1_RW, .resetvalue = 0,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
+                             offsetof(CPUARMState, cp15.dfar_ns) } },
+    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
+      .resetvalue = 0, },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo vmsa_cp_reginfo[] = {
+    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
+    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
+      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
+                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
+    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
+      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
+                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
+    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
+      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
+      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
+    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
+      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
+      .raw_writefn = vmsa_ttbcr_raw_write,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
+                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
+    REGINFO_SENTINEL
+};
+
+static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                uint64_t value)
+{
+    env->cp15.c15_ticonfig = value & 0xe7;
+    /* The OS_TYPE bit in this register changes the reported CPUID! */
+    env->cp15.c0_cpuid = (value & (1 << 5)) ?
+        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
+}
+
+static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                uint64_t value)
+{
+    env->cp15.c15_threadid = value & 0xffff;
+}
+
+static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                           uint64_t value)
+{
+    /* Wait-for-interrupt (deprecated) */
+    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
+}
+
+static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                  uint64_t value)
+{
+    /* On OMAP there are registers indicating the max/min index of dcache lines
+     * containing a dirty line; cache flush operations have to reset these.
+     */
+    env->cp15.c15_i_max = 0x000;
+    env->cp15.c15_i_min = 0xff0;
+}
+
+static const ARMCPRegInfo omap_cp_reginfo[] = {
+    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
+      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
+      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
+      .resetvalue = 0, },
+    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_NOP },
+    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
+      .writefn = omap_ticonfig_write },
+    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
+    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .resetvalue = 0xff0,
+      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
+    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
+      .writefn = omap_threadid_write },
+    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
+      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+      .type = ARM_CP_NO_RAW,
+      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
+    /* TODO: Peripheral port remap register:
+     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
+     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
+     * when MMU is off.
+     */
+    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
+      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
+      .writefn = omap_cachemaint_write },
+    { .name = "C9", .cp = 15, .crn = 9,
+      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
+      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
+    REGINFO_SENTINEL
+};
+
+static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                              uint64_t value)
+{
+    env->cp15.c15_cpar = value & 0x3fff;
+}
+
+static const ARMCPRegInfo xscale_cp_reginfo[] = {
+    { .name = "XSCALE_CPAR",
+      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
+      .writefn = xscale_cpar_write, },
+    { .name = "XSCALE_AUXCR",
+      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
+      .resetvalue = 0, },
+    /* XScale specific cache-lockdown: since we have no cache we NOP these
+     * and hope the guest does not really rely on cache behaviour.
+     */
+    { .name = "XSCALE_LOCK_ICACHE_LINE",
+      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "XSCALE_UNLOCK_ICACHE",
+      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "XSCALE_DCACHE_LOCK",
+      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_NOP },
+    { .name = "XSCALE_UNLOCK_DCACHE",
+      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
+    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
+     * implementation of this implementation-defined space.
+     * Ideally this should eventually disappear in favour of actually
+     * implementing the correct behaviour for all cores.
+     */
+    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
+      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+      .access = PL1_RW,
+      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
+      .resetvalue = 0 },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
+    /* Cache status: RAZ because we have no cache so it's always clean */
+    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
+      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+      .resetvalue = 0 },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
+    /* We never have a a block transfer operation in progress */
+    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
+      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+      .resetvalue = 0 },
+    /* The cache ops themselves: these all NOP for QEMU */
+    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
+      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
+      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
+      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
+      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
+      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
+      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
+    /* The cache test-and-clean instructions always return (1 << 30)
+     * to indicate that there are no dirty cache lines.
+     */
+    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
+      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+      .resetvalue = (1 << 30) },
+    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
+      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+      .resetvalue = (1 << 30) },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo strongarm_cp_reginfo[] = {
+    /* Ignore ReadBuffer accesses */
+    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
+      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+      .access = PL1_RW, .resetvalue = 0,
+      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
+    REGINFO_SENTINEL
+};
+
+static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
+    uint64_t mpidr = cpu->mp_affinity;
+
+    if (arm_feature(env, ARM_FEATURE_V7MP)) {
+        mpidr |= (1U << 31);
+        /* Cores which are uniprocessor (non-coherent)
+         * but still implement the MP extensions set
+         * bit 30. (For instance, Cortex-R5).
+         */
+        if (cpu->mp_is_up) {
+            mpidr |= (1u << 30);
+        }
+    }
+    return mpidr;
+}
+
+static const ARMCPRegInfo mpidr_cp_reginfo[] = {
+    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
+      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo lpae_cp_reginfo[] = {
+    /* NOP AMAIR0/1 */
+    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_CONST,
+      .resetvalue = 0 },
+    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
+    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
+      .access = PL1_RW, .type = ARM_CP_CONST,
+      .resetvalue = 0 },
+    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
+      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
+                             offsetof(CPUARMState, cp15.par_ns)} },
+    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
+      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
+                             offsetof(CPUARMState, cp15.ttbr0_ns) },
+      .writefn = vmsa_ttbr_write, },
+    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
+      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
+      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
+                             offsetof(CPUARMState, cp15.ttbr1_ns) },
+      .writefn = vmsa_ttbr_write, },
+    REGINFO_SENTINEL
+};
+
+static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return vfp_get_fpcr(env);
+}
+
+static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    vfp_set_fpcr(env, value);
+}
+
+static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return vfp_get_fpsr(env);
+}
+
+static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    vfp_set_fpsr(env, value);
+}
+
+static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                            uint64_t value)
+{
+    env->daif = value & PSTATE_DAIF;
+}
+
+static CPAccessResult aa64_cacheop_access(CPUARMState *env,
+                                          const ARMCPRegInfo *ri)
+{
+    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
+     * SCTLR_EL1.UCI is set.
+     */
+    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
+ * Page D4-1736 (DDI0487A.b)
+ */
+
+static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                               uint64_t value)
+{
+    /* Invalidate by VA (AArch64 version) */
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+    tlb_flush_page(CPU(cpu), pageaddr);
+}
+
+static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                uint64_t value)
+{
+    /* Invalidate by VA, all ASIDs (AArch64 version) */
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+    tlb_flush_page(CPU(cpu), pageaddr);
+}
+
+static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                 uint64_t value)
+{
+    /* Invalidate by ASID (AArch64 version) */
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int asid = extract64(value, 48, 16);
+    tlb_flush(CPU(cpu), asid == 0);
+}
+
+static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                  uint64_t value)
+{
+    CPUState *other_cs;
+    uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+    CPU_FOREACH(other_cs) {
+        tlb_flush_page(other_cs, pageaddr);
+    }
+}
+
+static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                  uint64_t value)
+{
+    CPUState *other_cs;
+    uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+    CPU_FOREACH(other_cs) {
+        tlb_flush_page(other_cs, pageaddr);
+    }
+}
+
+static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                                  uint64_t value)
+{
+    CPUState *other_cs;
+    int asid = extract64(value, 48, 16);
+
+    CPU_FOREACH(other_cs) {
+        tlb_flush(other_cs, asid == 0);
+    }
+}
+
+static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* We don't implement EL2, so the only control on DC ZVA is the
+     * bit in the SCTLR which can prohibit access for EL0.
+     */
+    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int dzp_bit = 1 << 4;
+
+    /* DZP indicates whether DC ZVA access is allowed */
+    if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
+        dzp_bit = 0;
+    }
+    return cpu->dcz_blocksize | dzp_bit;
+}
+
+static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    if (!(env->pstate & PSTATE_SP)) {
+        /* Access to SP_EL0 is undefined if it's being used as
+         * the stack pointer.
+         */
+        return CP_ACCESS_TRAP_UNCATEGORIZED;
+    }
+    return CP_ACCESS_OK;
+}
+
+static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    return env->pstate & PSTATE_SP;
+}
+
+static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
+{
+    update_spsel(env, val);
+}
+
+static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                        uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    if (raw_read(env, ri) == value) {
+        /* Skip the TLB flush if nothing actually changed; Linux likes
+         * to do a lot of pointless SCTLR writes.
+         */
+        return;
+    }
+
+    raw_write(env, ri, value);
+    /* ??? Lots of these bits are not implemented.  */
+    /* This may enable/disable the MMU, so do a TLB flush.  */
+    tlb_flush(CPU(cpu), 1);
+}
+
+static const ARMCPRegInfo v8_cp_reginfo[] = {
+    /* Minimal set of EL0-visible registers. This will need to be expanded
+     * significantly for system emulation of AArch64 CPUs.
+     */
+    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
+      .access = PL0_RW, .type = ARM_CP_NZCV },
+    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
+      .type = ARM_CP_NO_RAW,
+      .access = PL0_RW, .accessfn = aa64_daif_access,
+      .fieldoffset = offsetof(CPUARMState, daif),
+      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
+    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
+      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
+    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
+      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
+    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
+      .access = PL0_R, .type = ARM_CP_NO_RAW,
+      .readfn = aa64_dczid_read },
+    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
+      .access = PL0_W, .type = ARM_CP_DC_ZVA,
+#ifndef CONFIG_USER_ONLY
+      /* Avoid overhead of an access check that always passes in user-mode */
+      .accessfn = aa64_zva_access,
+#endif
+    },
+    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
+      .access = PL1_R, .type = ARM_CP_CURRENTEL },
+    /* Cache ops: all NOPs since we don't emulate caches */
+    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
+      .access = PL0_W, .type = ARM_CP_NOP,
+      .accessfn = aa64_cacheop_access },
+    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
+      .access = PL0_W, .type = ARM_CP_NOP,
+      .accessfn = aa64_cacheop_access },
+    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
+      .access = PL0_W, .type = ARM_CP_NOP,
+      .accessfn = aa64_cacheop_access },
+    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
+      .access = PL0_W, .type = ARM_CP_NOP,
+      .accessfn = aa64_cacheop_access },
+    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    /* TLBI operations */
+    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
+      .access = PL2_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbiall_write },
+    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
+      .access = PL2_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbiall_is_write },
+    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbiall_is_write },
+    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_va_is_write },
+    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_asid_is_write },
+    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_vaa_is_write },
+    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_va_is_write },
+    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_vaa_is_write },
+    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbiall_write },
+    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_va_write },
+    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_asid_write },
+    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_vaa_write },
+    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_va_write },
+    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
+      .access = PL1_W, .type = ARM_CP_NO_RAW,
+      .writefn = tlbi_aa64_vaa_write },
+#ifndef CONFIG_USER_ONLY
+    /* 64 bit address translation operations */
+    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
+      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
+    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
+      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
+    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
+      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
+    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
+      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
+#endif
+    /* TLB invalidate last level of translation table walk */
+    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
+    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
+      .type = ARM_CP_NO_RAW, .access = PL1_W,
+      .writefn = tlbimvaa_is_write },
+    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
+    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
+      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
+    /* 32 bit cache operations */
+    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
+      .type = ARM_CP_NOP, .access = PL1_W },
+    /* MMU Domain access control / MPU write buffer control */
+    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
+      .access = PL1_RW, .resetvalue = 0,
+      .writefn = dacr_write, .raw_writefn = raw_write,
+      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
+                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
+    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
+    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
+      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
+    /* We rely on the access checks not allowing the guest to write to the
+     * state field when SPSel indicates that it's being used as the stack
+     * pointer.
+     */
+    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
+      .access = PL1_RW, .accessfn = sp_el0_access,
+      .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
+    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
+      .access = PL2_RW, .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
+    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
+      .type = ARM_CP_NO_RAW,
+      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
+    REGINFO_SENTINEL
+};
+
+/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
+static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
+    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
+      .access = PL2_RW,
+      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
+    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_NO_RAW,
+      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
+      .access = PL2_RW,
+      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
+    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
+      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
+      .access = PL2_RW, .type = ARM_CP_CONST,
+      .resetvalue = 0 },
+    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
+      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
+      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
+      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
+      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
+      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
+      .resetvalue = 0 },
+    REGINFO_SENTINEL
+};
+
+static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    uint64_t valid_mask = HCR_MASK;
+
+    if (arm_feature(env, ARM_FEATURE_EL3)) {
+        valid_mask &= ~HCR_HCD;
+    } else {
+        valid_mask &= ~HCR_TSC;
+    }
+
+    /* Clear RES0 bits.  */
+    value &= valid_mask;
+
+    /* These bits change the MMU setup:
+     * HCR_VM enables stage 2 translation
+     * HCR_PTW forbids certain page-table setups
+     * HCR_DC Disables stage1 and enables stage2 translation
+     */
+    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
+        tlb_flush(CPU(cpu), 1);
+    }
+    raw_write(env, ri, value);
+}
+
+static const ARMCPRegInfo el2_cp_reginfo[] = {
+    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
+      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
+      .writefn = hcr_write },
+    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .resetvalue = 0,
+      .writefn = dacr_write, .raw_writefn = raw_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
+    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
+      .access = PL2_RW,
+      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
+    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
+      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
+    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
+      .access = PL2_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
+    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
+    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
+    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .writefn = vbar_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
+      .resetvalue = 0 },
+    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
+      .access = PL3_RW, .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
+    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
+      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
+    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
+      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
+      .resetvalue = 0 },
+    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
+      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
+      .access = PL2_RW, .type = ARM_CP_ALIAS,
+      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
+    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
+      .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
+      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
+    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
+    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
+      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
+      .access = PL2_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
+    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
+    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
+      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
+      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
+    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
+      .type = ARM_CP_NO_RAW, .access = PL2_W,
+      .writefn = tlbiall_write },
+    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
+      .type = ARM_CP_NO_RAW, .access = PL2_W,
+      .writefn = tlbi_aa64_vaa_write },
+    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
+      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
+      .type = ARM_CP_NO_RAW, .access = PL2_W,
+      .writefn = tlbi_aa64_vaa_write },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo el3_cp_reginfo[] = {
+    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
+      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
+      .resetvalue = 0, .writefn = scr_write },
+    { .name = "SCR",  .type = ARM_CP_ALIAS,
+      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
+      .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
+      .writefn = scr_write },
+    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
+      .access = PL3_RW, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
+    { .name = "SDER",
+      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
+      .access = PL3_RW, .resetvalue = 0,
+      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
+      /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
+    { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
+      .access = PL3_W | PL1_R, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
+    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
+      .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
+    { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
+      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
+      .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
+    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
+      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
+    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
+      .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
+      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
+    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
+      .access = PL3_RW,
+      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
+    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
+      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
+    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
+      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
+    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_ALIAS,
+      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
+      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
+    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
+      .access = PL3_RW, .writefn = vbar_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
+      .resetvalue = 0 },
+    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
+      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
+      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
+    REGINFO_SENTINEL
+};
+
+static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
+     * but the AArch32 CTR has its own reginfo struct)
+     */
+    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
+        return CP_ACCESS_TRAP;
+    }
+    return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo debug_cp_reginfo[] = {
+    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
+     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
+     * unlike DBGDRAR it is never accessible from EL0.
+     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
+     * accessor.
+     */
+    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
+      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
+      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
+    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
+      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
+      .access = PL1_RW,
+      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
+      .resetvalue = 0 },
+    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
+     * We don't implement the configurable EL0 access.
+     */
+    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
+      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
+      .type = ARM_CP_ALIAS,
+      .access = PL1_R,
+      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
+    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
+    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
+      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
+      .access = PL1_W, .type = ARM_CP_NOP },
+    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
+    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
+      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
+      .access = PL1_RW, .type = ARM_CP_NOP },
+    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
+     * implement vector catch debug events yet.
+     */
+    { .name = "DBGVCR",
+      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
+      .access = PL1_RW, .type = ARM_CP_NOP },
+    REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
+    /* 64 bit access versions of the (dummy) debug registers */
+    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
+      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
+    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
+      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
+    REGINFO_SENTINEL
+};
+
+void hw_watchpoint_update(ARMCPU *cpu, int n)
+{
+    CPUARMState *env = &cpu->env;
+    vaddr len = 0;
+    vaddr wvr = env->cp15.dbgwvr[n];
+    uint64_t wcr = env->cp15.dbgwcr[n];
+    int mask;
+    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
+
+    if (env->cpu_watchpoint[n]) {
+        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
+        env->cpu_watchpoint[n] = NULL;
+    }
+
+    if (!extract64(wcr, 0, 1)) {
+        /* E bit clear : watchpoint disabled */
+        return;
+    }
+
+    switch (extract64(wcr, 3, 2)) {
+    case 0:
+        /* LSC 00 is reserved and must behave as if the wp is disabled */
+        return;
+    case 1:
+        flags |= BP_MEM_READ;
+        break;
+    case 2:
+        flags |= BP_MEM_WRITE;
+        break;
+    case 3:
+        flags |= BP_MEM_ACCESS;
+        break;
+    }
+
+    /* Attempts to use both MASK and BAS fields simultaneously are
+     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
+     * thus generating a watchpoint for every byte in the masked region.
+     */
+    mask = extract64(wcr, 24, 4);
+    if (mask == 1 || mask == 2) {
+        /* Reserved values of MASK; we must act as if the mask value was
+         * some non-reserved value, or as if the watchpoint were disabled.
+         * We choose the latter.
+         */
+        return;
+    } else if (mask) {
+        /* Watchpoint covers an aligned area up to 2GB in size */
+        len = 1ULL << mask;
+        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
+         * whether the watchpoint fires when the unmasked bits match; we opt
+         * to generate the exceptions.
+         */
+        wvr &= ~(len - 1);
+    } else {
+        /* Watchpoint covers bytes defined by the byte address select bits */
+        int bas = extract64(wcr, 5, 8);
+        int basstart;
+
+        if (bas == 0) {
+            /* This must act as if the watchpoint is disabled */
+            return;
+        }
+
+        if (extract64(wvr, 2, 1)) {
+            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
+             * ignored, and BAS[3:0] define which bytes to watch.
+             */
+            bas &= 0xf;
+        }
+        /* The BAS bits are supposed to be programmed to indicate a contiguous
+         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
+         * we fire for each byte in the word/doubleword addressed by the WVR.
+         * We choose to ignore any non-zero bits after the first range of 1s.
+         */
+        basstart = ctz32(bas);
+        len = cto32(bas >> basstart);
+        wvr += basstart;
+    }
+
+    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
+                          &env->cpu_watchpoint[n]);
+}
+
+void hw_watchpoint_update_all(ARMCPU *cpu)
+{
+    int i;
+    CPUARMState *env = &cpu->env;
+
+    /* Completely clear out existing QEMU watchpoints and our array, to
+     * avoid possible stale entries following migration load.
+     */
+    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
+    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
+
+    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
+        hw_watchpoint_update(cpu, i);
+    }
+}
+
+static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int i = ri->crm;
+
+    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
+     * register reads and behaves as if values written are sign extended.
+     * Bits [1:0] are RES0.
+     */
+    value = sextract64(value, 0, 49) & ~3ULL;
+
+    raw_write(env, ri, value);
+    hw_watchpoint_update(cpu, i);
+}
+
+static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int i = ri->crm;
+
+    raw_write(env, ri, value);
+    hw_watchpoint_update(cpu, i);
+}
+
+void hw_breakpoint_update(ARMCPU *cpu, int n)
+{
+    CPUARMState *env = &cpu->env;
+    uint64_t bvr = env->cp15.dbgbvr[n];
+    uint64_t bcr = env->cp15.dbgbcr[n];
+    vaddr addr;
+    int bt;
+    int flags = BP_CPU;
+
+    if (env->cpu_breakpoint[n]) {
+        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
+        env->cpu_breakpoint[n] = NULL;
+    }
+
+    if (!extract64(bcr, 0, 1)) {
+        /* E bit clear : watchpoint disabled */
+        return;
+    }
+
+    bt = extract64(bcr, 20, 4);
+
+    switch (bt) {
+    case 4: /* unlinked address mismatch (reserved if AArch64) */
+    case 5: /* linked address mismatch (reserved if AArch64) */
+        qemu_log_mask(LOG_UNIMP,
+                      "arm: address mismatch breakpoint types not implemented");
+        return;
+    case 0: /* unlinked address match */
+    case 1: /* linked address match */
+    {
+        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
+         * we behave as if the register was sign extended. Bits [1:0] are
+         * RES0. The BAS field is used to allow setting breakpoints on 16
+         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
+         * a bp will fire if the addresses covered by the bp and the addresses
+         * covered by the insn overlap but the insn doesn't start at the
+         * start of the bp address range. We choose to require the insn and
+         * the bp to have the same address. The constraints on writing to
+         * BAS enforced in dbgbcr_write mean we have only four cases:
+         *  0b0000  => no breakpoint
+         *  0b0011  => breakpoint on addr
+         *  0b1100  => breakpoint on addr + 2
+         *  0b1111  => breakpoint on addr
+         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
+         */
+        int bas = extract64(bcr, 5, 4);
+        addr = sextract64(bvr, 0, 49) & ~3ULL;
+        if (bas == 0) {
+            return;
+        }
+        if (bas == 0xc) {
+            addr += 2;
+        }
+        break;
+    }
+    case 2: /* unlinked context ID match */
+    case 8: /* unlinked VMID match (reserved if no EL2) */
+    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
+        qemu_log_mask(LOG_UNIMP,
+                      "arm: unlinked context breakpoint types not implemented");
+        return;
+    case 9: /* linked VMID match (reserved if no EL2) */
+    case 11: /* linked context ID and VMID match (reserved if no EL2) */
+    case 3: /* linked context ID match */
+    default:
+        /* We must generate no events for Linked context matches (unless
+         * they are linked to by some other bp/wp, which is handled in
+         * updates for the linking bp/wp). We choose to also generate no events
+         * for reserved values.
+         */
+        return;
+    }
+
+    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
+}
+
+void hw_breakpoint_update_all(ARMCPU *cpu)
+{
+    int i;
+    CPUARMState *env = &cpu->env;
+
+    /* Completely clear out existing QEMU breakpoints and our array, to
+     * avoid possible stale entries following migration load.
+     */
+    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
+    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
+
+    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
+        hw_breakpoint_update(cpu, i);
+    }
+}
+
+static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int i = ri->crm;
+
+    raw_write(env, ri, value);
+    hw_breakpoint_update(cpu, i);
+}
+
+static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int i = ri->crm;
+
+    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
+     * copy of BAS[0].
+     */
+    value = deposit64(value, 6, 1, extract64(value, 5, 1));
+    value = deposit64(value, 8, 1, extract64(value, 7, 1));
+
+    raw_write(env, ri, value);
+    hw_breakpoint_update(cpu, i);
+}
+
+static void define_debug_regs(ARMCPU *cpu)
+{
+    /* Define v7 and v8 architectural debug registers.
+     * These are just dummy implementations for now.
+     */
+    int i;
+    int wrps, brps, ctx_cmps;
+    ARMCPRegInfo dbgdidr = {
+        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
+        .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
+    };
+
+    /* Note that all these register fields hold "number of Xs minus 1". */
+    brps = extract32(cpu->dbgdidr, 24, 4);
+    wrps = extract32(cpu->dbgdidr, 28, 4);
+    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
+
+    assert(ctx_cmps <= brps);
+
+    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
+     * of the debug registers such as number of breakpoints;
+     * check that if they both exist then they agree.
+     */
+    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
+        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
+        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
+    }
+
+    define_one_arm_cp_reg(cpu, &dbgdidr);
+    define_arm_cp_regs(cpu, debug_cp_reginfo);
+
+    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
+        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
+    }
+
+    for (i = 0; i < brps + 1; i++) {
+        ARMCPRegInfo dbgregs[] = {
+            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
+              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
+              .access = PL1_RW,
+              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
+              .writefn = dbgbvr_write, .raw_writefn = raw_write
+            },
+            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
+              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
+              .access = PL1_RW,
+              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
+              .writefn = dbgbcr_write, .raw_writefn = raw_write
+            },
+            REGINFO_SENTINEL
+        };
+        define_arm_cp_regs(cpu, dbgregs);
+    }
+
+    for (i = 0; i < wrps + 1; i++) {
+        ARMCPRegInfo dbgregs[] = {
+            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
+              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
+              .access = PL1_RW,
+              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
+              .writefn = dbgwvr_write, .raw_writefn = raw_write
+            },
+            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
+              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
+              .access = PL1_RW,
+              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
+              .writefn = dbgwcr_write, .raw_writefn = raw_write
+            },
+            REGINFO_SENTINEL
+        };
+        define_arm_cp_regs(cpu, dbgregs);
+    }
+}
+
+void register_cp_regs_for_features(ARMCPU *cpu)
+{
+    /* Register all the coprocessor registers based on feature bits */
+    CPUARMState *env = &cpu->env;
+    if (arm_feature(env, ARM_FEATURE_M)) {
+        /* M profile has no coprocessor registers */
+        return;
+    }
+
+    define_arm_cp_regs(cpu, cp_reginfo);
+    if (!arm_feature(env, ARM_FEATURE_V8)) {
+        /* Must go early as it is full of wildcards that may be
+         * overridden by later definitions.
+         */
+        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
+    }
+
+    if (arm_feature(env, ARM_FEATURE_V6)) {
+        /* The ID registers all have impdef reset values */
+        ARMCPRegInfo v6_idregs[] = {
+            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_pfr0 },
+            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_pfr1 },
+            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_dfr0 },
+            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_afr0 },
+            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_mmfr0 },
+            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_mmfr1 },
+            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_mmfr2 },
+            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_mmfr3 },
+            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_isar0 },
+            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_isar1 },
+            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_isar2 },
+            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_isar3 },
+            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_isar4 },
+            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_isar5 },
+            /* 6..7 are as yet unallocated and must RAZ */
+            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
+              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = 0 },
+            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
+              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = 0 },
+            REGINFO_SENTINEL
+        };
+        define_arm_cp_regs(cpu, v6_idregs);
+        define_arm_cp_regs(cpu, v6_cp_reginfo);
+    } else {
+        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_V6K)) {
+        define_arm_cp_regs(cpu, v6k_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_V7MP) &&
+        !arm_feature(env, ARM_FEATURE_MPU)) {
+        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_V7)) {
+        /* v7 performance monitor control register: same implementor
+         * field as main ID register, and we implement only the cycle
+         * count register.
+         */
+#ifndef CONFIG_USER_ONLY
+        ARMCPRegInfo pmcr = {
+            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
+            .access = PL0_RW,
+            .type = ARM_CP_IO | ARM_CP_ALIAS,
+            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
+            .accessfn = pmreg_access, .writefn = pmcr_write,
+            .raw_writefn = raw_write,
+        };
+        ARMCPRegInfo pmcr64 = {
+            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
+            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
+            .access = PL0_RW, .accessfn = pmreg_access,
+            .type = ARM_CP_IO,
+            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
+            .resetvalue = cpu->midr & 0xff000000,
+            .writefn = pmcr_write, .raw_writefn = raw_write,
+        };
+        define_one_arm_cp_reg(cpu, &pmcr);
+        define_one_arm_cp_reg(cpu, &pmcr64);
+#endif
+        ARMCPRegInfo clidr = {
+            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
+            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
+            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
+        };
+        define_one_arm_cp_reg(cpu, &clidr);
+        define_arm_cp_regs(cpu, v7_cp_reginfo);
+        define_debug_regs(cpu);
+    } else {
+        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_V8)) {
+        /* AArch64 ID registers, which all have impdef reset values */
+        ARMCPRegInfo v8_idregs[] = {
+            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64pfr0 },
+            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64pfr1},
+            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              /* We mask out the PMUVer field, because we don't currently
+               * implement the PMU. Not advertising it prevents the guest
+               * from trying to use it and getting UNDEFs on registers we
+               * don't implement.
+               */
+              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
+            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64dfr1 },
+            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64afr0 },
+            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64afr1 },
+            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64isar0 },
+            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64isar1 },
+            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64mmfr0 },
+            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->id_aa64mmfr1 },
+            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->mvfr0 },
+            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->mvfr1 },
+            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->mvfr2 },
+            REGINFO_SENTINEL
+        };
+        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
+        if (!arm_feature(env, ARM_FEATURE_EL3) &&
+            !arm_feature(env, ARM_FEATURE_EL2)) {
+            ARMCPRegInfo rvbar = {
+                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
+                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
+                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
+            };
+            define_one_arm_cp_reg(cpu, &rvbar);
+        }
+        define_arm_cp_regs(cpu, v8_idregs);
+        define_arm_cp_regs(cpu, v8_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_EL2)) {
+        define_arm_cp_regs(cpu, el2_cp_reginfo);
+        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
+        if (!arm_feature(env, ARM_FEATURE_EL3)) {
+            ARMCPRegInfo rvbar = {
+                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
+                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
+                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
+            };
+            define_one_arm_cp_reg(cpu, &rvbar);
+        }
+    } else {
+        /* If EL2 is missing but higher ELs are enabled, we need to
+         * register the no_el2 reginfos.
+         */
+        if (arm_feature(env, ARM_FEATURE_EL3)) {
+            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
+        }
+    }
+    if (arm_feature(env, ARM_FEATURE_EL3)) {
+        define_arm_cp_regs(cpu, el3_cp_reginfo);
+        ARMCPRegInfo rvbar = {
+            .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
+            .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
+            .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
+        };
+        define_one_arm_cp_reg(cpu, &rvbar);
+    }
+    if (arm_feature(env, ARM_FEATURE_MPU)) {
+        if (arm_feature(env, ARM_FEATURE_V6)) {
+            /* PMSAv6 not implemented */
+            assert(arm_feature(env, ARM_FEATURE_V7));
+            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
+            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
+        } else {
+            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
+        }
+    } else {
+        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
+        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
+        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
+        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_VAPA)) {
+        define_arm_cp_regs(cpu, vapa_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
+        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
+        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
+        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
+        define_arm_cp_regs(cpu, omap_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
+        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+        define_arm_cp_regs(cpu, xscale_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
+        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
+    }
+    if (arm_feature(env, ARM_FEATURE_LPAE)) {
+        define_arm_cp_regs(cpu, lpae_cp_reginfo);
+    }
+    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
+     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
+     * be read-only (ie write causes UNDEF exception).
+     */
+    {
+        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
+            /* Pre-v8 MIDR space.
+             * Note that the MIDR isn't a simple constant register because
+             * of the TI925 behaviour where writes to another register can
+             * cause the MIDR value to change.
+             *
+             * Unimplemented registers in the c15 0 0 0 space default to
+             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
+             * and friends override accordingly.
+             */
+            { .name = "MIDR",
+              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
+              .access = PL1_R, .resetvalue = cpu->midr,
+              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
+              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
+              .type = ARM_CP_OVERRIDE },
+            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
+            { .name = "DUMMY",
+              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+            { .name = "DUMMY",
+              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+            { .name = "DUMMY",
+              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+            { .name = "DUMMY",
+              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+            { .name = "DUMMY",
+              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+            REGINFO_SENTINEL
+        };
+        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
+            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
+            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
+            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
+              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
+              .access = PL1_R, .resetvalue = cpu->midr },
+            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
+              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
+              .access = PL1_R, .resetvalue = cpu->midr },
+            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
+              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
+            REGINFO_SENTINEL
+        };
+        ARMCPRegInfo id_cp_reginfo[] = {
+            /* These are common to v8 and pre-v8 */
+            { .name = "CTR",
+              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
+            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
+              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
+              .access = PL0_R, .accessfn = ctr_el0_access,
+              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
+            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
+            { .name = "TCMTR",
+              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+            REGINFO_SENTINEL
+        };
+        /* TLBTR is specific to VMSA */
+        ARMCPRegInfo id_tlbtr_reginfo = {
+              .name = "TLBTR",
+              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
+              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
+        };
+        /* MPUIR is specific to PMSA V6+ */
+        ARMCPRegInfo id_mpuir_reginfo = {
+              .name = "MPUIR",
+              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
+              .access = PL1_R, .type = ARM_CP_CONST,
+              .resetvalue = cpu->pmsav7_dregion << 8
+        };
+        ARMCPRegInfo crn0_wi_reginfo = {
+            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
+            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
+            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
+        };
+        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
+            arm_feature(env, ARM_FEATURE_STRONGARM)) {
+            ARMCPRegInfo *r;
+            /* Register the blanket "writes ignored" value first to cover the
+             * whole space. Then update the specific ID registers to allow write
+             * access, so that they ignore writes rather than causing them to
+             * UNDEF.
+             */
+            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
+            for (r = id_pre_v8_midr_cp_reginfo;
+                 r->type != ARM_CP_SENTINEL; r++) {
+                r->access = PL1_RW;
+            }
+            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
+                r->access = PL1_RW;
+            }
+            id_tlbtr_reginfo.access = PL1_RW;
+            id_tlbtr_reginfo.access = PL1_RW;
+        }
+        if (arm_feature(env, ARM_FEATURE_V8)) {
+            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
+        } else {
+            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
+        }
+        define_arm_cp_regs(cpu, id_cp_reginfo);
+        if (!arm_feature(env, ARM_FEATURE_MPU)) {
+            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
+        } else if (arm_feature(env, ARM_FEATURE_V7)) {
+            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
+        }
+    }
+
+    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
+        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
+    }
+
+    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
+        ARMCPRegInfo auxcr = {
+            .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
+            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
+            .access = PL1_RW, .type = ARM_CP_CONST,
+            .resetvalue = cpu->reset_auxcr
+        };
+        define_one_arm_cp_reg(cpu, &auxcr);
+    }
+
+    if (arm_feature(env, ARM_FEATURE_CBAR)) {
+        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+            /* 32 bit view is [31:18] 0...0 [43:32]. */
+            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
+                | extract64(cpu->reset_cbar, 32, 12);
+            ARMCPRegInfo cbar_reginfo[] = {
+                { .name = "CBAR",
+                  .type = ARM_CP_CONST,
+                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
+                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
+                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
+                  .type = ARM_CP_CONST,
+                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
+                  .access = PL1_R, .resetvalue = cbar32 },
+                REGINFO_SENTINEL
+            };
+            /* We don't implement a r/w 64 bit CBAR currently */
+            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
+            define_arm_cp_regs(cpu, cbar_reginfo);
+        } else {
+            ARMCPRegInfo cbar = {
+                .name = "CBAR",
+                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
+                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
+                .fieldoffset = offsetof(CPUARMState,
+                                        cp15.c15_config_base_address)
+            };
+            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
+                cbar.access = PL1_R;
+                cbar.fieldoffset = 0;
+                cbar.type = ARM_CP_CONST;
+            }
+            define_one_arm_cp_reg(cpu, &cbar);
+        }
+    }
+
+    /* Generic registers whose values depend on the implementation */
+    {
+        ARMCPRegInfo sctlr = {
+            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
+            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
+            .access = PL1_RW,
+            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
+                                   offsetof(CPUARMState, cp15.sctlr_ns) },
+            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
+            .raw_writefn = raw_write,
+        };
+        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+            /* Normally we would always end the TB on an SCTLR write, but Linux
+             * arch/arm/mach-pxa/sleep.S expects two instructions following
+             * an MMU enable to execute from cache.  Imitate this behaviour.
+             */
+            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
+        }
+        define_one_arm_cp_reg(cpu, &sctlr);
+    }
+}
+
+ARMCPU *cpu_arm_init(const char *cpu_model)
+{
+    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
+}
+
+void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
+{
+    CPUState *cs = CPU(cpu);
+    CPUARMState *env = &cpu->env;
+
+    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
+                                 aarch64_fpu_gdb_set_reg,
+                                 34, "aarch64-fpu.xml", 0);
+    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
+        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
+                                 51, "arm-neon.xml", 0);
+    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
+        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
+                                 35, "arm-vfp3.xml", 0);
+    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
+        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
+                                 19, "arm-vfp.xml", 0);
+    }
+}
+
+/* Sort alphabetically by type name, except for "any". */
+static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
+{
+    ObjectClass *class_a = (ObjectClass *)a;
+    ObjectClass *class_b = (ObjectClass *)b;
+    const char *name_a, *name_b;
+
+    name_a = object_class_get_name(class_a);
+    name_b = object_class_get_name(class_b);
+    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
+        return 1;
+    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
+        return -1;
+    } else {
+        return strcmp(name_a, name_b);
+    }
+}
+
+static void arm_cpu_list_entry(gpointer data, gpointer user_data)
+{
+    ObjectClass *oc = data;
+    CPUListState *s = user_data;
+    const char *typename;
+    char *name;
+
+    typename = object_class_get_name(oc);
+    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
+    (*s->cpu_fprintf)(s->file, "  %s\n",
+                      name);
+    g_free(name);
+}
+
+void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
+{
+    CPUListState s = {
+        .file = f,
+        .cpu_fprintf = cpu_fprintf,
+    };
+    GSList *list;
+
+    list = object_class_get_list(TYPE_ARM_CPU, false);
+    list = g_slist_sort(list, arm_cpu_list_compare);
+    (*cpu_fprintf)(f, "Available CPUs:\n");
+    g_slist_foreach(list, arm_cpu_list_entry, &s);
+    g_slist_free(list);
+#ifdef CONFIG_KVM
+    /* The 'host' CPU type is dynamically registered only if KVM is
+     * enabled, so we have to special-case it here:
+     */
+    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
+#endif
+}
+
+static void arm_cpu_add_definition(gpointer data, gpointer user_data)
+{
+    ObjectClass *oc = data;
+    CpuDefinitionInfoList **cpu_list = user_data;
+    CpuDefinitionInfoList *entry;
+    CpuDefinitionInfo *info;
+    const char *typename;
+
+    typename = object_class_get_name(oc);
+    info = g_malloc0(sizeof(*info));
+    info->name = g_strndup(typename,
+                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
+
+    entry = g_malloc0(sizeof(*entry));
+    entry->value = info;
+    entry->next = *cpu_list;
+    *cpu_list = entry;
+}
+
+CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
+{
+    CpuDefinitionInfoList *cpu_list = NULL;
+    GSList *list;
+
+    list = object_class_get_list(TYPE_ARM_CPU, false);
+    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
+    g_slist_free(list);
+
+    return cpu_list;
+}
+
+static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
+                                   void *opaque, int state, int secstate,
+                                   int crm, int opc1, int opc2)
+{
+    /* Private utility function for define_one_arm_cp_reg_with_opaque():
+     * add a single reginfo struct to the hash table.
+     */
+    uint32_t *key = g_new(uint32_t, 1);
+    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
+    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
+    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
+
+    /* Reset the secure state to the specific incoming state.  This is
+     * necessary as the register may have been defined with both states.
+     */
+    r2->secure = secstate;
+
+    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
+        /* Register is banked (using both entries in array).
+         * Overwriting fieldoffset as the array is only used to define
+         * banked registers but later only fieldoffset is used.
+         */
+        r2->fieldoffset = r->bank_fieldoffsets[ns];
+    }
+
+    if (state == ARM_CP_STATE_AA32) {
+        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
+            /* If the register is banked then we don't need to migrate or
+             * reset the 32-bit instance in certain cases:
+             *
+             * 1) If the register has both 32-bit and 64-bit instances then we
+             *    can count on the 64-bit instance taking care of the
+             *    non-secure bank.
+             * 2) If ARMv8 is enabled then we can count on a 64-bit version
+             *    taking care of the secure bank.  This requires that separate
+             *    32 and 64-bit definitions are provided.
+             */
+            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
+                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
+                r2->type |= ARM_CP_ALIAS;
+            }
+        } else if ((secstate != r->secure) && !ns) {
+            /* The register is not banked so we only want to allow migration of
+             * the non-secure instance.
+             */
+            r2->type |= ARM_CP_ALIAS;
+        }
+
+        if (r->state == ARM_CP_STATE_BOTH) {
+            /* We assume it is a cp15 register if the .cp field is left unset.
+             */
+            if (r2->cp == 0) {
+                r2->cp = 15;
+            }
+
+#ifdef HOST_WORDS_BIGENDIAN
+            if (r2->fieldoffset) {
+                r2->fieldoffset += sizeof(uint32_t);
+            }
+#endif
+        }
+    }
+    if (state == ARM_CP_STATE_AA64) {
+        /* To allow abbreviation of ARMCPRegInfo
+         * definitions, we treat cp == 0 as equivalent to
+         * the value for "standard guest-visible sysreg".
+         * STATE_BOTH definitions are also always "standard
+         * sysreg" in their AArch64 view (the .cp value may
+         * be non-zero for the benefit of the AArch32 view).
+         */
+        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
+            r2->cp = CP_REG_ARM64_SYSREG_CP;
+        }
+        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
+                                  r2->opc0, opc1, opc2);
+    } else {
+        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
+    }
+    if (opaque) {
+        r2->opaque = opaque;
+    }
+    /* reginfo passed to helpers is correct for the actual access,
+     * and is never ARM_CP_STATE_BOTH:
+     */
+    r2->state = state;
+    /* Make sure reginfo passed to helpers for wildcarded regs
+     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
+     */
+    r2->crm = crm;
+    r2->opc1 = opc1;
+    r2->opc2 = opc2;
+    /* By convention, for wildcarded registers only the first
+     * entry is used for migration; the others are marked as
+     * ALIAS so we don't try to transfer the register
+     * multiple times. Special registers (ie NOP/WFI) are
+     * never migratable and not even raw-accessible.
+     */
+    if ((r->type & ARM_CP_SPECIAL)) {
+        r2->type |= ARM_CP_NO_RAW;
+    }
+    if (((r->crm == CP_ANY) && crm != 0) ||
+        ((r->opc1 == CP_ANY) && opc1 != 0) ||
+        ((r->opc2 == CP_ANY) && opc2 != 0)) {
+        r2->type |= ARM_CP_ALIAS;
+    }
+
+    /* Check that raw accesses are either forbidden or handled. Note that
+     * we can't assert this earlier because the setup of fieldoffset for
+     * banked registers has to be done first.
+     */
+    if (!(r2->type & ARM_CP_NO_RAW)) {
+        assert(!raw_accessors_invalid(r2));
+    }
+
+    /* Overriding of an existing definition must be explicitly
+     * requested.
+     */
+    if (!(r->type & ARM_CP_OVERRIDE)) {
+        ARMCPRegInfo *oldreg;
+        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
+        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
+            fprintf(stderr, "Register redefined: cp=%d %d bit "
+                    "crn=%d crm=%d opc1=%d opc2=%d, "
+                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
+                    r2->crn, r2->crm, r2->opc1, r2->opc2,
+                    oldreg->name, r2->name);
+            g_assert_not_reached();
+        }
+    }
+    g_hash_table_insert(cpu->cp_regs, key, r2);
+}
+
+
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+                                       const ARMCPRegInfo *r, void *opaque)
+{
+    /* Define implementations of coprocessor registers.
+     * We store these in a hashtable because typically
+     * there are less than 150 registers in a space which
+     * is 16*16*16*8*8 = 262144 in size.
+     * Wildcarding is supported for the crm, opc1 and opc2 fields.
+     * If a register is defined twice then the second definition is
+     * used, so this can be used to define some generic registers and
+     * then override them with implementation specific variations.
+     * At least one of the original and the second definition should
+     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
+     * against accidental use.
+     *
+     * The state field defines whether the register is to be
+     * visible in the AArch32 or AArch64 execution state. If the
+     * state is set to ARM_CP_STATE_BOTH then we synthesise a
+     * reginfo structure for the AArch32 view, which sees the lower
+     * 32 bits of the 64 bit register.
+     *
+     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
+     * be wildcarded. AArch64 registers are always considered to be 64
+     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
+     * the register, if any.
+     */
+    int crm, opc1, opc2, state;
+    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
+    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
+    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
+    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
+    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
+    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
+    /* 64 bit registers have only CRm and Opc1 fields */
+    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
+    /* op0 only exists in the AArch64 encodings */
+    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
+    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
+    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
+    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
+     * encodes a minimum access level for the register. We roll this
+     * runtime check into our general permission check code, so check
+     * here that the reginfo's specified permissions are strict enough
+     * to encompass the generic architectural permission check.
+     */
+    if (r->state != ARM_CP_STATE_AA32) {
+        int mask = 0;
+        switch (r->opc1) {
+        case 0: case 1: case 2:
+            /* min_EL EL1 */
+            mask = PL1_RW;
+            break;
+        case 3:
+            /* min_EL EL0 */
+            mask = PL0_RW;
+            break;
+        case 4:
+            /* min_EL EL2 */
+            mask = PL2_RW;
+            break;
+        case 5:
+            /* unallocated encoding, so not possible */
+            assert(false);
+            break;
+        case 6:
+            /* min_EL EL3 */
+            mask = PL3_RW;
+            break;
+        case 7:
+            /* min_EL EL1, secure mode only (we don't check the latter) */
+            mask = PL1_RW;
+            break;
+        default:
+            /* broken reginfo with out-of-range opc1 */
+            assert(false);
+            break;
+        }
+        /* assert our permissions are not too lax (stricter is fine) */
+        assert((r->access & ~mask) == 0);
+    }
+
+    /* Check that the register definition has enough info to handle
+     * reads and writes if they are permitted.
+     */
+    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
+        if (r->access & PL3_R) {
+            assert((r->fieldoffset ||
+                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
+                   r->readfn);
+        }
+        if (r->access & PL3_W) {
+            assert((r->fieldoffset ||
+                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
+                   r->writefn);
+        }
+    }
+    /* Bad type field probably means missing sentinel at end of reg list */
+    assert(cptype_valid(r->type));
+    for (crm = crmmin; crm <= crmmax; crm++) {
+        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
+            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
+                for (state = ARM_CP_STATE_AA32;
+                     state <= ARM_CP_STATE_AA64; state++) {
+                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
+                        continue;
+                    }
+                    if (state == ARM_CP_STATE_AA32) {
+                        /* Under AArch32 CP registers can be common
+                         * (same for secure and non-secure world) or banked.
+                         */
+                        switch (r->secure) {
+                        case ARM_CP_SECSTATE_S:
+                        case ARM_CP_SECSTATE_NS:
+                            add_cpreg_to_hashtable(cpu, r, opaque, state,
+                                                   r->secure, crm, opc1, opc2);
+                            break;
+                        default:
+                            add_cpreg_to_hashtable(cpu, r, opaque, state,
+                                                   ARM_CP_SECSTATE_S,
+                                                   crm, opc1, opc2);
+                            add_cpreg_to_hashtable(cpu, r, opaque, state,
+                                                   ARM_CP_SECSTATE_NS,
+                                                   crm, opc1, opc2);
+                            break;
+                        }
+                    } else {
+                        /* AArch64 registers get mapped to non-secure instance
+                         * of AArch32 */
+                        add_cpreg_to_hashtable(cpu, r, opaque, state,
+                                               ARM_CP_SECSTATE_NS,
+                                               crm, opc1, opc2);
+                    }
+                }
+            }
+        }
+    }
+}
+
+void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
+                                    const ARMCPRegInfo *regs, void *opaque)
+{
+    /* Define a whole list of registers */
+    const ARMCPRegInfo *r;
+    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
+        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
+    }
+}
+
+const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
+{
+    return g_hash_table_lookup(cpregs, &encoded_cp);
+}
+
+void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value)
+{
+    /* Helper coprocessor write function for write-ignore registers */
+}
+
+uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* Helper coprocessor write function for read-as-zero registers */
+    return 0;
+}
+
+void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
+{
+    /* Helper coprocessor reset function for do-nothing-on-reset registers */
+}
+
+static int bad_mode_switch(CPUARMState *env, int mode)
+{
+    /* Return true if it is not valid for us to switch to
+     * this CPU mode (ie all the UNPREDICTABLE cases in
+     * the ARM ARM CPSRWriteByInstr pseudocode).
+     */
+    switch (mode) {
+    case ARM_CPU_MODE_USR:
+    case ARM_CPU_MODE_SYS:
+    case ARM_CPU_MODE_SVC:
+    case ARM_CPU_MODE_ABT:
+    case ARM_CPU_MODE_UND:
+    case ARM_CPU_MODE_IRQ:
+    case ARM_CPU_MODE_FIQ:
+        return 0;
+    case ARM_CPU_MODE_MON:
+        return !arm_is_secure(env);
+    default:
+        return 1;
+    }
+}
+
+uint32_t cpsr_read(CPUARMState *env)
+{
+    int ZF;
+    ZF = (env->ZF == 0);
+    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
+        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
+        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
+        | ((env->condexec_bits & 0xfc) << 8)
+        | (env->GE << 16) | (env->daif & CPSR_AIF);
+}
+
+void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
+{
+    uint32_t changed_daif;
+
+    if (mask & CPSR_NZCV) {
+        env->ZF = (~val) & CPSR_Z;
+        env->NF = val;
+        env->CF = (val >> 29) & 1;
+        env->VF = (val << 3) & 0x80000000;
+    }
+    if (mask & CPSR_Q)
+        env->QF = ((val & CPSR_Q) != 0);
+    if (mask & CPSR_T)
+        env->thumb = ((val & CPSR_T) != 0);
+    if (mask & CPSR_IT_0_1) {
+        env->condexec_bits &= ~3;
+        env->condexec_bits |= (val >> 25) & 3;
+    }
+    if (mask & CPSR_IT_2_7) {
+        env->condexec_bits &= 3;
+        env->condexec_bits |= (val >> 8) & 0xfc;
+    }
+    if (mask & CPSR_GE) {
+        env->GE = (val >> 16) & 0xf;
+    }
+
+    /* In a V7 implementation that includes the security extensions but does
+     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
+     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
+     * bits respectively.
+     *
+     * In a V8 implementation, it is permitted for privileged software to
+     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
+     */
+    if (!arm_feature(env, ARM_FEATURE_V8) &&
+        arm_feature(env, ARM_FEATURE_EL3) &&
+        !arm_feature(env, ARM_FEATURE_EL2) &&
+        !arm_is_secure(env)) {
+
+        changed_daif = (env->daif ^ val) & mask;
+
+        if (changed_daif & CPSR_A) {
+            /* Check to see if we are allowed to change the masking of async
+             * abort exceptions from a non-secure state.
+             */
+            if (!(env->cp15.scr_el3 & SCR_AW)) {
+                qemu_log_mask(LOG_GUEST_ERROR,
+                              "Ignoring attempt to switch CPSR_A flag from "
+                              "non-secure world with SCR.AW bit clear\n");
+                mask &= ~CPSR_A;
+            }
+        }
+
+        if (changed_daif & CPSR_F) {
+            /* Check to see if we are allowed to change the masking of FIQ
+             * exceptions from a non-secure state.
+             */
+            if (!(env->cp15.scr_el3 & SCR_FW)) {
+                qemu_log_mask(LOG_GUEST_ERROR,
+                              "Ignoring attempt to switch CPSR_F flag from "
+                              "non-secure world with SCR.FW bit clear\n");
+                mask &= ~CPSR_F;
+            }
+
+            /* Check whether non-maskable FIQ (NMFI) support is enabled.
+             * If this bit is set software is not allowed to mask
+             * FIQs, but is allowed to set CPSR_F to 0.
+             */
+            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
+                (val & CPSR_F)) {
+                qemu_log_mask(LOG_GUEST_ERROR,
+                              "Ignoring attempt to enable CPSR_F flag "
+                              "(non-maskable FIQ [NMFI] support enabled)\n");
+                mask &= ~CPSR_F;
+            }
+        }
+    }
+
+    env->daif &= ~(CPSR_AIF & mask);
+    env->daif |= val & CPSR_AIF & mask;
+
+    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
+        if (bad_mode_switch(env, val & CPSR_M)) {
+            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
+             * We choose to ignore the attempt and leave the CPSR M field
+             * untouched.
+             */
+            mask &= ~CPSR_M;
+        } else {
+            switch_mode(env, val & CPSR_M);
+        }
+    }
+    mask &= ~CACHED_CPSR_BITS;
+    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
+}
+
+/* Sign/zero extend */
+uint32_t HELPER(sxtb16)(uint32_t x)
+{
+    uint32_t res;
+    res = (uint16_t)(int8_t)x;
+    res |= (uint32_t)(int8_t)(x >> 16) << 16;
+    return res;
+}
+
+uint32_t HELPER(uxtb16)(uint32_t x)
+{
+    uint32_t res;
+    res = (uint16_t)(uint8_t)x;
+    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
+    return res;
+}
+
+uint32_t HELPER(clz)(uint32_t x)
+{
+    return clz32(x);
+}
+
+int32_t HELPER(sdiv)(int32_t num, int32_t den)
+{
+    if (den == 0)
+      return 0;
+    if (num == INT_MIN && den == -1)
+      return INT_MIN;
+    return num / den;
+}
+
+uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
+{
+    if (den == 0)
+      return 0;
+    return num / den;
+}
+
+uint32_t HELPER(rbit)(uint32_t x)
+{
+    x =  ((x & 0xff000000) >> 24)
+       | ((x & 0x00ff0000) >> 8)
+       | ((x & 0x0000ff00) << 8)
+       | ((x & 0x000000ff) << 24);
+    x =  ((x & 0xf0f0f0f0) >> 4)
+       | ((x & 0x0f0f0f0f) << 4);
+    x =  ((x & 0x88888888) >> 3)
+       | ((x & 0x44444444) >> 1)
+       | ((x & 0x22222222) << 1)
+       | ((x & 0x11111111) << 3);
+    return x;
+}
+
+#if defined(CONFIG_USER_ONLY)
+
+/* These should probably raise undefined insn exceptions.  */
+void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
+}
+
+uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
+    return 0;
+}
+
+void switch_mode(CPUARMState *env, int mode)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    if (mode != ARM_CPU_MODE_USR) {
+        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
+    }
+}
+
+void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    cpu_abort(CPU(cpu), "banked r13 write\n");
+}
+
+uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    cpu_abort(CPU(cpu), "banked r13 read\n");
+    return 0;
+}
+
+uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
+                                 uint32_t cur_el, bool secure)
+{
+    return 1;
+}
+
+void aarch64_sync_64_to_32(CPUARMState *env)
+{
+    g_assert_not_reached();
+}
+
+#else
+
+/* Map CPU modes onto saved register banks.  */
+int bank_number(int mode)
+{
+    switch (mode) {
+    case ARM_CPU_MODE_USR:
+    case ARM_CPU_MODE_SYS:
+        return 0;
+    case ARM_CPU_MODE_SVC:
+        return 1;
+    case ARM_CPU_MODE_ABT:
+        return 2;
+    case ARM_CPU_MODE_UND:
+        return 3;
+    case ARM_CPU_MODE_IRQ:
+        return 4;
+    case ARM_CPU_MODE_FIQ:
+        return 5;
+    case ARM_CPU_MODE_HYP:
+        return 6;
+    case ARM_CPU_MODE_MON:
+        return 7;
+    }
+    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
+}
+
+void switch_mode(CPUARMState *env, int mode)
+{
+    int old_mode;
+    int i;
+
+    old_mode = env->uncached_cpsr & CPSR_M;
+    if (mode == old_mode)
+        return;
+
+    if (old_mode == ARM_CPU_MODE_FIQ) {
+        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
+        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
+    } else if (mode == ARM_CPU_MODE_FIQ) {
+        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
+        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
+    }
+
+    i = bank_number(old_mode);
+    env->banked_r13[i] = env->regs[13];
+    env->banked_r14[i] = env->regs[14];
+    env->banked_spsr[i] = env->spsr;
+
+    i = bank_number(mode);
+    env->regs[13] = env->banked_r13[i];
+    env->regs[14] = env->banked_r14[i];
+    env->spsr = env->banked_spsr[i];
+}
+
+/* Physical Interrupt Target EL Lookup Table
+ *
+ * [ From ARM ARM section G1.13.4 (Table G1-15) ]
+ *
+ * The below multi-dimensional table is used for looking up the target
+ * exception level given numerous condition criteria.  Specifically, the
+ * target EL is based on SCR and HCR routing controls as well as the
+ * currently executing EL and secure state.
+ *
+ *    Dimensions:
+ *    target_el_table[2][2][2][2][2][4]
+ *                    |  |  |  |  |  +--- Current EL
+ *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
+ *                    |  |  |  +--------- HCR mask override
+ *                    |  |  +------------ SCR exec state control
+ *                    |  +--------------- SCR mask override
+ *                    +------------------ 32-bit(0)/64-bit(1) EL3
+ *
+ *    The table values are as such:
+ *    0-3 = EL0-EL3
+ *     -1 = Cannot occur
+ *
+ * The ARM ARM target EL table includes entries indicating that an "exception
+ * is not taken".  The two cases where this is applicable are:
+ *    1) An exception is taken from EL3 but the SCR does not have the exception
+ *    routed to EL3.
+ *    2) An exception is taken from EL2 but the HCR does not have the exception
+ *    routed to EL2.
+ * In these two cases, the below table contain a target of EL1.  This value is
+ * returned as it is expected that the consumer of the table data will check
+ * for "target EL >= current EL" to ensure the exception is not taken.
+ *
+ *            SCR     HCR
+ *         64  EA     AMO                 From
+ *        BIT IRQ     IMO      Non-secure         Secure
+ *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
+ */
+const int8_t target_el_table[2][2][2][2][2][4] = {
+    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
+       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
+      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
+       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
+     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
+       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
+      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
+       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
+    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
+       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
+      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
+       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
+     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
+       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
+      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
+       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
+};
+
+/*
+ * Determine the target EL for physical exceptions
+ */
+uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
+                                 uint32_t cur_el, bool secure)
+{
+    CPUARMState *env = cs->env_ptr;
+    int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
+    int scr;
+    int hcr;
+    int target_el;
+    int is64 = arm_el_is_aa64(env, 3);
+
+    switch (excp_idx) {
+    case EXCP_IRQ:
+        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
+        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
+        break;
+    case EXCP_FIQ:
+        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
+        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
+        break;
+    default:
+        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
+        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
+        break;
+    };
+
+    /* If HCR.TGE is set then HCR is treated as being 1 */
+    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
+
+    /* Perform a table-lookup for the target EL given the current state */
+    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
+
+    assert(target_el > 0);
+
+    return target_el;
+}
+
+static void v7m_push(CPUARMState *env, uint32_t val)
+{
+    CPUState *cs = CPU(arm_env_get_cpu(env));
+
+    env->regs[13] -= 4;
+    stl_phys(cs->as, env->regs[13], val);
+}
+
+static uint32_t v7m_pop(CPUARMState *env)
+{
+    CPUState *cs = CPU(arm_env_get_cpu(env));
+    uint32_t val;
+
+    val = ldl_phys(cs->as, env->regs[13]);
+    env->regs[13] += 4;
+    return val;
+}
+
+/* Switch to V7M main or process stack pointer.  */
+static void switch_v7m_sp(CPUARMState *env, int process)
+{
+    uint32_t tmp;
+    if (env->v7m.current_sp != process) {
+        tmp = env->v7m.other_sp;
+        env->v7m.other_sp = env->regs[13];
+        env->regs[13] = tmp;
+        env->v7m.current_sp = process;
+    }
+}
+
+static void do_v7m_exception_exit(CPUARMState *env)
+{
+    uint32_t type;
+    uint32_t xpsr;
+
+    type = env->regs[15];
+    if (env->v7m.exception != 0)
+        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
+
+    /* Switch to the target stack.  */
+    switch_v7m_sp(env, (type & 4) != 0);
+    /* Pop registers.  */
+    env->regs[0] = v7m_pop(env);
+    env->regs[1] = v7m_pop(env);
+    env->regs[2] = v7m_pop(env);
+    env->regs[3] = v7m_pop(env);
+    env->regs[12] = v7m_pop(env);
+    env->regs[14] = v7m_pop(env);
+    env->regs[15] = v7m_pop(env);
+    if (env->regs[15] & 1) {
+        qemu_log_mask(LOG_GUEST_ERROR,
+                      "M profile return from interrupt with misaligned "
+                      "PC is UNPREDICTABLE\n");
+        /* Actual hardware seems to ignore the lsbit, and there are several
+         * RTOSes out there which incorrectly assume the r15 in the stack
+         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
+         */
+        env->regs[15] &= ~1U;
+    }
+    xpsr = v7m_pop(env);
+    xpsr_write(env, xpsr, 0xfffffdff);
+    /* Undo stack alignment.  */
+    if (xpsr & 0x200)
+        env->regs[13] |= 4;
+    /* ??? The exception return type specifies Thread/Handler mode.  However
+       this is also implied by the xPSR value. Not sure what to do
+       if there is a mismatch.  */
+    /* ??? Likewise for mismatches between the CONTROL register and the stack
+       pointer.  */
+}
+
+void arm_v7m_cpu_do_interrupt(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint32_t xpsr = xpsr_read(env);
+    uint32_t lr;
+    uint32_t addr;
+
+    arm_log_exception(cs->exception_index);
+
+    lr = 0xfffffff1;
+    if (env->v7m.current_sp)
+        lr |= 4;
+    if (env->v7m.exception == 0)
+        lr |= 8;
+
+    /* For exceptions we just mark as pending on the NVIC, and let that
+       handle it.  */
+    /* TODO: Need to escalate if the current priority is higher than the
+       one we're raising.  */
+    switch (cs->exception_index) {
+    case EXCP_UDEF:
+        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
+        return;
+    case EXCP_SWI:
+        /* The PC already points to the next instruction.  */
+        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
+        return;
+    case EXCP_PREFETCH_ABORT:
+    case EXCP_DATA_ABORT:
+        /* TODO: if we implemented the MPU registers, this is where we
+         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
+         */
+        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
+        return;
+    case EXCP_BKPT:
+        if (semihosting_enabled()) {
+            int nr;
+            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
+            if (nr == 0xab) {
+                env->regs[15] += 2;
+                env->regs[0] = do_arm_semihosting(env);
+                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
+                return;
+            }
+        }
+        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
+        return;
+    case EXCP_IRQ:
+        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
+        break;
+    case EXCP_EXCEPTION_EXIT:
+        do_v7m_exception_exit(env);
+        return;
+    default:
+        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
+        return; /* Never happens.  Keep compiler happy.  */
+    }
+
+    /* Align stack pointer.  */
+    /* ??? Should only do this if Configuration Control Register
+       STACKALIGN bit is set.  */
+    if (env->regs[13] & 4) {
+        env->regs[13] -= 4;
+        xpsr |= 0x200;
+    }
+    /* Switch to the handler mode.  */
+    v7m_push(env, xpsr);
+    v7m_push(env, env->regs[15]);
+    v7m_push(env, env->regs[14]);
+    v7m_push(env, env->regs[12]);
+    v7m_push(env, env->regs[3]);
+    v7m_push(env, env->regs[2]);
+    v7m_push(env, env->regs[1]);
+    v7m_push(env, env->regs[0]);
+    switch_v7m_sp(env, 0);
+    /* Clear IT bits */
+    env->condexec_bits = 0;
+    env->regs[14] = lr;
+    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
+    env->regs[15] = addr & 0xfffffffe;
+    env->thumb = addr & 1;
+}
+
+/* Function used to synchronize QEMU's AArch64 register set with AArch32
+ * register set.  This is necessary when switching between AArch32 and AArch64
+ * execution state.
+ */
+void aarch64_sync_32_to_64(CPUARMState *env)
+{
+    int i;
+    uint32_t mode = env->uncached_cpsr & CPSR_M;
+
+    /* We can blanket copy R[0:7] to X[0:7] */
+    for (i = 0; i < 8; i++) {
+        env->xregs[i] = env->regs[i];
+    }
+
+    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
+     * Otherwise, they come from the banked user regs.
+     */
+    if (mode == ARM_CPU_MODE_FIQ) {
+        for (i = 8; i < 13; i++) {
+            env->xregs[i] = env->usr_regs[i - 8];
+        }
+    } else {
+        for (i = 8; i < 13; i++) {
+            env->xregs[i] = env->regs[i];
+        }
+    }
+
+    /* Registers x13-x23 are the various mode SP and FP registers. Registers
+     * r13 and r14 are only copied if we are in that mode, otherwise we copy
+     * from the mode banked register.
+     */
+    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
+        env->xregs[13] = env->regs[13];
+        env->xregs[14] = env->regs[14];
+    } else {
+        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
+        /* HYP is an exception in that it is copied from r14 */
+        if (mode == ARM_CPU_MODE_HYP) {
+            env->xregs[14] = env->regs[14];
+        } else {
+            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
+        }
+    }
+
+    if (mode == ARM_CPU_MODE_HYP) {
+        env->xregs[15] = env->regs[13];
+    } else {
+        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
+    }
+
+    if (mode == ARM_CPU_MODE_IRQ) {
+        env->xregs[16] = env->regs[13];
+        env->xregs[17] = env->regs[14];
+    } else {
+        env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
+        env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
+    }
+
+    if (mode == ARM_CPU_MODE_SVC) {
+        env->xregs[18] = env->regs[13];
+        env->xregs[19] = env->regs[14];
+    } else {
+        env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
+        env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
+    }
+
+    if (mode == ARM_CPU_MODE_ABT) {
+        env->xregs[20] = env->regs[13];
+        env->xregs[21] = env->regs[14];
+    } else {
+        env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
+        env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
+    }
+
+    if (mode == ARM_CPU_MODE_UND) {
+        env->xregs[22] = env->regs[13];
+        env->xregs[23] = env->regs[14];
+    } else {
+        env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
+        env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
+    }
+
+    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
+     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
+     * FIQ bank for r8-r14.
+     */
+    if (mode == ARM_CPU_MODE_FIQ) {
+        for (i = 24; i < 31; i++) {
+            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
+        }
+    } else {
+        for (i = 24; i < 29; i++) {
+            env->xregs[i] = env->fiq_regs[i - 24];
+        }
+        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
+        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
+    }
+
+    env->pc = env->regs[15];
+}
+
+/* Function used to synchronize QEMU's AArch32 register set with AArch64
+ * register set.  This is necessary when switching between AArch32 and AArch64
+ * execution state.
+ */
+void aarch64_sync_64_to_32(CPUARMState *env)
+{
+    int i;
+    uint32_t mode = env->uncached_cpsr & CPSR_M;
+
+    /* We can blanket copy X[0:7] to R[0:7] */
+    for (i = 0; i < 8; i++) {
+        env->regs[i] = env->xregs[i];
+    }
+
+    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
+     * Otherwise, we copy x8-x12 into the banked user regs.
+     */
+    if (mode == ARM_CPU_MODE_FIQ) {
+        for (i = 8; i < 13; i++) {
+            env->usr_regs[i - 8] = env->xregs[i];
+        }
+    } else {
+        for (i = 8; i < 13; i++) {
+            env->regs[i] = env->xregs[i];
+        }
+    }
+
+    /* Registers r13 & r14 depend on the current mode.
+     * If we are in a given mode, we copy the corresponding x registers to r13
+     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
+     * for the mode.
+     */
+    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
+        env->regs[13] = env->xregs[13];
+        env->regs[14] = env->xregs[14];
+    } else {
+        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
+
+        /* HYP is an exception in that it does not have its own banked r14 but
+         * shares the USR r14
+         */
+        if (mode == ARM_CPU_MODE_HYP) {
+            env->regs[14] = env->xregs[14];
+        } else {
+            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
+        }
+    }
+
+    if (mode == ARM_CPU_MODE_HYP) {
+        env->regs[13] = env->xregs[15];
+    } else {
+        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
+    }
+
+    if (mode == ARM_CPU_MODE_IRQ) {
+        env->regs[13] = env->xregs[16];
+        env->regs[14] = env->xregs[17];
+    } else {
+        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
+        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
+    }
+
+    if (mode == ARM_CPU_MODE_SVC) {
+        env->regs[13] = env->xregs[18];
+        env->regs[14] = env->xregs[19];
+    } else {
+        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
+        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
+    }
+
+    if (mode == ARM_CPU_MODE_ABT) {
+        env->regs[13] = env->xregs[20];
+        env->regs[14] = env->xregs[21];
+    } else {
+        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
+        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
+    }
+
+    if (mode == ARM_CPU_MODE_UND) {
+        env->regs[13] = env->xregs[22];
+        env->regs[14] = env->xregs[23];
+    } else {
+        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
+        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
+    }
+
+    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
+     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
+     * FIQ bank for r8-r14.
+     */
+    if (mode == ARM_CPU_MODE_FIQ) {
+        for (i = 24; i < 31; i++) {
+            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
+        }
+    } else {
+        for (i = 24; i < 29; i++) {
+            env->fiq_regs[i - 24] = env->xregs[i];
+        }
+        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
+        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
+    }
+
+    env->regs[15] = env->pc;
+}
+
+/* Handle a CPU exception.  */
+void arm_cpu_do_interrupt(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint32_t addr;
+    uint32_t mask;
+    int new_mode;
+    uint32_t offset;
+    uint32_t moe;
+
+    assert(!IS_M(env));
+
+    arm_log_exception(cs->exception_index);
+
+    if (arm_is_psci_call(cpu, cs->exception_index)) {
+        arm_handle_psci_call(cpu);
+        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
+        return;
+    }
+
+    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
+    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
+    case EC_BREAKPOINT:
+    case EC_BREAKPOINT_SAME_EL:
+        moe = 1;
+        break;
+    case EC_WATCHPOINT:
+    case EC_WATCHPOINT_SAME_EL:
+        moe = 10;
+        break;
+    case EC_AA32_BKPT:
+        moe = 3;
+        break;
+    case EC_VECTORCATCH:
+        moe = 5;
+        break;
+    default:
+        moe = 0;
+        break;
+    }
+
+    if (moe) {
+        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
+    }
+
+    /* TODO: Vectored interrupt controller.  */
+    switch (cs->exception_index) {
+    case EXCP_UDEF:
+        new_mode = ARM_CPU_MODE_UND;
+        addr = 0x04;
+        mask = CPSR_I;
+        if (env->thumb)
+            offset = 2;
+        else
+            offset = 4;
+        break;
+    case EXCP_SWI:
+        if (semihosting_enabled()) {
+            /* Check for semihosting interrupt.  */
+            if (env->thumb) {
+                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
+                    & 0xff;
+            } else {
+                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
+                    & 0xffffff;
+            }
+            /* Only intercept calls from privileged modes, to provide some
+               semblance of security.  */
+            if (((mask == 0x123456 && !env->thumb)
+                    || (mask == 0xab && env->thumb))
+                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
+                env->regs[0] = do_arm_semihosting(env);
+                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
+                return;
+            }
+        }
+        new_mode = ARM_CPU_MODE_SVC;
+        addr = 0x08;
+        mask = CPSR_I;
+        /* The PC already points to the next instruction.  */
+        offset = 0;
+        break;
+    case EXCP_BKPT:
+        /* See if this is a semihosting syscall.  */
+        if (env->thumb && semihosting_enabled()) {
+            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
+            if (mask == 0xab
+                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
+                env->regs[15] += 2;
+                env->regs[0] = do_arm_semihosting(env);
+                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
+                return;
+            }
+        }
+        env->exception.fsr = 2;
+        /* Fall through to prefetch abort.  */
+    case EXCP_PREFETCH_ABORT:
+        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
+        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
+        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
+                      env->exception.fsr, (uint32_t)env->exception.vaddress);
+        new_mode = ARM_CPU_MODE_ABT;
+        addr = 0x0c;
+        mask = CPSR_A | CPSR_I;
+        offset = 4;
+        break;
+    case EXCP_DATA_ABORT:
+        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
+        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
+        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
+                      env->exception.fsr,
+                      (uint32_t)env->exception.vaddress);
+        new_mode = ARM_CPU_MODE_ABT;
+        addr = 0x10;
+        mask = CPSR_A | CPSR_I;
+        offset = 8;
+        break;
+    case EXCP_IRQ:
+        new_mode = ARM_CPU_MODE_IRQ;
+        addr = 0x18;
+        /* Disable IRQ and imprecise data aborts.  */
+        mask = CPSR_A | CPSR_I;
+        offset = 4;
+        if (env->cp15.scr_el3 & SCR_IRQ) {
+            /* IRQ routed to monitor mode */
+            new_mode = ARM_CPU_MODE_MON;
+            mask |= CPSR_F;
+        }
+        break;
+    case EXCP_FIQ:
+        new_mode = ARM_CPU_MODE_FIQ;
+        addr = 0x1c;
+        /* Disable FIQ, IRQ and imprecise data aborts.  */
+        mask = CPSR_A | CPSR_I | CPSR_F;
+        if (env->cp15.scr_el3 & SCR_FIQ) {
+            /* FIQ routed to monitor mode */
+            new_mode = ARM_CPU_MODE_MON;
+        }
+        offset = 4;
+        break;
+    case EXCP_SMC:
+        new_mode = ARM_CPU_MODE_MON;
+        addr = 0x08;
+        mask = CPSR_A | CPSR_I | CPSR_F;
+        offset = 0;
+        break;
+    default:
+        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
+        return; /* Never happens.  Keep compiler happy.  */
+    }
+
+    if (new_mode == ARM_CPU_MODE_MON) {
+        addr += env->cp15.mvbar;
+    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
+        /* High vectors. When enabled, base address cannot be remapped. */
+        addr += 0xffff0000;
+    } else {
+        /* ARM v7 architectures provide a vector base address register to remap
+         * the interrupt vector table.
+         * This register is only followed in non-monitor mode, and is banked.
+         * Note: only bits 31:5 are valid.
+         */
+        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
+    }
+
+    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
+        env->cp15.scr_el3 &= ~SCR_NS;
+    }
+
+    switch_mode (env, new_mode);
+    /* For exceptions taken to AArch32 we must clear the SS bit in both
+     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
+     */
+    env->uncached_cpsr &= ~PSTATE_SS;
+    env->spsr = cpsr_read(env);
+    /* Clear IT bits.  */
+    env->condexec_bits = 0;
+    /* Switch to the new mode, and to the correct instruction set.  */
+    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
+    env->daif |= mask;
+    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
+     * and we should just guard the thumb mode on V4 */
+    if (arm_feature(env, ARM_FEATURE_V4T)) {
+        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
+    }
+    env->regs[14] = env->regs[15] + offset;
+    env->regs[15] = addr;
+    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
+}
+
+
+/* Return the exception level which controls this address translation regime */
+static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+    switch (mmu_idx) {
+    case ARMMMUIdx_S2NS:
+    case ARMMMUIdx_S1E2:
+        return 2;
+    case ARMMMUIdx_S1E3:
+        return 3;
+    case ARMMMUIdx_S1SE0:
+        return arm_el_is_aa64(env, 3) ? 1 : 3;
+    case ARMMMUIdx_S1SE1:
+    case ARMMMUIdx_S1NSE0:
+    case ARMMMUIdx_S1NSE1:
+        return 1;
+    default:
+        g_assert_not_reached();
+    }
+}
+
+/* Return true if this address translation regime is secure */
+static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+    switch (mmu_idx) {
+    case ARMMMUIdx_S12NSE0:
+    case ARMMMUIdx_S12NSE1:
+    case ARMMMUIdx_S1NSE0:
+    case ARMMMUIdx_S1NSE1:
+    case ARMMMUIdx_S1E2:
+    case ARMMMUIdx_S2NS:
+        return false;
+    case ARMMMUIdx_S1E3:
+    case ARMMMUIdx_S1SE0:
+    case ARMMMUIdx_S1SE1:
+        return true;
+    default:
+        g_assert_not_reached();
+    }
+}
+
+/* Return the SCTLR value which controls this address translation regime */
+static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
+}
+
+/* Return true if the specified stage of address translation is disabled */
+static inline bool regime_translation_disabled(CPUARMState *env,
+                                               ARMMMUIdx mmu_idx)
+{
+    if (mmu_idx == ARMMMUIdx_S2NS) {
+        return (env->cp15.hcr_el2 & HCR_VM) == 0;
+    }
+    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
+}
+
+/* Return the TCR controlling this translation regime */
+static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+    if (mmu_idx == ARMMMUIdx_S2NS) {
+        /* TODO: return VTCR_EL2 */
+        g_assert_not_reached();
+    }
+    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
+}
+
+/* Return the TTBR associated with this translation regime */
+static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
+                                   int ttbrn)
+{
+    if (mmu_idx == ARMMMUIdx_S2NS) {
+        /* TODO: return VTTBR_EL2 */
+        g_assert_not_reached();
+    }
+    if (ttbrn == 0) {
+        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
+    } else {
+        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
+    }
+}
+
+/* Return true if the translation regime is using LPAE format page tables */
+static inline bool regime_using_lpae_format(CPUARMState *env,
+                                            ARMMMUIdx mmu_idx)
+{
+    int el = regime_el(env, mmu_idx);
+    if (el == 2 || arm_el_is_aa64(env, el)) {
+        return true;
+    }
+    if (arm_feature(env, ARM_FEATURE_LPAE)
+        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
+        return true;
+    }
+    return false;
+}
+
+static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+    switch (mmu_idx) {
+    case ARMMMUIdx_S1SE0:
+    case ARMMMUIdx_S1NSE0:
+        return true;
+    default:
+        return false;
+    case ARMMMUIdx_S12NSE0:
+    case ARMMMUIdx_S12NSE1:
+        g_assert_not_reached();
+    }
+}
+
+/* Translate section/page access permissions to page
+ * R/W protection flags
+ *
+ * @env:         CPUARMState
+ * @mmu_idx:     MMU index indicating required translation regime
+ * @ap:          The 3-bit access permissions (AP[2:0])
+ * @domain_prot: The 2-bit domain access permissions
+ */
+static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
+                                int ap, int domain_prot)
+{
+    bool is_user = regime_is_user(env, mmu_idx);
+
+    if (domain_prot == 3) {
+        return PAGE_READ | PAGE_WRITE;
+    }
+
+    switch (ap) {
+    case 0:
+        if (arm_feature(env, ARM_FEATURE_V7)) {
+            return 0;
+        }
+        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
+        case SCTLR_S:
+            return is_user ? 0 : PAGE_READ;
+        case SCTLR_R:
+            return PAGE_READ;
+        default:
+            return 0;
+        }
+    case 1:
+        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
+    case 2:
+        if (is_user) {
+            return PAGE_READ;
+        } else {
+            return PAGE_READ | PAGE_WRITE;
+        }
+    case 3:
+        return PAGE_READ | PAGE_WRITE;
+    case 4: /* Reserved.  */
+        return 0;
+    case 5:
+        return is_user ? 0 : PAGE_READ;
+    case 6:
+        return PAGE_READ;
+    case 7:
+        if (!arm_feature(env, ARM_FEATURE_V6K)) {
+            return 0;
+        }
+        return PAGE_READ;
+    default:
+        g_assert_not_reached();
+    }
+}
+
+/* Translate section/page access permissions to page
+ * R/W protection flags.
+ *
+ * @ap:      The 2-bit simple AP (AP[2:1])
+ * @is_user: TRUE if accessing from PL0
+ */
+static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
+{
+    switch (ap) {
+    case 0:
+        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
+    case 1:
+        return PAGE_READ | PAGE_WRITE;
+    case 2:
+        return is_user ? 0 : PAGE_READ;
+    case 3:
+        return PAGE_READ;
+    default:
+        g_assert_not_reached();
+    }
+}
+
+static inline int
+simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
+{
+    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
+}
+
+/* Translate section/page access permissions to protection flags
+ *
+ * @env:     CPUARMState
+ * @mmu_idx: MMU index indicating required translation regime
+ * @is_aa64: TRUE if AArch64
+ * @ap:      The 2-bit simple AP (AP[2:1])
+ * @ns:      NS (non-secure) bit
+ * @xn:      XN (execute-never) bit
+ * @pxn:     PXN (privileged execute-never) bit
+ */
+static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
+                      int ap, int ns, int xn, int pxn)
+{
+    bool is_user = regime_is_user(env, mmu_idx);
+    int prot_rw, user_rw;
+    bool have_wxn;
+    int wxn = 0;
+
+    assert(mmu_idx != ARMMMUIdx_S2NS);
+
+    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
+    if (is_user) {
+        prot_rw = user_rw;
+    } else {
+        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
+    }
+
+    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
+        return prot_rw;
+    }
+
+    /* TODO have_wxn should be replaced with
+     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
+     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
+     * compatible processors have EL2, which is required for [U]WXN.
+     */
+    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
+
+    if (have_wxn) {
+        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
+    }
+
+    if (is_aa64) {
+        switch (regime_el(env, mmu_idx)) {
+        case 1:
+            if (!is_user) {
+                xn = pxn || (user_rw & PAGE_WRITE);
+            }
+            break;
+        case 2:
+        case 3:
+            break;
+        }
+    } else if (arm_feature(env, ARM_FEATURE_V7)) {
+        switch (regime_el(env, mmu_idx)) {
+        case 1:
+        case 3:
+            if (is_user) {
+                xn = xn || !(user_rw & PAGE_READ);
+            } else {
+                int uwxn = 0;
+                if (have_wxn) {
+                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
+                }
+                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
+                     (uwxn && (user_rw & PAGE_WRITE));
+            }
+            break;
+        case 2:
+            break;
+        }
+    } else {
+        xn = wxn = 0;
+    }
+
+    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
+        return prot_rw;
+    }
+    return prot_rw | PAGE_EXEC;
+}
+
+static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
+                                     uint32_t *table, uint32_t address)
+{
+    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
+    TCR *tcr = regime_tcr(env, mmu_idx);
+
+    if (address & tcr->mask) {
+        if (tcr->raw_tcr & TTBCR_PD1) {
+            /* Translation table walk disabled for TTBR1 */
+            return false;
+        }
+        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
+    } else {
+        if (tcr->raw_tcr & TTBCR_PD0) {
+            /* Translation table walk disabled for TTBR0 */
+            return false;
+        }
+        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
+    }
+    *table |= (address >> 18) & 0x3ffc;
+    return true;
+}
+
+/* All loads done in the course of a page table walk go through here.
+ * TODO: rather than ignoring errors from physical memory reads (which
+ * are external aborts in ARM terminology) we should propagate this
+ * error out so that we can turn it into a Data Abort if this walk
+ * was being done for a CPU load/store or an address translation instruction
+ * (but not if it was for a debug access).
+ */
+static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
+{
+    MemTxAttrs attrs = {};
+
+    attrs.secure = is_secure;
+    return address_space_ldl(cs->as, addr, attrs, NULL);
+}
+
+static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
+{
+    MemTxAttrs attrs = {};
+
+    attrs.secure = is_secure;
+    return address_space_ldq(cs->as, addr, attrs, NULL);
+}
+
+static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
+                             int access_type, ARMMMUIdx mmu_idx,
+                             hwaddr *phys_ptr, int *prot,
+                             target_ulong *page_size, uint32_t *fsr)
+{
+    CPUState *cs = CPU(arm_env_get_cpu(env));
+    int code;
+    uint32_t table;
+    uint32_t desc;
+    int type;
+    int ap;
+    int domain = 0;
+    int domain_prot;
+    hwaddr phys_addr;
+    uint32_t dacr;
+
+    /* Pagetable walk.  */
+    /* Lookup l1 descriptor.  */
+    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
+        /* Section translation fault if page walk is disabled by PD0 or PD1 */
+        code = 5;
+        goto do_fault;
+    }
+    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
+    type = (desc & 3);
+    domain = (desc >> 5) & 0x0f;
+    if (regime_el(env, mmu_idx) == 1) {
+        dacr = env->cp15.dacr_ns;
+    } else {
+        dacr = env->cp15.dacr_s;
+    }
+    domain_prot = (dacr >> (domain * 2)) & 3;
+    if (type == 0) {
+        /* Section translation fault.  */
+        code = 5;
+        goto do_fault;
+    }
+    if (domain_prot == 0 || domain_prot == 2) {
+        if (type == 2)
+            code = 9; /* Section domain fault.  */
+        else
+            code = 11; /* Page domain fault.  */
+        goto do_fault;
+    }
+    if (type == 2) {
+        /* 1Mb section.  */
+        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
+        ap = (desc >> 10) & 3;
+        code = 13;
+        *page_size = 1024 * 1024;
+    } else {
+        /* Lookup l2 entry.  */
+        if (type == 1) {
+            /* Coarse pagetable.  */
+            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
+        } else {
+            /* Fine pagetable.  */
+            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
+        }
+        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
+        switch (desc & 3) {
+        case 0: /* Page translation fault.  */
+            code = 7;
+            goto do_fault;
+        case 1: /* 64k page.  */
+            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
+            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
+            *page_size = 0x10000;
+            break;
+        case 2: /* 4k page.  */
+            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
+            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
+            *page_size = 0x1000;
+            break;
+        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
+            if (type == 1) {
+                /* ARMv6/XScale extended small page format */
+                if (arm_feature(env, ARM_FEATURE_XSCALE)
+                    || arm_feature(env, ARM_FEATURE_V6)) {
+                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
+                    *page_size = 0x1000;
+                } else {
+                    /* UNPREDICTABLE in ARMv5; we choose to take a
+                     * page translation fault.
+                     */
+                    code = 7;
+                    goto do_fault;
+                }
+            } else {
+                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
+                *page_size = 0x400;
+            }
+            ap = (desc >> 4) & 3;
+            break;
+        default:
+            /* Never happens, but compiler isn't smart enough to tell.  */
+            abort();
+        }
+        code = 15;
+    }
+    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
+    *prot |= *prot ? PAGE_EXEC : 0;
+    if (!(*prot & (1 << access_type))) {
+        /* Access permission fault.  */
+        goto do_fault;
+    }
+    *phys_ptr = phys_addr;
+    return false;
+do_fault:
+    *fsr = code | (domain << 4);
+    return true;
+}
+
+static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
+                             int access_type, ARMMMUIdx mmu_idx,
+                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
+                             target_ulong *page_size, uint32_t *fsr)
+{
+    CPUState *cs = CPU(arm_env_get_cpu(env));
+    int code;
+    uint32_t table;
+    uint32_t desc;
+    uint32_t xn;
+    uint32_t pxn = 0;
+    int type;
+    int ap;
+    int domain = 0;
+    int domain_prot;
+    hwaddr phys_addr;
+    uint32_t dacr;
+    bool ns;
+
+    /* Pagetable walk.  */
+    /* Lookup l1 descriptor.  */
+    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
+        /* Section translation fault if page walk is disabled by PD0 or PD1 */
+        code = 5;
+        goto do_fault;
+    }
+    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
+    type = (desc & 3);
+    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
+        /* Section translation fault, or attempt to use the encoding
+         * which is Reserved on implementations without PXN.
+         */
+        code = 5;
+        goto do_fault;
+    }
+    if ((type == 1) || !(desc & (1 << 18))) {
+        /* Page or Section.  */
+        domain = (desc >> 5) & 0x0f;
+    }
+    if (regime_el(env, mmu_idx) == 1) {
+        dacr = env->cp15.dacr_ns;
+    } else {
+        dacr = env->cp15.dacr_s;
+    }
+    domain_prot = (dacr >> (domain * 2)) & 3;
+    if (domain_prot == 0 || domain_prot == 2) {
+        if (type != 1) {
+            code = 9; /* Section domain fault.  */
+        } else {
+            code = 11; /* Page domain fault.  */
+        }
+        goto do_fault;
+    }
+    if (type != 1) {
+        if (desc & (1 << 18)) {
+            /* Supersection.  */
+            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
+            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
+            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
+            *page_size = 0x1000000;
+        } else {
+            /* Section.  */
+            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
+            *page_size = 0x100000;
+        }
+        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
+        xn = desc & (1 << 4);
+        pxn = desc & 1;
+        code = 13;
+        ns = extract32(desc, 19, 1);
+    } else {
+        if (arm_feature(env, ARM_FEATURE_PXN)) {
+            pxn = (desc >> 2) & 1;
+        }
+        ns = extract32(desc, 3, 1);
+        /* Lookup l2 entry.  */
+        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
+        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
+        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
+        switch (desc & 3) {
+        case 0: /* Page translation fault.  */
+            code = 7;
+            goto do_fault;
+        case 1: /* 64k page.  */
+            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
+            xn = desc & (1 << 15);
+            *page_size = 0x10000;
+            break;
+        case 2: case 3: /* 4k page.  */
+            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
+            xn = desc & 1;
+            *page_size = 0x1000;
+            break;
+        default:
+            /* Never happens, but compiler isn't smart enough to tell.  */
+            abort();
+        }
+        code = 15;
+    }
+    if (domain_prot == 3) {
+        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+    } else {
+        if (pxn && !regime_is_user(env, mmu_idx)) {
+            xn = 1;
+        }
+        if (xn && access_type == 2)
+            goto do_fault;
+
+        if (arm_feature(env, ARM_FEATURE_V6K) &&
+                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
+            /* The simplified model uses AP[0] as an access control bit.  */
+            if ((ap & 1) == 0) {
+                /* Access flag fault.  */
+                code = (code == 15) ? 6 : 3;
+                goto do_fault;
+            }
+            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
+        } else {
+            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
+        }
+        if (*prot && !xn) {
+            *prot |= PAGE_EXEC;
+        }
+        if (!(*prot & (1 << access_type))) {
+            /* Access permission fault.  */
+            goto do_fault;
+        }
+    }
+    if (ns) {
+        /* The NS bit will (as required by the architecture) have no effect if
+         * the CPU doesn't support TZ or this is a non-secure translation
+         * regime, because the attribute will already be non-secure.
+         */
+        attrs->secure = false;
+    }
+    *phys_ptr = phys_addr;
+    return false;
+do_fault:
+    *fsr = code | (domain << 4);
+    return true;
+}
+
+/* Fault type for long-descriptor MMU fault reporting; this corresponds
+ * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
+ */
+typedef enum {
+    translation_fault = 1,
+    access_fault = 2,
+    permission_fault = 3,
+} MMUFaultType;
+
+static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
+                               int access_type, ARMMMUIdx mmu_idx,
+                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
+                               target_ulong *page_size_ptr, uint32_t *fsr)
+{
+    CPUState *cs = CPU(arm_env_get_cpu(env));
+    /* Read an LPAE long-descriptor translation table. */
+    MMUFaultType fault_type = translation_fault;
+    uint32_t level = 1;
+    uint32_t epd;
+    int32_t tsz;
+    uint32_t tg;
+    uint64_t ttbr;
+    int ttbr_select;
+    hwaddr descaddr, descmask;
+    uint32_t tableattrs;
+    target_ulong page_size;
+    uint32_t attrs;
+    int32_t granule_sz = 9;
+    int32_t va_size = 32;
+    int32_t tbi = 0;
+    TCR *tcr = regime_tcr(env, mmu_idx);
+    int ap, ns, xn, pxn;
+    uint32_t el = regime_el(env, mmu_idx);
+    bool ttbr1_valid = true;
+
+    /* TODO:
+     * This code does not handle the different format TCR for VTCR_EL2.
+     * This code also does not support shareability levels.
+     * Attribute and permission bit handling should also be checked when adding
+     * support for those page table walks.
+     */
+    if (arm_el_is_aa64(env, el)) {
+        va_size = 64;
+        if (el > 1) {
+            tbi = extract64(tcr->raw_tcr, 20, 1);
+        } else {
+            if (extract64(address, 55, 1)) {
+                tbi = extract64(tcr->raw_tcr, 38, 1);
+            } else {
+                tbi = extract64(tcr->raw_tcr, 37, 1);
+            }
+        }
+        tbi *= 8;
+
+        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
+         * invalid.
+         */
+        if (el > 1) {
+            ttbr1_valid = false;
+        }
+    }
+
+    /* Determine whether this address is in the region controlled by
+     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
+     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
+     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
+     */
+    uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
+    if (va_size == 64) {
+        t0sz = MIN(t0sz, 39);
+        t0sz = MAX(t0sz, 16);
+    }
+    uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
+    if (va_size == 64) {
+        t1sz = MIN(t1sz, 39);
+        t1sz = MAX(t1sz, 16);
+    }
+    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
+        /* there is a ttbr0 region and we are in it (high bits all zero) */
+        ttbr_select = 0;
+    } else if (ttbr1_valid && t1sz &&
+               !extract64(~address, va_size - t1sz, t1sz - tbi)) {
+        /* there is a ttbr1 region and we are in it (high bits all one) */
+        ttbr_select = 1;
+    } else if (!t0sz) {
+        /* ttbr0 region is "everything not in the ttbr1 region" */
+        ttbr_select = 0;
+    } else if (!t1sz && ttbr1_valid) {
+        /* ttbr1 region is "everything not in the ttbr0 region" */
+        ttbr_select = 1;
+    } else {
+        /* in the gap between the two regions, this is a Translation fault */
+        fault_type = translation_fault;
+        goto do_fault;
+    }
+
+    /* Note that QEMU ignores shareability and cacheability attributes,
+     * so we don't need to do anything with the SH, ORGN, IRGN fields
+     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
+     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
+     * implement any ASID-like capability so we can ignore it (instead
+     * we will always flush the TLB any time the ASID is changed).
+     */
+    if (ttbr_select == 0) {
+        ttbr = regime_ttbr(env, mmu_idx, 0);
+        epd = extract32(tcr->raw_tcr, 7, 1);
+        tsz = t0sz;
+
+        tg = extract32(tcr->raw_tcr, 14, 2);
+        if (tg == 1) { /* 64KB pages */
+            granule_sz = 13;
+        }
+        if (tg == 2) { /* 16KB pages */
+            granule_sz = 11;
+        }
+    } else {
+        /* We should only be here if TTBR1 is valid */
+        assert(ttbr1_valid);
+
+        ttbr = regime_ttbr(env, mmu_idx, 1);
+        epd = extract32(tcr->raw_tcr, 23, 1);
+        tsz = t1sz;
+
+        tg = extract32(tcr->raw_tcr, 30, 2);
+        if (tg == 3)  { /* 64KB pages */
+            granule_sz = 13;
+        }
+        if (tg == 1) { /* 16KB pages */
+            granule_sz = 11;
+        }
+    }
+
+    /* Here we should have set up all the parameters for the translation:
+     * va_size, ttbr, epd, tsz, granule_sz, tbi
+     */
+
+    if (epd) {
+        /* Translation table walk disabled => Translation fault on TLB miss
+         * Note: This is always 0 on 64-bit EL2 and EL3.
+         */
+        goto do_fault;
+    }
+
+    /* The starting level depends on the virtual address size (which can be
+     * up to 48 bits) and the translation granule size. It indicates the number
+     * of strides (granule_sz bits at a time) needed to consume the bits
+     * of the input address. In the pseudocode this is:
+     *  level = 4 - RoundUp((inputsize - grainsize) / stride)
+     * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
+     * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
+     * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
+     *     = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
+     *     = 4 - (va_size - tsz - 4) / granule_sz;
+     */
+    level = 4 - (va_size - tsz - 4) / granule_sz;
+
+    /* Clear the vaddr bits which aren't part of the within-region address,
+     * so that we don't have to special case things when calculating the
+     * first descriptor address.
+     */
+    if (tsz) {
+        address &= (1ULL << (va_size - tsz)) - 1;
+    }
+
+    descmask = (1ULL << (granule_sz + 3)) - 1;
+
+    /* Now we can extract the actual base address from the TTBR */
+    descaddr = extract64(ttbr, 0, 48);
+    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
+
+    /* Secure accesses start with the page table in secure memory and
+     * can be downgraded to non-secure at any step. Non-secure accesses
+     * remain non-secure. We implement this by just ORing in the NSTable/NS
+     * bits at each step.
+     */
+    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
+    for (;;) {
+        uint64_t descriptor;
+        bool nstable;
+
+        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
+        descaddr &= ~7ULL;
+        nstable = extract32(tableattrs, 4, 1);
+        descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
+        if (!(descriptor & 1) ||
+            (!(descriptor & 2) && (level == 3))) {
+            /* Invalid, or the Reserved level 3 encoding */
+            goto do_fault;
+        }
+        descaddr = descriptor & 0xfffffff000ULL;
+
+        if ((descriptor & 2) && (level < 3)) {
+            /* Table entry. The top five bits are attributes which  may
+             * propagate down through lower levels of the table (and
+             * which are all arranged so that 0 means "no effect", so
+             * we can gather them up by ORing in the bits at each level).
+             */
+            tableattrs |= extract64(descriptor, 59, 5);
+            level++;
+            continue;
+        }
+        /* Block entry at level 1 or 2, or page entry at level 3.
+         * These are basically the same thing, although the number
+         * of bits we pull in from the vaddr varies.
+         */
+        page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
+        descaddr |= (address & (page_size - 1));
+        /* Extract attributes from the descriptor and merge with table attrs */
+        attrs = extract64(descriptor, 2, 10)
+            | (extract64(descriptor, 52, 12) << 10);
+        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
+        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
+        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
+         * means "force PL1 access only", which means forcing AP[1] to 0.
+         */
+        if (extract32(tableattrs, 2, 1)) {
+            attrs &= ~(1 << 4);
+        }
+        attrs |= nstable << 3; /* NS */
+        break;
+    }
+    /* Here descaddr is the final physical address, and attributes
+     * are all in attrs.
+     */
+    fault_type = access_fault;
+    if ((attrs & (1 << 8)) == 0) {
+        /* Access flag */
+        goto do_fault;
+    }
+
+    ap = extract32(attrs, 4, 2);
+    ns = extract32(attrs, 3, 1);
+    xn = extract32(attrs, 12, 1);
+    pxn = extract32(attrs, 11, 1);
+
+    *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
+
+    fault_type = permission_fault;
+    if (!(*prot & (1 << access_type))) {
+        goto do_fault;
+    }
+
+    if (ns) {
+        /* The NS bit will (as required by the architecture) have no effect if
+         * the CPU doesn't support TZ or this is a non-secure translation
+         * regime, because the attribute will already be non-secure.
+         */
+        txattrs->secure = false;
+    }
+    *phys_ptr = descaddr;
+    *page_size_ptr = page_size;
+    return false;
+
+do_fault:
+    /* Long-descriptor format IFSR/DFSR value */
+    *fsr = (1 << 9) | (fault_type << 2) | level;
+    return true;
+}
+
+static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
+                                                ARMMMUIdx mmu_idx,
+                                                int32_t address, int *prot)
+{
+    *prot = PAGE_READ | PAGE_WRITE;
+    switch (address) {
+    case 0xF0000000 ... 0xFFFFFFFF:
+        if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
+            *prot |= PAGE_EXEC;
+        }
+        break;
+    case 0x00000000 ... 0x7FFFFFFF:
+        *prot |= PAGE_EXEC;
+        break;
+    }
+
+}
+
+static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
+                                 int access_type, ARMMMUIdx mmu_idx,
+                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    int n;
+    bool is_user = regime_is_user(env, mmu_idx);
+
+    *phys_ptr = address;
+    *prot = 0;
+
+    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
+        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
+    } else { /* MPU enabled */
+        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
+            /* region search */
+            uint32_t base = env->pmsav7.drbar[n];
+            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
+            uint32_t rmask;
+            bool srdis = false;
+
+            if (!(env->pmsav7.drsr[n] & 0x1)) {
+                continue;
+            }
+
+            if (!rsize) {
+                qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
+                continue;
+            }
+            rsize++;
+            rmask = (1ull << rsize) - 1;
+
+            if (base & rmask) {
+                qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
+                              "to DRSR region size, mask = %" PRIx32,
+                              base, rmask);
+                continue;
+            }
+
+            if (address < base || address > base + rmask) {
+                continue;
+            }
+
+            /* Region matched */
+
+            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
+                int i, snd;
+                uint32_t srdis_mask;
+
+                rsize -= 3; /* sub region size (power of 2) */
+                snd = ((address - base) >> rsize) & 0x7;
+                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
+
+                srdis_mask = srdis ? 0x3 : 0x0;
+                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
+                    /* This will check in groups of 2, 4 and then 8, whether
+                     * the subregion bits are consistent. rsize is incremented
+                     * back up to give the region size, considering consistent
+                     * adjacent subregions as one region. Stop testing if rsize
+                     * is already big enough for an entire QEMU page.
+                     */
+                    int snd_rounded = snd & ~(i - 1);
+                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
+                                                     snd_rounded + 8, i);
+                    if (srdis_mask ^ srdis_multi) {
+                        break;
+                    }
+                    srdis_mask = (srdis_mask << i) | srdis_mask;
+                    rsize++;
+                }
+            }
+            if (rsize < TARGET_PAGE_BITS) {
+                qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
+                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
+                              rsize, TARGET_PAGE_BITS);
+                continue;
+            }
+            if (srdis) {
+                continue;
+            }
+            break;
+        }
+
+        if (n == -1) { /* no hits */
+            if (cpu->pmsav7_dregion &&
+                (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
+                /* background fault */
+                *fsr = 0;
+                return true;
+            }
+            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
+        } else { /* a MPU hit! */
+            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
+
+            if (is_user) { /* User mode AP bit decoding */
+                switch (ap) {
+                case 0:
+                case 1:
+                case 5:
+                    break; /* no access */
+                case 3:
+                    *prot |= PAGE_WRITE;
+                    /* fall through */
+                case 2:
+                case 6:
+                    *prot |= PAGE_READ | PAGE_EXEC;
+                    break;
+                default:
+                    qemu_log_mask(LOG_GUEST_ERROR,
+                                  "Bad value for AP bits in DRACR %"
+                                  PRIx32 "\n", ap);
+                }
+            } else { /* Priv. mode AP bits decoding */
+                switch (ap) {
+                case 0:
+                    break; /* no access */
+                case 1:
+                case 2:
+                case 3:
+                    *prot |= PAGE_WRITE;
+                    /* fall through */
+                case 5:
+                case 6:
+                    *prot |= PAGE_READ | PAGE_EXEC;
+                    break;
+                default:
+                    qemu_log_mask(LOG_GUEST_ERROR,
+                                  "Bad value for AP bits in DRACR %"
+                                  PRIx32 "\n", ap);
+                }
+            }
+
+            /* execute never */
+            if (env->pmsav7.dracr[n] & (1 << 12)) {
+                *prot &= ~PAGE_EXEC;
+            }
+        }
+    }
+
+    *fsr = 0x00d; /* Permission fault */
+    return !(*prot & (1 << access_type));
+}
+
+static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
+                                 int access_type, ARMMMUIdx mmu_idx,
+                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
+{
+    int n;
+    uint32_t mask;
+    uint32_t base;
+    bool is_user = regime_is_user(env, mmu_idx);
+
+    *phys_ptr = address;
+    for (n = 7; n >= 0; n--) {
+        base = env->cp15.c6_region[n];
+        if ((base & 1) == 0) {
+            continue;
+        }
+        mask = 1 << ((base >> 1) & 0x1f);
+        /* Keep this shift separate from the above to avoid an
+           (undefined) << 32.  */
+        mask = (mask << 1) - 1;
+        if (((base ^ address) & ~mask) == 0) {
+            break;
+        }
+    }
+    if (n < 0) {
+        *fsr = 2;
+        return true;
+    }
+
+    if (access_type == 2) {
+        mask = env->cp15.pmsav5_insn_ap;
+    } else {
+        mask = env->cp15.pmsav5_data_ap;
+    }
+    mask = (mask >> (n * 4)) & 0xf;
+    switch (mask) {
+    case 0:
+        *fsr = 1;
+        return true;
+    case 1:
+        if (is_user) {
+            *fsr = 1;
+            return true;
+        }
+        *prot = PAGE_READ | PAGE_WRITE;
+        break;
+    case 2:
+        *prot = PAGE_READ;
+        if (!is_user) {
+            *prot |= PAGE_WRITE;
+        }
+        break;
+    case 3:
+        *prot = PAGE_READ | PAGE_WRITE;
+        break;
+    case 5:
+        if (is_user) {
+            *fsr = 1;
+            return true;
+        }
+        *prot = PAGE_READ;
+        break;
+    case 6:
+        *prot = PAGE_READ;
+        break;
+    default:
+        /* Bad permission.  */
+        *fsr = 1;
+        return true;
+    }
+    *prot |= PAGE_EXEC;
+    return false;
+}
+
+/* get_phys_addr - get the physical address for this virtual address
+ *
+ * Find the physical address corresponding to the given virtual address,
+ * by doing a translation table walk on MMU based systems or using the
+ * MPU state on MPU based systems.
+ *
+ * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
+ * prot and page_size may not be filled in, and the populated fsr value provides
+ * information on why the translation aborted, in the format of a
+ * DFSR/IFSR fault register, with the following caveats:
+ *  * we honour the short vs long DFSR format differences.
+ *  * the WnR bit is never set (the caller must do this).
+ *  * for PSMAv5 based systems we don't bother to return a full FSR format
+ *    value.
+ *
+ * @env: CPUARMState
+ * @address: virtual address to get physical address for
+ * @access_type: 0 for read, 1 for write, 2 for execute
+ * @mmu_idx: MMU index indicating required translation regime
+ * @phys_ptr: set to the physical address corresponding to the virtual address
+ * @attrs: set to the memory transaction attributes to use
+ * @prot: set to the permissions for the page containing phys_ptr
+ * @page_size: set to the size of the page containing phys_ptr
+ * @fsr: set to the DFSR/IFSR value on failure
+ */
+static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
+                                 int access_type, ARMMMUIdx mmu_idx,
+                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
+                                 target_ulong *page_size, uint32_t *fsr)
+{
+    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
+        /* TODO: when we support EL2 we should here call ourselves recursively
+         * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
+         * functions will also need changing to perform ARMMMUIdx_S2NS loads
+         * rather than direct physical memory loads when appropriate.
+         * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
+         */
+        assert(!arm_feature(env, ARM_FEATURE_EL2));
+        mmu_idx += ARMMMUIdx_S1NSE0;
+    }
+
+    /* The page table entries may downgrade secure to non-secure, but
+     * cannot upgrade an non-secure translation regime's attributes
+     * to secure.
+     */
+    attrs->secure = regime_is_secure(env, mmu_idx);
+    attrs->user = regime_is_user(env, mmu_idx);
+
+    /* Fast Context Switch Extension. This doesn't exist at all in v8.
+     * In v7 and earlier it affects all stage 1 translations.
+     */
+    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
+        && !arm_feature(env, ARM_FEATURE_V8)) {
+        if (regime_el(env, mmu_idx) == 3) {
+            address += env->cp15.fcseidr_s;
+        } else {
+            address += env->cp15.fcseidr_ns;
+        }
+    }
+
+    /* pmsav7 has special handling for when MPU is disabled so call it before
+     * the common MMU/MPU disabled check below.
+     */
+    if (arm_feature(env, ARM_FEATURE_MPU) &&
+        arm_feature(env, ARM_FEATURE_V7)) {
+        *page_size = TARGET_PAGE_SIZE;
+        return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
+                                    phys_ptr, prot, fsr);
+    }
+
+    if (regime_translation_disabled(env, mmu_idx)) {
+        /* MMU/MPU disabled.  */
+        *phys_ptr = address;
+        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+        *page_size = TARGET_PAGE_SIZE;
+        return 0;
+    }
+
+    if (arm_feature(env, ARM_FEATURE_MPU)) {
+        /* Pre-v7 MPU */
+        *page_size = TARGET_PAGE_SIZE;
+        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
+                                    phys_ptr, prot, fsr);
+    }
+
+    if (regime_using_lpae_format(env, mmu_idx)) {
+        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
+                                  attrs, prot, page_size, fsr);
+    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
+        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
+                                attrs, prot, page_size, fsr);
+    } else {
+        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
+                                prot, page_size, fsr);
+    }
+}
+
+/* Walk the page table and (if the mapping exists) add the page
+ * to the TLB. Return false on success, or true on failure. Populate
+ * fsr with ARM DFSR/IFSR fault register format value on failure.
+ */
+bool arm_tlb_fill(CPUState *cs, vaddr address,
+                  int access_type, int mmu_idx, uint32_t *fsr)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    hwaddr phys_addr;
+    target_ulong page_size;
+    int prot;
+    int ret;
+    MemTxAttrs attrs = {};
+
+    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
+                        &attrs, &prot, &page_size, fsr);
+    if (!ret) {
+        /* Map a single [sub]page.  */
+        phys_addr &= TARGET_PAGE_MASK;
+        address &= TARGET_PAGE_MASK;
+        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
+                                prot, mmu_idx, page_size);
+        return 0;
+    }
+
+    return ret;
+}
+
+hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    hwaddr phys_addr;
+    target_ulong page_size;
+    int prot;
+    bool ret;
+    uint32_t fsr;
+    MemTxAttrs attrs = {};
+
+    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
+                        &attrs, &prot, &page_size, &fsr);
+
+    if (ret) {
+        return -1;
+    }
+
+    return phys_addr;
+}
+
+void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
+{
+    if ((env->uncached_cpsr & CPSR_M) == mode) {
+        env->regs[13] = val;
+    } else {
+        env->banked_r13[bank_number(mode)] = val;
+    }
+}
+
+uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
+{
+    if ((env->uncached_cpsr & CPSR_M) == mode) {
+        return env->regs[13];
+    } else {
+        return env->banked_r13[bank_number(mode)];
+    }
+}
+
+uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    switch (reg) {
+    case 0: /* APSR */
+        return xpsr_read(env) & 0xf8000000;
+    case 1: /* IAPSR */
+        return xpsr_read(env) & 0xf80001ff;
+    case 2: /* EAPSR */
+        return xpsr_read(env) & 0xff00fc00;
+    case 3: /* xPSR */
+        return xpsr_read(env) & 0xff00fdff;
+    case 5: /* IPSR */
+        return xpsr_read(env) & 0x000001ff;
+    case 6: /* EPSR */
+        return xpsr_read(env) & 0x0700fc00;
+    case 7: /* IEPSR */
+        return xpsr_read(env) & 0x0700edff;
+    case 8: /* MSP */
+        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
+    case 9: /* PSP */
+        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
+    case 16: /* PRIMASK */
+        return (env->daif & PSTATE_I) != 0;
+    case 17: /* BASEPRI */
+    case 18: /* BASEPRI_MAX */
+        return env->v7m.basepri;
+    case 19: /* FAULTMASK */
+        return (env->daif & PSTATE_F) != 0;
+    case 20: /* CONTROL */
+        return env->v7m.control;
+    default:
+        /* ??? For debugging only.  */
+        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
+        return 0;
+    }
+}
+
+void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
+{
+    ARMCPU *cpu = arm_env_get_cpu(env);
+
+    switch (reg) {
+    case 0: /* APSR */
+        xpsr_write(env, val, 0xf8000000);
+        break;
+    case 1: /* IAPSR */
+        xpsr_write(env, val, 0xf8000000);
+        break;
+    case 2: /* EAPSR */
+        xpsr_write(env, val, 0xfe00fc00);
+        break;
+    case 3: /* xPSR */
+        xpsr_write(env, val, 0xfe00fc00);
+        break;
+    case 5: /* IPSR */
+        /* IPSR bits are readonly.  */
+        break;
+    case 6: /* EPSR */
+        xpsr_write(env, val, 0x0600fc00);
+        break;
+    case 7: /* IEPSR */
+        xpsr_write(env, val, 0x0600fc00);
+        break;
+    case 8: /* MSP */
+        if (env->v7m.current_sp)
+            env->v7m.other_sp = val;
+        else
+            env->regs[13] = val;
+        break;
+    case 9: /* PSP */
+        if (env->v7m.current_sp)
+            env->regs[13] = val;
+        else
+            env->v7m.other_sp = val;
+        break;
+    case 16: /* PRIMASK */
+        if (val & 1) {
+            env->daif |= PSTATE_I;
+        } else {
+            env->daif &= ~PSTATE_I;
+        }
+        break;
+    case 17: /* BASEPRI */
+        env->v7m.basepri = val & 0xff;
+        break;
+    case 18: /* BASEPRI_MAX */
+        val &= 0xff;
+        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
+            env->v7m.basepri = val;
+        break;
+    case 19: /* FAULTMASK */
+        if (val & 1) {
+            env->daif |= PSTATE_F;
+        } else {
+            env->daif &= ~PSTATE_F;
+        }
+        break;
+    case 20: /* CONTROL */
+        env->v7m.control = val & 3;
+        switch_v7m_sp(env, (val & 2) != 0);
+        break;
+    default:
+        /* ??? For debugging only.  */
+        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
+        return;
+    }
+}
+
+#endif
+
+void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
+{
+    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
+     * Note that we do not implement the (architecturally mandated)
+     * alignment fault for attempts to use this on Device memory
+     * (which matches the usual QEMU behaviour of not implementing either
+     * alignment faults or any memory attribute handling).
+     */
+
+    ARMCPU *cpu = arm_env_get_cpu(env);
+    uint64_t blocklen = 4 << cpu->dcz_blocksize;
+    uint64_t vaddr = vaddr_in & ~(blocklen - 1);
+
+#ifndef CONFIG_USER_ONLY
+    {
+        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
+         * the block size so we might have to do more than one TLB lookup.
+         * We know that in fact for any v8 CPU the page size is at least 4K
+         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
+         * 1K as an artefact of legacy v5 subpage support being present in the
+         * same QEMU executable.
+         */
+        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
+        void *hostaddr[maxidx];
+        int try, i;
+        unsigned mmu_idx = cpu_mmu_index(env);
+        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
+
+        for (try = 0; try < 2; try++) {
+
+            for (i = 0; i < maxidx; i++) {
+                hostaddr[i] = tlb_vaddr_to_host(env,
+                                                vaddr + TARGET_PAGE_SIZE * i,
+                                                1, mmu_idx);
+                if (!hostaddr[i]) {
+                    break;
+                }
+            }
+            if (i == maxidx) {
+                /* If it's all in the TLB it's fair game for just writing to;
+                 * we know we don't need to update dirty status, etc.
+                 */
+                for (i = 0; i < maxidx - 1; i++) {
+                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
+                }
+                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
+                return;
+            }
+            /* OK, try a store and see if we can populate the tlb. This
+             * might cause an exception if the memory isn't writable,
+             * in which case we will longjmp out of here. We must for
+             * this purpose use the actual register value passed to us
+             * so that we get the fault address right.
+             */
+            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
+            /* Now we can populate the other TLB entries, if any */
+            for (i = 0; i < maxidx; i++) {
+                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
+                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
+                    helper_ret_stb_mmu(env, va, 0, oi, GETRA());
+                }
+            }
+        }
+
+        /* Slow path (probably attempt to do this to an I/O device or
+         * similar, or clearing of a block of code we have translations
+         * cached for). Just do a series of byte writes as the architecture
+         * demands. It's not worth trying to use a cpu_physical_memory_map(),
+         * memset(), unmap() sequence here because:
+         *  + we'd need to account for the blocksize being larger than a page
+         *  + the direct-RAM access case is almost always going to be dealt
+         *    with in the fastpath code above, so there's no speed benefit
+         *  + we would have to deal with the map returning NULL because the
+         *    bounce buffer was in use
+         */
+        for (i = 0; i < blocklen; i++) {
+            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
+        }
+    }
+#else
+    memset(g2h(vaddr), 0, blocklen);
+#endif
+}
+
+/* Note that signed overflow is undefined in C.  The following routines are
+   careful to use unsigned types where modulo arithmetic is required.
+   Failure to do so _will_ break on newer gcc.  */
+
+/* Signed saturating arithmetic.  */
+
+/* Perform 16-bit signed saturating addition.  */
+static inline uint16_t add16_sat(uint16_t a, uint16_t b)
+{
+    uint16_t res;
+
+    res = a + b;
+    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
+        if (a & 0x8000)
+            res = 0x8000;
+        else
+            res = 0x7fff;
+    }
+    return res;
+}
+
+/* Perform 8-bit signed saturating addition.  */
+static inline uint8_t add8_sat(uint8_t a, uint8_t b)
+{
+    uint8_t res;
+
+    res = a + b;
+    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
+        if (a & 0x80)
+            res = 0x80;
+        else
+            res = 0x7f;
+    }
+    return res;
+}
+
+/* Perform 16-bit signed saturating subtraction.  */
+static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
+{
+    uint16_t res;
+
+    res = a - b;
+    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
+        if (a & 0x8000)
+            res = 0x8000;
+        else
+            res = 0x7fff;
+    }
+    return res;
+}
+
+/* Perform 8-bit signed saturating subtraction.  */
+static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
+{
+    uint8_t res;
+
+    res = a - b;
+    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
+        if (a & 0x80)
+            res = 0x80;
+        else
+            res = 0x7f;
+    }
+    return res;
+}
+
+#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
+#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
+#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
+#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
+#define PFX q
+
+#include "op_addsub.h"
+
+/* Unsigned saturating arithmetic.  */
+static inline uint16_t add16_usat(uint16_t a, uint16_t b)
+{
+    uint16_t res;
+    res = a + b;
+    if (res < a)
+        res = 0xffff;
+    return res;
+}
+
+static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
+{
+    if (a > b)
+        return a - b;
+    else
+        return 0;
+}
+
+static inline uint8_t add8_usat(uint8_t a, uint8_t b)
+{
+    uint8_t res;
+    res = a + b;
+    if (res < a)
+        res = 0xff;
+    return res;
+}
+
+static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
+{
+    if (a > b)
+        return a - b;
+    else
+        return 0;
+}
+
+#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
+#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
+#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
+#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
+#define PFX uq
+
+#include "op_addsub.h"
+
+/* Signed modulo arithmetic.  */
+#define SARITH16(a, b, n, op) do { \
+    int32_t sum; \
+    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
+    RESULT(sum, n, 16); \
+    if (sum >= 0) \
+        ge |= 3 << (n * 2); \
+    } while(0)
+
+#define SARITH8(a, b, n, op) do { \
+    int32_t sum; \
+    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
+    RESULT(sum, n, 8); \
+    if (sum >= 0) \
+        ge |= 1 << n; \
+    } while(0)
+
+
+#define ADD16(a, b, n) SARITH16(a, b, n, +)
+#define SUB16(a, b, n) SARITH16(a, b, n, -)
+#define ADD8(a, b, n)  SARITH8(a, b, n, +)
+#define SUB8(a, b, n)  SARITH8(a, b, n, -)
+#define PFX s
+#define ARITH_GE
+
+#include "op_addsub.h"
+
+/* Unsigned modulo arithmetic.  */
+#define ADD16(a, b, n) do { \
+    uint32_t sum; \
+    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
+    RESULT(sum, n, 16); \
+    if ((sum >> 16) == 1) \
+        ge |= 3 << (n * 2); \
+    } while(0)
+
+#define ADD8(a, b, n) do { \
+    uint32_t sum; \
+    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
+    RESULT(sum, n, 8); \
+    if ((sum >> 8) == 1) \
+        ge |= 1 << n; \
+    } while(0)
+
+#define SUB16(a, b, n) do { \
+    uint32_t sum; \
+    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
+    RESULT(sum, n, 16); \
+    if ((sum >> 16) == 0) \
+        ge |= 3 << (n * 2); \
+    } while(0)
+
+#define SUB8(a, b, n) do { \
+    uint32_t sum; \
+    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
+    RESULT(sum, n, 8); \
+    if ((sum >> 8) == 0) \
+        ge |= 1 << n; \
+    } while(0)
+
+#define PFX u
+#define ARITH_GE
+
+#include "op_addsub.h"
+
+/* Halved signed arithmetic.  */
+#define ADD16(a, b, n) \
+  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
+#define SUB16(a, b, n) \
+  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
+#define ADD8(a, b, n) \
+  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
+#define SUB8(a, b, n) \
+  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
+#define PFX sh
+
+#include "op_addsub.h"
+
+/* Halved unsigned arithmetic.  */
+#define ADD16(a, b, n) \
+  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
+#define SUB16(a, b, n) \
+  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
+#define ADD8(a, b, n) \
+  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
+#define SUB8(a, b, n) \
+  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
+#define PFX uh
+
+#include "op_addsub.h"
+
+static inline uint8_t do_usad(uint8_t a, uint8_t b)
+{
+    if (a > b)
+        return a - b;
+    else
+        return b - a;
+}
+
+/* Unsigned sum of absolute byte differences.  */
+uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
+{
+    uint32_t sum;
+    sum = do_usad(a, b);
+    sum += do_usad(a >> 8, b >> 8);
+    sum += do_usad(a >> 16, b >>16);
+    sum += do_usad(a >> 24, b >> 24);
+    return sum;
+}
+
+/* For ARMv6 SEL instruction.  */
+uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
+{
+    uint32_t mask;
+
+    mask = 0;
+    if (flags & 1)
+        mask |= 0xff;
+    if (flags & 2)
+        mask |= 0xff00;
+    if (flags & 4)
+        mask |= 0xff0000;
+    if (flags & 8)
+        mask |= 0xff000000;
+    return (a & mask) | (b & ~mask);
+}
+
+/* VFP support.  We follow the convention used for VFP instructions:
+   Single precision routines have a "s" suffix, double precision a
+   "d" suffix.  */
+
+/* Convert host exception flags to vfp form.  */
+static inline int vfp_exceptbits_from_host(int host_bits)
+{
+    int target_bits = 0;
+
+    if (host_bits & float_flag_invalid)
+        target_bits |= 1;
+    if (host_bits & float_flag_divbyzero)
+        target_bits |= 2;
+    if (host_bits & float_flag_overflow)
+        target_bits |= 4;
+    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
+        target_bits |= 8;
+    if (host_bits & float_flag_inexact)
+        target_bits |= 0x10;
+    if (host_bits & float_flag_input_denormal)
+        target_bits |= 0x80;
+    return target_bits;
+}
+
+uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
+{
+    int i;
+    uint32_t fpscr;
+
+    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
+            | (env->vfp.vec_len << 16)
+            | (env->vfp.vec_stride << 20);
+    i = get_float_exception_flags(&env->vfp.fp_status);
+    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
+    fpscr |= vfp_exceptbits_from_host(i);
+    return fpscr;
+}
+
+uint32_t vfp_get_fpscr(CPUARMState *env)
+{
+    return HELPER(vfp_get_fpscr)(env);
+}
+
+/* Convert vfp exception flags to target form.  */
+static inline int vfp_exceptbits_to_host(int target_bits)
+{
+    int host_bits = 0;
+
+    if (target_bits & 1)
+        host_bits |= float_flag_invalid;
+    if (target_bits & 2)
+        host_bits |= float_flag_divbyzero;
+    if (target_bits & 4)
+        host_bits |= float_flag_overflow;
+    if (target_bits & 8)
+        host_bits |= float_flag_underflow;
+    if (target_bits & 0x10)
+        host_bits |= float_flag_inexact;
+    if (target_bits & 0x80)
+        host_bits |= float_flag_input_denormal;
+    return host_bits;
+}
+
+void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
+{
+    int i;
+    uint32_t changed;
+
+    changed = env->vfp.xregs[ARM_VFP_FPSCR];
+    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
+    env->vfp.vec_len = (val >> 16) & 7;
+    env->vfp.vec_stride = (val >> 20) & 3;
+
+    changed ^= val;
+    if (changed & (3 << 22)) {
+        i = (val >> 22) & 3;
+        switch (i) {
+        case FPROUNDING_TIEEVEN:
+            i = float_round_nearest_even;
+            break;
+        case FPROUNDING_POSINF:
+            i = float_round_up;
+            break;
+        case FPROUNDING_NEGINF:
+            i = float_round_down;
+            break;
+        case FPROUNDING_ZERO:
+            i = float_round_to_zero;
+            break;
+        }
+        set_float_rounding_mode(i, &env->vfp.fp_status);
+    }
+    if (changed & (1 << 24)) {
+        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
+        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
+    }
+    if (changed & (1 << 25))
+        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
+
+    i = vfp_exceptbits_to_host(val);
+    set_float_exception_flags(i, &env->vfp.fp_status);
+    set_float_exception_flags(0, &env->vfp.standard_fp_status);
+}
+
+void vfp_set_fpscr(CPUARMState *env, uint32_t val)
+{
+    HELPER(vfp_set_fpscr)(env, val);
+}
+
+#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
+
+#define VFP_BINOP(name) \
+float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    return float32_ ## name(a, b, fpst); \
+} \
+float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    return float64_ ## name(a, b, fpst); \
+}
+VFP_BINOP(add)
+VFP_BINOP(sub)
+VFP_BINOP(mul)
+VFP_BINOP(div)
+VFP_BINOP(min)
+VFP_BINOP(max)
+VFP_BINOP(minnum)
+VFP_BINOP(maxnum)
+#undef VFP_BINOP
+
+float32 VFP_HELPER(neg, s)(float32 a)
+{
+    return float32_chs(a);
+}
+
+float64 VFP_HELPER(neg, d)(float64 a)
+{
+    return float64_chs(a);
+}
+
+float32 VFP_HELPER(abs, s)(float32 a)
+{
+    return float32_abs(a);
+}
+
+float64 VFP_HELPER(abs, d)(float64 a)
+{
+    return float64_abs(a);
+}
+
+float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
+{
+    return float32_sqrt(a, &env->vfp.fp_status);
+}
+
+float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
+{
+    return float64_sqrt(a, &env->vfp.fp_status);
+}
+
+/* XXX: check quiet/signaling case */
+#define DO_VFP_cmp(p, type) \
+void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
+{ \
+    uint32_t flags; \
+    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
+    case 0: flags = 0x6; break; \
+    case -1: flags = 0x8; break; \
+    case 1: flags = 0x2; break; \
+    default: case 2: flags = 0x3; break; \
+    } \
+    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
+        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
+} \
+void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
+{ \
+    uint32_t flags; \
+    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
+    case 0: flags = 0x6; break; \
+    case -1: flags = 0x8; break; \
+    case 1: flags = 0x2; break; \
+    default: case 2: flags = 0x3; break; \
+    } \
+    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
+        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
+}
+DO_VFP_cmp(s, float32)
+DO_VFP_cmp(d, float64)
+#undef DO_VFP_cmp
+
+/* Integer to float and float to integer conversions */
+
+#define CONV_ITOF(name, fsz, sign) \
+    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
+}
+
+#define CONV_FTOI(name, fsz, sign, round) \
+uint32_t HELPER(name)(float##fsz x, void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    if (float##fsz##_is_any_nan(x)) { \
+        float_raise(float_flag_invalid, fpst); \
+        return 0; \
+    } \
+    return float##fsz##_to_##sign##int32##round(x, fpst); \
+}
+
+#define FLOAT_CONVS(name, p, fsz, sign) \
+CONV_ITOF(vfp_##name##to##p, fsz, sign) \
+CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
+CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
+
+FLOAT_CONVS(si, s, 32, )
+FLOAT_CONVS(si, d, 64, )
+FLOAT_CONVS(ui, s, 32, u)
+FLOAT_CONVS(ui, d, 64, u)
+
+#undef CONV_ITOF
+#undef CONV_FTOI
+#undef FLOAT_CONVS
+
+/* floating point conversion */
+float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
+{
+    float64 r = float32_to_float64(x, &env->vfp.fp_status);
+    /* ARM requires that S<->D conversion of any kind of NaN generates
+     * a quiet NaN by forcing the most significant frac bit to 1.
+     */
+    return float64_maybe_silence_nan(r);
+}
+
+float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
+{
+    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
+    /* ARM requires that S<->D conversion of any kind of NaN generates
+     * a quiet NaN by forcing the most significant frac bit to 1.
+     */
+    return float32_maybe_silence_nan(r);
+}
+
+/* VFP3 fixed point conversion.  */
+#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
+float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
+                                     void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    float##fsz tmp; \
+    tmp = itype##_to_##float##fsz(x, fpst); \
+    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
+}
+
+/* Notice that we want only input-denormal exception flags from the
+ * scalbn operation: the other possible flags (overflow+inexact if
+ * we overflow to infinity, output-denormal) aren't correct for the
+ * complete scale-and-convert operation.
+ */
+#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
+uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
+                                             uint32_t shift, \
+                                             void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    int old_exc_flags = get_float_exception_flags(fpst); \
+    float##fsz tmp; \
+    if (float##fsz##_is_any_nan(x)) { \
+        float_raise(float_flag_invalid, fpst); \
+        return 0; \
+    } \
+    tmp = float##fsz##_scalbn(x, shift, fpst); \
+    old_exc_flags |= get_float_exception_flags(fpst) \
+        & float_flag_input_denormal; \
+    set_float_exception_flags(old_exc_flags, fpst); \
+    return float##fsz##_to_##itype##round(tmp, fpst); \
+}
+
+#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
+VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
+
+#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
+VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
+
+VFP_CONV_FIX(sh, d, 64, 64, int16)
+VFP_CONV_FIX(sl, d, 64, 64, int32)
+VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
+VFP_CONV_FIX(uh, d, 64, 64, uint16)
+VFP_CONV_FIX(ul, d, 64, 64, uint32)
+VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
+VFP_CONV_FIX(sh, s, 32, 32, int16)
+VFP_CONV_FIX(sl, s, 32, 32, int32)
+VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
+VFP_CONV_FIX(uh, s, 32, 32, uint16)
+VFP_CONV_FIX(ul, s, 32, 32, uint32)
+VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
+#undef VFP_CONV_FIX
+#undef VFP_CONV_FIX_FLOAT
+#undef VFP_CONV_FLOAT_FIX_ROUND
+
+/* Set the current fp rounding mode and return the old one.
+ * The argument is a softfloat float_round_ value.
+ */
+uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
+{
+    float_status *fp_status = &env->vfp.fp_status;
+
+    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
+    set_float_rounding_mode(rmode, fp_status);
+
+    return prev_rmode;
+}
+
+/* Set the current fp rounding mode in the standard fp status and return
+ * the old one. This is for NEON instructions that need to change the
+ * rounding mode but wish to use the standard FPSCR values for everything
+ * else. Always set the rounding mode back to the correct value after
+ * modifying it.
+ * The argument is a softfloat float_round_ value.
+ */
+uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
+{
+    float_status *fp_status = &env->vfp.standard_fp_status;
+
+    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
+    set_float_rounding_mode(rmode, fp_status);
+
+    return prev_rmode;
+}
+
+/* Half precision conversions.  */
+static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
+{
+    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
+    float32 r = float16_to_float32(make_float16(a), ieee, s);
+    if (ieee) {
+        return float32_maybe_silence_nan(r);
+    }
+    return r;
+}
+
+static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
+{
+    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
+    float16 r = float32_to_float16(a, ieee, s);
+    if (ieee) {
+        r = float16_maybe_silence_nan(r);
+    }
+    return float16_val(r);
+}
+
+float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
+{
+    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
+}
+
+uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
+{
+    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
+}
+
+float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
+{
+    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
+}
+
+uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
+{
+    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
+}
+
+float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
+{
+    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
+    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
+    if (ieee) {
+        return float64_maybe_silence_nan(r);
+    }
+    return r;
+}
+
+uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
+{
+    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
+    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
+    if (ieee) {
+        r = float16_maybe_silence_nan(r);
+    }
+    return float16_val(r);
+}
+
+#define float32_two make_float32(0x40000000)
+#define float32_three make_float32(0x40400000)
+#define float32_one_point_five make_float32(0x3fc00000)
+
+float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
+{
+    float_status *s = &env->vfp.standard_fp_status;
+    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+        if (!(float32_is_zero(a) || float32_is_zero(b))) {
+            float_raise(float_flag_input_denormal, s);
+        }
+        return float32_two;
+    }
+    return float32_sub(float32_two, float32_mul(a, b, s), s);
+}
+
+float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
+{
+    float_status *s = &env->vfp.standard_fp_status;
+    float32 product;
+    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+        if (!(float32_is_zero(a) || float32_is_zero(b))) {
+            float_raise(float_flag_input_denormal, s);
+        }
+        return float32_one_point_five;
+    }
+    product = float32_mul(a, b, s);
+    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
+}
+
+/* NEON helpers.  */
+
+/* Constants 256 and 512 are used in some helpers; we avoid relying on
+ * int->float conversions at run-time.  */
+#define float64_256 make_float64(0x4070000000000000LL)
+#define float64_512 make_float64(0x4080000000000000LL)
+#define float32_maxnorm make_float32(0x7f7fffff)
+#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
+
+/* Reciprocal functions
+ *
+ * The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM, see FPRecipEstimate()
+ */
+
+static float64 recip_estimate(float64 a, float_status *real_fp_status)
+{
+    /* These calculations mustn't set any fp exception flags,
+     * so we use a local copy of the fp_status.
+     */
+    float_status dummy_status = *real_fp_status;
+    float_status *s = &dummy_status;
+    /* q = (int)(a * 512.0) */
+    float64 q = float64_mul(float64_512, a, s);
+    int64_t q_int = float64_to_int64_round_to_zero(q, s);
+
+    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
+    q = int64_to_float64(q_int, s);
+    q = float64_add(q, float64_half, s);
+    q = float64_div(q, float64_512, s);
+    q = float64_div(float64_one, q, s);
+
+    /* s = (int)(256.0 * r + 0.5) */
+    q = float64_mul(q, float64_256, s);
+    q = float64_add(q, float64_half, s);
+    q_int = float64_to_int64_round_to_zero(q, s);
+
+    /* return (double)s / 256.0 */
+    return float64_div(int64_to_float64(q_int, s), float64_256, s);
+}
+
+/* Common wrapper to call recip_estimate */
+static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
+{
+    uint64_t val64 = float64_val(num);
+    uint64_t frac = extract64(val64, 0, 52);
+    int64_t exp = extract64(val64, 52, 11);
+    uint64_t sbit;
+    float64 scaled, estimate;
+
+    /* Generate the scaled number for the estimate function */
+    if (exp == 0) {
+        if (extract64(frac, 51, 1) == 0) {
+            exp = -1;
+            frac = extract64(frac, 0, 50) << 2;
+        } else {
+            frac = extract64(frac, 0, 51) << 1;
+        }
+    }
+
+    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
+    scaled = make_float64((0x3feULL << 52)
+                          | extract64(frac, 44, 8) << 44);
+
+    estimate = recip_estimate(scaled, fpst);
+
+    /* Build new result */
+    val64 = float64_val(estimate);
+    sbit = 0x8000000000000000ULL & val64;
+    exp = off - exp;
+    frac = extract64(val64, 0, 52);
+
+    if (exp == 0) {
+        frac = 1ULL << 51 | extract64(frac, 1, 51);
+    } else if (exp == -1) {
+        frac = 1ULL << 50 | extract64(frac, 2, 50);
+        exp = 0;
+    }
+
+    return make_float64(sbit | (exp << 52) | frac);
+}
+
+static bool round_to_inf(float_status *fpst, bool sign_bit)
+{
+    switch (fpst->float_rounding_mode) {
+    case float_round_nearest_even: /* Round to Nearest */
+        return true;
+    case float_round_up: /* Round to +Inf */
+        return !sign_bit;
+    case float_round_down: /* Round to -Inf */
+        return sign_bit;
+    case float_round_to_zero: /* Round to Zero */
+        return false;
+    }
+
+    g_assert_not_reached();
+}
+
+float32 HELPER(recpe_f32)(float32 input, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float32 f32 = float32_squash_input_denormal(input, fpst);
+    uint32_t f32_val = float32_val(f32);
+    uint32_t f32_sbit = 0x80000000ULL & f32_val;
+    int32_t f32_exp = extract32(f32_val, 23, 8);
+    uint32_t f32_frac = extract32(f32_val, 0, 23);
+    float64 f64, r64;
+    uint64_t r64_val;
+    int64_t r64_exp;
+    uint64_t r64_frac;
+
+    if (float32_is_any_nan(f32)) {
+        float32 nan = f32;
+        if (float32_is_signaling_nan(f32)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float32_maybe_silence_nan(f32);
+        }
+        if (fpst->default_nan_mode) {
+            nan =  float32_default_nan;
+        }
+        return nan;
+    } else if (float32_is_infinity(f32)) {
+        return float32_set_sign(float32_zero, float32_is_neg(f32));
+    } else if (float32_is_zero(f32)) {
+        float_raise(float_flag_divbyzero, fpst);
+        return float32_set_sign(float32_infinity, float32_is_neg(f32));
+    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
+        /* Abs(value) < 2.0^-128 */
+        float_raise(float_flag_overflow | float_flag_inexact, fpst);
+        if (round_to_inf(fpst, f32_sbit)) {
+            return float32_set_sign(float32_infinity, float32_is_neg(f32));
+        } else {
+            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
+        }
+    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
+        float_raise(float_flag_underflow, fpst);
+        return float32_set_sign(float32_zero, float32_is_neg(f32));
+    }
+
+
+    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
+    r64 = call_recip_estimate(f64, 253, fpst);
+    r64_val = float64_val(r64);
+    r64_exp = extract64(r64_val, 52, 11);
+    r64_frac = extract64(r64_val, 0, 52);
+
+    /* result = sign : result_exp<7:0> : fraction<51:29>; */
+    return make_float32(f32_sbit |
+                        (r64_exp & 0xff) << 23 |
+                        extract64(r64_frac, 29, 24));
+}
+
+float64 HELPER(recpe_f64)(float64 input, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float64 f64 = float64_squash_input_denormal(input, fpst);
+    uint64_t f64_val = float64_val(f64);
+    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
+    int64_t f64_exp = extract64(f64_val, 52, 11);
+    float64 r64;
+    uint64_t r64_val;
+    int64_t r64_exp;
+    uint64_t r64_frac;
+
+    /* Deal with any special cases */
+    if (float64_is_any_nan(f64)) {
+        float64 nan = f64;
+        if (float64_is_signaling_nan(f64)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float64_maybe_silence_nan(f64);
+        }
+        if (fpst->default_nan_mode) {
+            nan =  float64_default_nan;
+        }
+        return nan;
+    } else if (float64_is_infinity(f64)) {
+        return float64_set_sign(float64_zero, float64_is_neg(f64));
+    } else if (float64_is_zero(f64)) {
+        float_raise(float_flag_divbyzero, fpst);
+        return float64_set_sign(float64_infinity, float64_is_neg(f64));
+    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
+        /* Abs(value) < 2.0^-1024 */
+        float_raise(float_flag_overflow | float_flag_inexact, fpst);
+        if (round_to_inf(fpst, f64_sbit)) {
+            return float64_set_sign(float64_infinity, float64_is_neg(f64));
+        } else {
+            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
+        }
+    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
+        float_raise(float_flag_underflow, fpst);
+        return float64_set_sign(float64_zero, float64_is_neg(f64));
+    }
+
+    r64 = call_recip_estimate(f64, 2045, fpst);
+    r64_val = float64_val(r64);
+    r64_exp = extract64(r64_val, 52, 11);
+    r64_frac = extract64(r64_val, 0, 52);
+
+    /* result = sign : result_exp<10:0> : fraction<51:0> */
+    return make_float64(f64_sbit |
+                        ((r64_exp & 0x7ff) << 52) |
+                        r64_frac);
+}
+
+/* The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM.
+ */
+static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
+{
+    /* These calculations mustn't set any fp exception flags,
+     * so we use a local copy of the fp_status.
+     */
+    float_status dummy_status = *real_fp_status;
+    float_status *s = &dummy_status;
+    float64 q;
+    int64_t q_int;
+
+    if (float64_lt(a, float64_half, s)) {
+        /* range 0.25 <= a < 0.5 */
+
+        /* a in units of 1/512 rounded down */
+        /* q0 = (int)(a * 512.0);  */
+        q = float64_mul(float64_512, a, s);
+        q_int = float64_to_int64_round_to_zero(q, s);
+
+        /* reciprocal root r */
+        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
+        q = int64_to_float64(q_int, s);
+        q = float64_add(q, float64_half, s);
+        q = float64_div(q, float64_512, s);
+        q = float64_sqrt(q, s);
+        q = float64_div(float64_one, q, s);
+    } else {
+        /* range 0.5 <= a < 1.0 */
+
+        /* a in units of 1/256 rounded down */
+        /* q1 = (int)(a * 256.0); */
+        q = float64_mul(float64_256, a, s);
+        int64_t q_int = float64_to_int64_round_to_zero(q, s);
+
+        /* reciprocal root r */
+        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
+        q = int64_to_float64(q_int, s);
+        q = float64_add(q, float64_half, s);
+        q = float64_div(q, float64_256, s);
+        q = float64_sqrt(q, s);
+        q = float64_div(float64_one, q, s);
+    }
+    /* r in units of 1/256 rounded to nearest */
+    /* s = (int)(256.0 * r + 0.5); */
+
+    q = float64_mul(q, float64_256,s );
+    q = float64_add(q, float64_half, s);
+    q_int = float64_to_int64_round_to_zero(q, s);
+
+    /* return (double)s / 256.0;*/
+    return float64_div(int64_to_float64(q_int, s), float64_256, s);
+}
+
+float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
+{
+    float_status *s = fpstp;
+    float32 f32 = float32_squash_input_denormal(input, s);
+    uint32_t val = float32_val(f32);
+    uint32_t f32_sbit = 0x80000000 & val;
+    int32_t f32_exp = extract32(val, 23, 8);
+    uint32_t f32_frac = extract32(val, 0, 23);
+    uint64_t f64_frac;
+    uint64_t val64;
+    int result_exp;
+    float64 f64;
+
+    if (float32_is_any_nan(f32)) {
+        float32 nan = f32;
+        if (float32_is_signaling_nan(f32)) {
+            float_raise(float_flag_invalid, s);
+            nan = float32_maybe_silence_nan(f32);
+        }
+        if (s->default_nan_mode) {
+            nan =  float32_default_nan;
+        }
+        return nan;
+    } else if (float32_is_zero(f32)) {
+        float_raise(float_flag_divbyzero, s);
+        return float32_set_sign(float32_infinity, float32_is_neg(f32));
+    } else if (float32_is_neg(f32)) {
+        float_raise(float_flag_invalid, s);
+        return float32_default_nan;
+    } else if (float32_is_infinity(f32)) {
+        return float32_zero;
+    }
+
+    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+     * preserving the parity of the exponent.  */
+
+    f64_frac = ((uint64_t) f32_frac) << 29;
+    if (f32_exp == 0) {
+        while (extract64(f64_frac, 51, 1) == 0) {
+            f64_frac = f64_frac << 1;
+            f32_exp = f32_exp-1;
+        }
+        f64_frac = extract64(f64_frac, 0, 51) << 1;
+    }
+
+    if (extract64(f32_exp, 0, 1) == 0) {
+        f64 = make_float64(((uint64_t) f32_sbit) << 32
+                           | (0x3feULL << 52)
+                           | f64_frac);
+    } else {
+        f64 = make_float64(((uint64_t) f32_sbit) << 32
+                           | (0x3fdULL << 52)
+                           | f64_frac);
+    }
+
+    result_exp = (380 - f32_exp) / 2;
+
+    f64 = recip_sqrt_estimate(f64, s);
+
+    val64 = float64_val(f64);
+
+    val = ((result_exp & 0xff) << 23)
+        | ((val64 >> 29)  & 0x7fffff);
+    return make_float32(val);
+}
+
+float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
+{
+    float_status *s = fpstp;
+    float64 f64 = float64_squash_input_denormal(input, s);
+    uint64_t val = float64_val(f64);
+    uint64_t f64_sbit = 0x8000000000000000ULL & val;
+    int64_t f64_exp = extract64(val, 52, 11);
+    uint64_t f64_frac = extract64(val, 0, 52);
+    int64_t result_exp;
+    uint64_t result_frac;
+
+    if (float64_is_any_nan(f64)) {
+        float64 nan = f64;
+        if (float64_is_signaling_nan(f64)) {
+            float_raise(float_flag_invalid, s);
+            nan = float64_maybe_silence_nan(f64);
+        }
+        if (s->default_nan_mode) {
+            nan =  float64_default_nan;
+        }
+        return nan;
+    } else if (float64_is_zero(f64)) {
+        float_raise(float_flag_divbyzero, s);
+        return float64_set_sign(float64_infinity, float64_is_neg(f64));
+    } else if (float64_is_neg(f64)) {
+        float_raise(float_flag_invalid, s);
+        return float64_default_nan;
+    } else if (float64_is_infinity(f64)) {
+        return float64_zero;
+    }
+
+    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+     * preserving the parity of the exponent.  */
+
+    if (f64_exp == 0) {
+        while (extract64(f64_frac, 51, 1) == 0) {
+            f64_frac = f64_frac << 1;
+            f64_exp = f64_exp - 1;
+        }
+        f64_frac = extract64(f64_frac, 0, 51) << 1;
+    }
+
+    if (extract64(f64_exp, 0, 1) == 0) {
+        f64 = make_float64(f64_sbit
+                           | (0x3feULL << 52)
+                           | f64_frac);
+    } else {
+        f64 = make_float64(f64_sbit
+                           | (0x3fdULL << 52)
+                           | f64_frac);
+    }
+
+    result_exp = (3068 - f64_exp) / 2;
+
+    f64 = recip_sqrt_estimate(f64, s);
+
+    result_frac = extract64(float64_val(f64), 0, 52);
+
+    return make_float64(f64_sbit |
+                        ((result_exp & 0x7ff) << 52) |
+                        result_frac);
+}
+
+uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
+{
+    float_status *s = fpstp;
+    float64 f64;
+
+    if ((a & 0x80000000) == 0) {
+        return 0xffffffff;
+    }
+
+    f64 = make_float64((0x3feULL << 52)
+                       | ((int64_t)(a & 0x7fffffff) << 21));
+
+    f64 = recip_estimate(f64, s);
+
+    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
+}
+
+uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float64 f64;
+
+    if ((a & 0xc0000000) == 0) {
+        return 0xffffffff;
+    }
+
+    if (a & 0x80000000) {
+        f64 = make_float64((0x3feULL << 52)
+                           | ((uint64_t)(a & 0x7fffffff) << 21));
+    } else { /* bits 31-30 == '01' */
+        f64 = make_float64((0x3fdULL << 52)
+                           | ((uint64_t)(a & 0x3fffffff) << 22));
+    }
+
+    f64 = recip_sqrt_estimate(f64, fpst);
+
+    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
+}
+
+/* VFPv4 fused multiply-accumulate */
+float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return float32_muladd(a, b, c, 0, fpst);
+}
+
+float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return float64_muladd(a, b, c, 0, fpst);
+}
+
+/* ARMv8 round to integral */
+float32 HELPER(rints_exact)(float32 x, void *fp_status)
+{
+    return float32_round_to_int(x, fp_status);
+}
+
+float64 HELPER(rintd_exact)(float64 x, void *fp_status)
+{
+    return float64_round_to_int(x, fp_status);
+}
+
+float32 HELPER(rints)(float32 x, void *fp_status)
+{
+    int old_flags = get_float_exception_flags(fp_status), new_flags;
+    float32 ret;
+
+    ret = float32_round_to_int(x, fp_status);
+
+    /* Suppress any inexact exceptions the conversion produced */
+    if (!(old_flags & float_flag_inexact)) {
+        new_flags = get_float_exception_flags(fp_status);
+        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+    }
+
+    return ret;
+}
+
+float64 HELPER(rintd)(float64 x, void *fp_status)
+{
+    int old_flags = get_float_exception_flags(fp_status), new_flags;
+    float64 ret;
+
+    ret = float64_round_to_int(x, fp_status);
+
+    new_flags = get_float_exception_flags(fp_status);
+
+    /* Suppress any inexact exceptions the conversion produced */
+    if (!(old_flags & float_flag_inexact)) {
+        new_flags = get_float_exception_flags(fp_status);
+        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+    }
+
+    return ret;
+}
+
+/* Convert ARM rounding mode to softfloat */
+int arm_rmode_to_sf(int rmode)
+{
+    switch (rmode) {
+    case FPROUNDING_TIEAWAY:
+        rmode = float_round_ties_away;
+        break;
+    case FPROUNDING_ODD:
+        /* FIXME: add support for TIEAWAY and ODD */
+        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
+                      rmode);
+    case FPROUNDING_TIEEVEN:
+    default:
+        rmode = float_round_nearest_even;
+        break;
+    case FPROUNDING_POSINF:
+        rmode = float_round_up;
+        break;
+    case FPROUNDING_NEGINF:
+        rmode = float_round_down;
+        break;
+    case FPROUNDING_ZERO:
+        rmode = float_round_to_zero;
+        break;
+    }
+    return rmode;
+}
+
+/* CRC helpers.
+ * The upper bytes of val (above the number specified by 'bytes') must have
+ * been zeroed out by the caller.
+ */
+uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
+{
+    uint8_t buf[4];
+
+    stl_le_p(buf, val);
+
+    /* zlib crc32 converts the accumulator and output to one's complement.  */
+    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
+}
+
+uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
+{
+    uint8_t buf[4];
+
+    stl_le_p(buf, val);
+
+    /* Linux crc32c converts the output to one's complement.  */
+    return crc32c(acc, buf, bytes) ^ 0xffffffff;
+}