Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / u-boot / drivers / net / e1000.c
diff --git a/qemu/roms/u-boot/drivers/net/e1000.c b/qemu/roms/u-boot/drivers/net/e1000.c
new file mode 100644 (file)
index 0000000..9d9b259
--- /dev/null
@@ -0,0 +1,5307 @@
+/**************************************************************************
+Intel Pro 1000 for ppcboot/das-u-boot
+Drivers are port from Intel's Linux driver e1000-4.3.15
+and from Etherboot pro 1000 driver by mrakes at vivato dot net
+tested on both gig copper and gig fiber boards
+***************************************************************************/
+/*******************************************************************************
+
+
+  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
+
+ * SPDX-License-Identifier:    GPL-2.0+
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+/*
+ *  Copyright (C) Archway Digital Solutions.
+ *
+ *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
+ *  2/9/2002
+ *
+ *  Copyright (C) Linux Networx.
+ *  Massive upgrade to work with the new intel gigabit NICs.
+ *  <ebiederman at lnxi dot com>
+ *
+ *  Copyright 2011 Freescale Semiconductor, Inc.
+ */
+
+#include "e1000.h"
+
+#define TOUT_LOOP   100000
+
+#define virt_to_bus(devno, v)  pci_virt_to_mem(devno, (void *) (v))
+#define bus_to_phys(devno, a)  pci_mem_to_phys(devno, a)
+
+#define E1000_DEFAULT_PCI_PBA  0x00000030
+#define E1000_DEFAULT_PCIE_PBA 0x000a0026
+
+/* NIC specific static variables go here */
+
+static char tx_pool[128 + 16];
+static char rx_pool[128 + 16];
+static char packet[2096];
+
+static struct e1000_tx_desc *tx_base;
+static struct e1000_rx_desc *rx_base;
+
+static int tx_tail;
+static int rx_tail, rx_last;
+
+static struct pci_device_id e1000_supported[] = {
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
+       /* E1000 PCIe card */
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
+       {}
+};
+
+/* Function forward declarations */
+static int e1000_setup_link(struct eth_device *nic);
+static int e1000_setup_fiber_link(struct eth_device *nic);
+static int e1000_setup_copper_link(struct eth_device *nic);
+static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
+static void e1000_config_collision_dist(struct e1000_hw *hw);
+static int e1000_config_mac_to_phy(struct e1000_hw *hw);
+static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static int e1000_check_for_link(struct eth_device *nic);
+static int e1000_wait_autoneg(struct e1000_hw *hw);
+static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
+                                      uint16_t * duplex);
+static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+                             uint16_t * phy_data);
+static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+                              uint16_t phy_data);
+static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
+static int e1000_phy_reset(struct e1000_hw *hw);
+static int e1000_detect_gig_phy(struct e1000_hw *hw);
+static void e1000_set_media_type(struct e1000_hw *hw);
+
+static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
+
+#ifndef CONFIG_E1000_NO_NVM
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
+static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+               uint16_t words,
+               uint16_t *data);
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
+{
+       /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+        * wait 50 microseconds.
+        */
+       *eecd = *eecd | E1000_EECD_SK;
+       E1000_WRITE_REG(hw, EECD, *eecd);
+       E1000_WRITE_FLUSH(hw);
+       udelay(50);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
+{
+       /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+        * wait 50 microseconds.
+        */
+       *eecd = *eecd & ~E1000_EECD_SK;
+       E1000_WRITE_REG(hw, EECD, *eecd);
+       E1000_WRITE_FLUSH(hw);
+       udelay(50);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void
+e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
+{
+       uint32_t eecd;
+       uint32_t mask;
+
+       /* We need to shift "count" bits out to the EEPROM. So, value in the
+        * "data" parameter will be shifted out to the EEPROM one bit at a time.
+        * In order to do this, "data" must be broken down into bits.
+        */
+       mask = 0x01 << (count - 1);
+       eecd = E1000_READ_REG(hw, EECD);
+       eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+       do {
+               /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+                * and then raising and then lowering the clock (the SK bit controls
+                * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+                * by setting "DI" to "0" and then raising and then lowering the clock.
+                */
+               eecd &= ~E1000_EECD_DI;
+
+               if (data & mask)
+                       eecd |= E1000_EECD_DI;
+
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+
+               udelay(50);
+
+               e1000_raise_ee_clk(hw, &eecd);
+               e1000_lower_ee_clk(hw, &eecd);
+
+               mask = mask >> 1;
+
+       } while (mask);
+
+       /* We leave the "DI" bit set to "0" when we leave this routine. */
+       eecd &= ~E1000_EECD_DI;
+       E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t
+e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
+{
+       uint32_t eecd;
+       uint32_t i;
+       uint16_t data;
+
+       /* In order to read a register from the EEPROM, we need to shift 'count'
+        * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+        * input to the EEPROM (setting the SK bit), and then reading the
+        * value of the "DO" bit.  During this "shifting in" process the
+        * "DI" bit should always be clear.
+        */
+
+       eecd = E1000_READ_REG(hw, EECD);
+
+       eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+       data = 0;
+
+       for (i = 0; i < count; i++) {
+               data = data << 1;
+               e1000_raise_ee_clk(hw, &eecd);
+
+               eecd = E1000_READ_REG(hw, EECD);
+
+               eecd &= ~(E1000_EECD_DI);
+               if (eecd & E1000_EECD_DO)
+                       data |= 1;
+
+               e1000_lower_ee_clk(hw, &eecd);
+       }
+
+       return data;
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void e1000_standby_eeprom(struct e1000_hw *hw)
+{
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
+       uint32_t eecd;
+
+       eecd = E1000_READ_REG(hw, EECD);
+
+       if (eeprom->type == e1000_eeprom_microwire) {
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+
+               /* Clock high */
+               eecd |= E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+
+               /* Select EEPROM */
+               eecd |= E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+
+               /* Clock low */
+               eecd &= ~E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+       } else if (eeprom->type == e1000_eeprom_spi) {
+               /* Toggle CS to flush commands */
+               eecd |= E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+               eecd &= ~E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+       }
+}
+
+/***************************************************************************
+* Description:     Determines if the onboard NVM is FLASH or EEPROM.
+*
+* hw - Struct containing variables accessed by shared code
+****************************************************************************/
+static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
+{
+       uint32_t eecd = 0;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type == e1000_ich8lan)
+               return false;
+
+       if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
+               eecd = E1000_READ_REG(hw, EECD);
+
+               /* Isolate bits 15 & 16 */
+               eecd = ((eecd >> 15) & 0x03);
+
+               /* If both bits are set, device is Flash type */
+               if (eecd == 0x03)
+                       return false;
+       }
+       return true;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
+       uint32_t eecd, i = 0;
+
+       DEBUGFUNC();
+
+       if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+               return -E1000_ERR_SWFW_SYNC;
+       eecd = E1000_READ_REG(hw, EECD);
+
+       if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
+               /* Request EEPROM Access */
+               if (hw->mac_type > e1000_82544) {
+                       eecd |= E1000_EECD_REQ;
+                       E1000_WRITE_REG(hw, EECD, eecd);
+                       eecd = E1000_READ_REG(hw, EECD);
+                       while ((!(eecd & E1000_EECD_GNT)) &&
+                               (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+                               i++;
+                               udelay(5);
+                               eecd = E1000_READ_REG(hw, EECD);
+                       }
+                       if (!(eecd & E1000_EECD_GNT)) {
+                               eecd &= ~E1000_EECD_REQ;
+                               E1000_WRITE_REG(hw, EECD, eecd);
+                               DEBUGOUT("Could not acquire EEPROM grant\n");
+                               return -E1000_ERR_EEPROM;
+                       }
+               }
+       }
+
+       /* Setup EEPROM for Read/Write */
+
+       if (eeprom->type == e1000_eeprom_microwire) {
+               /* Clear SK and DI */
+               eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+               E1000_WRITE_REG(hw, EECD, eecd);
+
+               /* Set CS */
+               eecd |= E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+       } else if (eeprom->type == e1000_eeprom_spi) {
+               /* Clear SK and CS */
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+               E1000_WRITE_REG(hw, EECD, eecd);
+               udelay(1);
+       }
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.  Additionally, if this is ICH8, the flash controller GbE
+ * registers must be mapped, or this will crash.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
+       uint32_t eecd = E1000_READ_REG(hw, EECD);
+       int32_t ret_val = E1000_SUCCESS;
+       uint16_t eeprom_size;
+
+       DEBUGFUNC();
+
+       switch (hw->mac_type) {
+       case e1000_82542_rev2_0:
+       case e1000_82542_rev2_1:
+       case e1000_82543:
+       case e1000_82544:
+               eeprom->type = e1000_eeprom_microwire;
+               eeprom->word_size = 64;
+               eeprom->opcode_bits = 3;
+               eeprom->address_bits = 6;
+               eeprom->delay_usec = 50;
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+       break;
+       case e1000_82540:
+       case e1000_82545:
+       case e1000_82545_rev_3:
+       case e1000_82546:
+       case e1000_82546_rev_3:
+               eeprom->type = e1000_eeprom_microwire;
+               eeprom->opcode_bits = 3;
+               eeprom->delay_usec = 50;
+               if (eecd & E1000_EECD_SIZE) {
+                       eeprom->word_size = 256;
+                       eeprom->address_bits = 8;
+               } else {
+                       eeprom->word_size = 64;
+                       eeprom->address_bits = 6;
+               }
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               break;
+       case e1000_82541:
+       case e1000_82541_rev_2:
+       case e1000_82547:
+       case e1000_82547_rev_2:
+               if (eecd & E1000_EECD_TYPE) {
+                       eeprom->type = e1000_eeprom_spi;
+                       eeprom->opcode_bits = 8;
+                       eeprom->delay_usec = 1;
+                       if (eecd & E1000_EECD_ADDR_BITS) {
+                               eeprom->page_size = 32;
+                               eeprom->address_bits = 16;
+                       } else {
+                               eeprom->page_size = 8;
+                               eeprom->address_bits = 8;
+                       }
+               } else {
+                       eeprom->type = e1000_eeprom_microwire;
+                       eeprom->opcode_bits = 3;
+                       eeprom->delay_usec = 50;
+                       if (eecd & E1000_EECD_ADDR_BITS) {
+                               eeprom->word_size = 256;
+                               eeprom->address_bits = 8;
+                       } else {
+                               eeprom->word_size = 64;
+                               eeprom->address_bits = 6;
+                       }
+               }
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               break;
+       case e1000_82571:
+       case e1000_82572:
+               eeprom->type = e1000_eeprom_spi;
+               eeprom->opcode_bits = 8;
+               eeprom->delay_usec = 1;
+               if (eecd & E1000_EECD_ADDR_BITS) {
+                       eeprom->page_size = 32;
+                       eeprom->address_bits = 16;
+               } else {
+                       eeprom->page_size = 8;
+                       eeprom->address_bits = 8;
+               }
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               break;
+       case e1000_82573:
+       case e1000_82574:
+               eeprom->type = e1000_eeprom_spi;
+               eeprom->opcode_bits = 8;
+               eeprom->delay_usec = 1;
+               if (eecd & E1000_EECD_ADDR_BITS) {
+                       eeprom->page_size = 32;
+                       eeprom->address_bits = 16;
+               } else {
+                       eeprom->page_size = 8;
+                       eeprom->address_bits = 8;
+               }
+               eeprom->use_eerd = true;
+               eeprom->use_eewr = true;
+               if (e1000_is_onboard_nvm_eeprom(hw) == false) {
+                       eeprom->type = e1000_eeprom_flash;
+                       eeprom->word_size = 2048;
+
+               /* Ensure that the Autonomous FLASH update bit is cleared due to
+                * Flash update issue on parts which use a FLASH for NVM. */
+                       eecd &= ~E1000_EECD_AUPDEN;
+                       E1000_WRITE_REG(hw, EECD, eecd);
+               }
+               break;
+       case e1000_80003es2lan:
+               eeprom->type = e1000_eeprom_spi;
+               eeprom->opcode_bits = 8;
+               eeprom->delay_usec = 1;
+               if (eecd & E1000_EECD_ADDR_BITS) {
+                       eeprom->page_size = 32;
+                       eeprom->address_bits = 16;
+               } else {
+                       eeprom->page_size = 8;
+                       eeprom->address_bits = 8;
+               }
+               eeprom->use_eerd = true;
+               eeprom->use_eewr = false;
+               break;
+
+       /* ich8lan does not support currently. if needed, please
+        * add corresponding code and functions.
+        */
+#if 0
+       case e1000_ich8lan:
+               {
+               int32_t  i = 0;
+
+               eeprom->type = e1000_eeprom_ich8;
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               eeprom->word_size = E1000_SHADOW_RAM_WORDS;
+               uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
+                               ICH_FLASH_GFPREG);
+               /* Zero the shadow RAM structure. But don't load it from NVM
+                * so as to save time for driver init */
+               if (hw->eeprom_shadow_ram != NULL) {
+                       for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+                               hw->eeprom_shadow_ram[i].modified = false;
+                               hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+                       }
+               }
+
+               hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
+                               ICH_FLASH_SECTOR_SIZE;
+
+               hw->flash_bank_size = ((flash_size >> 16)
+                               & ICH_GFPREG_BASE_MASK) + 1;
+               hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
+
+               hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
+
+               hw->flash_bank_size /= 2 * sizeof(uint16_t);
+               break;
+               }
+#endif
+       default:
+               break;
+       }
+
+       if (eeprom->type == e1000_eeprom_spi) {
+               /* eeprom_size will be an enum [0..8] that maps
+                * to eeprom sizes 128B to
+                * 32KB (incremented by powers of 2).
+                */
+               if (hw->mac_type <= e1000_82547_rev_2) {
+                       /* Set to default value for initial eeprom read. */
+                       eeprom->word_size = 64;
+                       ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
+                                       &eeprom_size);
+                       if (ret_val)
+                               return ret_val;
+                       eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
+                               >> EEPROM_SIZE_SHIFT;
+                       /* 256B eeprom size was not supported in earlier
+                        * hardware, so we bump eeprom_size up one to
+                        * ensure that "1" (which maps to 256B) is never
+                        * the result used in the shifting logic below. */
+                       if (eeprom_size)
+                               eeprom_size++;
+               } else {
+                       eeprom_size = (uint16_t)((eecd &
+                               E1000_EECD_SIZE_EX_MASK) >>
+                               E1000_EECD_SIZE_EX_SHIFT);
+               }
+
+               eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+       }
+       return ret_val;
+}
+
+/******************************************************************************
+ * Polls the status bit (bit 1) of the EERD to determine when the read is done.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t
+e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+{
+       uint32_t attempts = 100000;
+       uint32_t i, reg = 0;
+       int32_t done = E1000_ERR_EEPROM;
+
+       for (i = 0; i < attempts; i++) {
+               if (eerd == E1000_EEPROM_POLL_READ)
+                       reg = E1000_READ_REG(hw, EERD);
+               else
+                       reg = E1000_READ_REG(hw, EEWR);
+
+               if (reg & E1000_EEPROM_RW_REG_DONE) {
+                       done = E1000_SUCCESS;
+                       break;
+               }
+               udelay(5);
+       }
+
+       return done;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+static int32_t
+e1000_read_eeprom_eerd(struct e1000_hw *hw,
+                       uint16_t offset,
+                       uint16_t words,
+                       uint16_t *data)
+{
+       uint32_t i, eerd = 0;
+       int32_t error = 0;
+
+       for (i = 0; i < words; i++) {
+               eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
+                       E1000_EEPROM_RW_REG_START;
+
+               E1000_WRITE_REG(hw, EERD, eerd);
+               error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+
+               if (error)
+                       break;
+               data[i] = (E1000_READ_REG(hw, EERD) >>
+                               E1000_EEPROM_RW_REG_DATA);
+
+       }
+
+       return error;
+}
+
+void e1000_release_eeprom(struct e1000_hw *hw)
+{
+       uint32_t eecd;
+
+       DEBUGFUNC();
+
+       eecd = E1000_READ_REG(hw, EECD);
+
+       if (hw->eeprom.type == e1000_eeprom_spi) {
+               eecd |= E1000_EECD_CS;  /* Pull CS high */
+               eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
+               E1000_WRITE_REG(hw, EECD, eecd);
+
+               udelay(hw->eeprom.delay_usec);
+       } else if (hw->eeprom.type == e1000_eeprom_microwire) {
+               /* cleanup eeprom */
+
+               /* CS on Microwire is active-high */
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+               E1000_WRITE_REG(hw, EECD, eecd);
+
+               /* Rising edge of clock */
+               eecd |= E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(hw->eeprom.delay_usec);
+
+               /* Falling edge of clock */
+               eecd &= ~E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(hw->eeprom.delay_usec);
+       }
+
+       /* Stop requesting EEPROM access */
+       if (hw->mac_type > e1000_82544) {
+               eecd &= ~E1000_EECD_REQ;
+               E1000_WRITE_REG(hw, EECD, eecd);
+       }
+}
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t
+e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+       uint16_t retry_count = 0;
+       uint8_t spi_stat_reg;
+
+       DEBUGFUNC();
+
+       /* Read "Status Register" repeatedly until the LSB is cleared.  The
+        * EEPROM will signal that the command has been completed by clearing
+        * bit 0 of the internal status register.  If it's not cleared within
+        * 5 milliseconds, then error out.
+        */
+       retry_count = 0;
+       do {
+               e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+                       hw->eeprom.opcode_bits);
+               spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
+               if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+                       break;
+
+               udelay(5);
+               retry_count += 5;
+
+               e1000_standby_eeprom(hw);
+       } while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+       /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+        * only 0-5mSec on 5V devices)
+        */
+       if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+               DEBUGOUT("SPI EEPROM Status error\n");
+               return -E1000_ERR_EEPROM;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ *****************************************************************************/
+static int32_t
+e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+               uint16_t words, uint16_t *data)
+{
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
+       uint32_t i = 0;
+
+       DEBUGFUNC();
+
+       /* If eeprom is not yet detected, do so now */
+       if (eeprom->word_size == 0)
+               e1000_init_eeprom_params(hw);
+
+       /* A check for invalid values:  offset too large, too many words,
+        * and not enough words.
+        */
+       if ((offset >= eeprom->word_size) ||
+               (words > eeprom->word_size - offset) ||
+               (words == 0)) {
+               DEBUGOUT("\"words\" parameter out of bounds."
+                       "Words = %d, size = %d\n", offset, eeprom->word_size);
+               return -E1000_ERR_EEPROM;
+       }
+
+       /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+        * directly. In this case, we need to acquire the EEPROM so that
+        * FW or other port software does not interrupt.
+        */
+       if (e1000_is_onboard_nvm_eeprom(hw) == true &&
+               hw->eeprom.use_eerd == false) {
+
+               /* Prepare the EEPROM for bit-bang reading */
+               if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+                       return -E1000_ERR_EEPROM;
+       }
+
+       /* Eerd register EEPROM access requires no eeprom aquire/release */
+       if (eeprom->use_eerd == true)
+               return e1000_read_eeprom_eerd(hw, offset, words, data);
+
+       /* ich8lan does not support currently. if needed, please
+        * add corresponding code and functions.
+        */
+#if 0
+       /* ICH EEPROM access is done via the ICH flash controller */
+       if (eeprom->type == e1000_eeprom_ich8)
+               return e1000_read_eeprom_ich8(hw, offset, words, data);
+#endif
+       /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+        * acquired the EEPROM at this point, so any returns should relase it */
+       if (eeprom->type == e1000_eeprom_spi) {
+               uint16_t word_in;
+               uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+
+               if (e1000_spi_eeprom_ready(hw)) {
+                       e1000_release_eeprom(hw);
+                       return -E1000_ERR_EEPROM;
+               }
+
+               e1000_standby_eeprom(hw);
+
+               /* Some SPI eeproms use the 8th address bit embedded in
+                * the opcode */
+               if ((eeprom->address_bits == 8) && (offset >= 128))
+                       read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+               /* Send the READ command (opcode + addr)  */
+               e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+               e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
+                               eeprom->address_bits);
+
+               /* Read the data.  The address of the eeprom internally
+                * increments with each byte (spi) being read, saving on the
+                * overhead of eeprom setup and tear-down.  The address
+                * counter will roll over if reading beyond the size of
+                * the eeprom, thus allowing the entire memory to be read
+                * starting from any offset. */
+               for (i = 0; i < words; i++) {
+                       word_in = e1000_shift_in_ee_bits(hw, 16);
+                       data[i] = (word_in >> 8) | (word_in << 8);
+               }
+       } else if (eeprom->type == e1000_eeprom_microwire) {
+               for (i = 0; i < words; i++) {
+                       /* Send the READ command (opcode + addr)  */
+                       e1000_shift_out_ee_bits(hw,
+                               EEPROM_READ_OPCODE_MICROWIRE,
+                               eeprom->opcode_bits);
+                       e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+                               eeprom->address_bits);
+
+                       /* Read the data.  For microwire, each word requires
+                        * the overhead of eeprom setup and tear-down. */
+                       data[i] = e1000_shift_in_ee_bits(hw, 16);
+                       e1000_standby_eeprom(hw);
+               }
+       }
+
+       /* End this read operation */
+       e1000_release_eeprom(hw);
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+       uint16_t i, checksum, checksum_reg, *buf;
+
+       DEBUGFUNC();
+
+       /* Allocate a temporary buffer */
+       buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
+       if (!buf) {
+               E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
+               return -E1000_ERR_EEPROM;
+       }
+
+       /* Read the EEPROM */
+       if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
+               E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
+               return -E1000_ERR_EEPROM;
+       }
+
+       /* Compute the checksum */
+       checksum = 0;
+       for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
+               checksum += buf[i];
+       checksum = ((uint16_t)EEPROM_SUM) - checksum;
+       checksum_reg = buf[i];
+
+       /* Verify it! */
+       if (checksum == checksum_reg)
+               return 0;
+
+       /* Hrm, verification failed, print an error */
+       E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
+       E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
+                       checksum_reg, checksum);
+
+       return -E1000_ERR_EEPROM;
+}
+#endif /* CONFIG_E1000_NO_NVM */
+
+/*****************************************************************************
+ * Set PHY to class A mode
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ *
+ * hw - Struct containing variables accessed by shared code
+ ****************************************************************************/
+static int32_t
+e1000_set_phy_mode(struct e1000_hw *hw)
+{
+#ifndef CONFIG_E1000_NO_NVM
+       int32_t ret_val;
+       uint16_t eeprom_data;
+
+       DEBUGFUNC();
+
+       if ((hw->mac_type == e1000_82545_rev_3) &&
+               (hw->media_type == e1000_media_type_copper)) {
+               ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
+                               1, &eeprom_data);
+               if (ret_val)
+                       return ret_val;
+
+               if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+                       (eeprom_data & EEPROM_PHY_CLASS_A)) {
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_PHY_PAGE_SELECT, 0x000B);
+                       if (ret_val)
+                               return ret_val;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_PHY_GEN_CONTROL, 0x8104);
+                       if (ret_val)
+                               return ret_val;
+
+                       hw->phy_reset_disable = false;
+               }
+       }
+#endif
+       return E1000_SUCCESS;
+}
+
+#ifndef CONFIG_E1000_NO_NVM
+/***************************************************************************
+ *
+ * Obtaining software semaphore bit (SMBI) before resetting PHY.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to obtain semaphore.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t
+e1000_get_software_semaphore(struct e1000_hw *hw)
+{
+        int32_t timeout = hw->eeprom.word_size + 1;
+        uint32_t swsm;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type != e1000_80003es2lan)
+               return E1000_SUCCESS;
+
+       while (timeout) {
+               swsm = E1000_READ_REG(hw, SWSM);
+               /* If SMBI bit cleared, it is now set and we hold
+                * the semaphore */
+               if (!(swsm & E1000_SWSM_SMBI))
+                       break;
+               mdelay(1);
+               timeout--;
+       }
+
+       if (!timeout) {
+               DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+               return -E1000_ERR_RESET;
+       }
+
+       return E1000_SUCCESS;
+}
+#endif
+
+/***************************************************************************
+ * This function clears HW semaphore bits.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - None.
+ *
+ ***************************************************************************/
+static void
+e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+#ifndef CONFIG_E1000_NO_NVM
+        uint32_t swsm;
+
+       DEBUGFUNC();
+
+       if (!hw->eeprom_semaphore_present)
+               return;
+
+       swsm = E1000_READ_REG(hw, SWSM);
+       if (hw->mac_type == e1000_80003es2lan) {
+               /* Release both semaphores. */
+               swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+       } else
+               swsm &= ~(E1000_SWSM_SWESMBI);
+       E1000_WRITE_REG(hw, SWSM, swsm);
+#endif
+}
+
+/***************************************************************************
+ *
+ * Using the combination of SMBI and SWESMBI semaphore bits when resetting
+ * adapter or Eeprom access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t
+e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+#ifndef CONFIG_E1000_NO_NVM
+       int32_t timeout;
+       uint32_t swsm;
+
+       DEBUGFUNC();
+
+       if (!hw->eeprom_semaphore_present)
+               return E1000_SUCCESS;
+
+       if (hw->mac_type == e1000_80003es2lan) {
+               /* Get the SW semaphore. */
+               if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
+                       return -E1000_ERR_EEPROM;
+       }
+
+       /* Get the FW semaphore. */
+       timeout = hw->eeprom.word_size + 1;
+       while (timeout) {
+               swsm = E1000_READ_REG(hw, SWSM);
+               swsm |= E1000_SWSM_SWESMBI;
+               E1000_WRITE_REG(hw, SWSM, swsm);
+               /* if we managed to set the bit we got the semaphore. */
+               swsm = E1000_READ_REG(hw, SWSM);
+               if (swsm & E1000_SWSM_SWESMBI)
+                       break;
+
+               udelay(50);
+               timeout--;
+       }
+
+       if (!timeout) {
+               /* Release semaphores */
+               e1000_put_hw_eeprom_semaphore(hw);
+               DEBUGOUT("Driver can't access the Eeprom - "
+                               "SWESMBI bit is set.\n");
+               return -E1000_ERR_EEPROM;
+       }
+#endif
+       return E1000_SUCCESS;
+}
+
+static int32_t
+e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
+{
+       uint32_t swfw_sync = 0;
+       uint32_t swmask = mask;
+       uint32_t fwmask = mask << 16;
+       int32_t timeout = 200;
+
+       DEBUGFUNC();
+       while (timeout) {
+               if (e1000_get_hw_eeprom_semaphore(hw))
+                       return -E1000_ERR_SWFW_SYNC;
+
+               swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+               if (!(swfw_sync & (fwmask | swmask)))
+                       break;
+
+               /* firmware currently using resource (fwmask) */
+               /* or other software thread currently using resource (swmask) */
+               e1000_put_hw_eeprom_semaphore(hw);
+               mdelay(5);
+               timeout--;
+       }
+
+       if (!timeout) {
+               DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+               return -E1000_ERR_SWFW_SYNC;
+       }
+
+       swfw_sync |= swmask;
+       E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+
+       e1000_put_hw_eeprom_semaphore(hw);
+       return E1000_SUCCESS;
+}
+
+static bool e1000_is_second_port(struct e1000_hw *hw)
+{
+       switch (hw->mac_type) {
+       case e1000_80003es2lan:
+       case e1000_82546:
+       case e1000_82571:
+               if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+                       return true;
+               /* Fallthrough */
+       default:
+               return false;
+       }
+}
+
+#ifndef CONFIG_E1000_NO_NVM
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * nic - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int
+e1000_read_mac_addr(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       uint16_t offset;
+       uint16_t eeprom_data;
+       int i;
+
+       DEBUGFUNC();
+
+       for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+               offset = i >> 1;
+               if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+                       DEBUGOUT("EEPROM Read Error\n");
+                       return -E1000_ERR_EEPROM;
+               }
+               nic->enetaddr[i] = eeprom_data & 0xff;
+               nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
+       }
+
+       /* Invert the last bit if this is the second device */
+       if (e1000_is_second_port(hw))
+               nic->enetaddr[5] ^= 1;
+
+#ifdef CONFIG_E1000_FALLBACK_MAC
+       if (!is_valid_ether_addr(nic->enetaddr)) {
+               unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
+
+               memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
+       }
+#endif
+       return 0;
+}
+#endif
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive addresss registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+static void
+e1000_init_rx_addrs(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       uint32_t i;
+       uint32_t addr_low;
+       uint32_t addr_high;
+
+       DEBUGFUNC();
+
+       /* Setup the receive address. */
+       DEBUGOUT("Programming MAC Address into RAR[0]\n");
+       addr_low = (nic->enetaddr[0] |
+                   (nic->enetaddr[1] << 8) |
+                   (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
+
+       addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
+
+       E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
+       E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+
+       /* Zero out the other 15 receive addresses. */
+       DEBUGOUT("Clearing RAR[1-15]\n");
+       for (i = 1; i < E1000_RAR_ENTRIES; i++) {
+               E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+               E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+       }
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_clear_vfta(struct e1000_hw *hw)
+{
+       uint32_t offset;
+
+       for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+               E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+/******************************************************************************
+ * Set the mac type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_set_mac_type(struct e1000_hw *hw)
+{
+       DEBUGFUNC();
+
+       switch (hw->device_id) {
+       case E1000_DEV_ID_82542:
+               switch (hw->revision_id) {
+               case E1000_82542_2_0_REV_ID:
+                       hw->mac_type = e1000_82542_rev2_0;
+                       break;
+               case E1000_82542_2_1_REV_ID:
+                       hw->mac_type = e1000_82542_rev2_1;
+                       break;
+               default:
+                       /* Invalid 82542 revision ID */
+                       return -E1000_ERR_MAC_TYPE;
+               }
+               break;
+       case E1000_DEV_ID_82543GC_FIBER:
+       case E1000_DEV_ID_82543GC_COPPER:
+               hw->mac_type = e1000_82543;
+               break;
+       case E1000_DEV_ID_82544EI_COPPER:
+       case E1000_DEV_ID_82544EI_FIBER:
+       case E1000_DEV_ID_82544GC_COPPER:
+       case E1000_DEV_ID_82544GC_LOM:
+               hw->mac_type = e1000_82544;
+               break;
+       case E1000_DEV_ID_82540EM:
+       case E1000_DEV_ID_82540EM_LOM:
+       case E1000_DEV_ID_82540EP:
+       case E1000_DEV_ID_82540EP_LOM:
+       case E1000_DEV_ID_82540EP_LP:
+               hw->mac_type = e1000_82540;
+               break;
+       case E1000_DEV_ID_82545EM_COPPER:
+       case E1000_DEV_ID_82545EM_FIBER:
+               hw->mac_type = e1000_82545;
+               break;
+       case E1000_DEV_ID_82545GM_COPPER:
+       case E1000_DEV_ID_82545GM_FIBER:
+       case E1000_DEV_ID_82545GM_SERDES:
+               hw->mac_type = e1000_82545_rev_3;
+               break;
+       case E1000_DEV_ID_82546EB_COPPER:
+       case E1000_DEV_ID_82546EB_FIBER:
+       case E1000_DEV_ID_82546EB_QUAD_COPPER:
+               hw->mac_type = e1000_82546;
+               break;
+       case E1000_DEV_ID_82546GB_COPPER:
+       case E1000_DEV_ID_82546GB_FIBER:
+       case E1000_DEV_ID_82546GB_SERDES:
+       case E1000_DEV_ID_82546GB_PCIE:
+       case E1000_DEV_ID_82546GB_QUAD_COPPER:
+       case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+               hw->mac_type = e1000_82546_rev_3;
+               break;
+       case E1000_DEV_ID_82541EI:
+       case E1000_DEV_ID_82541EI_MOBILE:
+       case E1000_DEV_ID_82541ER_LOM:
+               hw->mac_type = e1000_82541;
+               break;
+       case E1000_DEV_ID_82541ER:
+       case E1000_DEV_ID_82541GI:
+       case E1000_DEV_ID_82541GI_LF:
+       case E1000_DEV_ID_82541GI_MOBILE:
+               hw->mac_type = e1000_82541_rev_2;
+               break;
+       case E1000_DEV_ID_82547EI:
+       case E1000_DEV_ID_82547EI_MOBILE:
+               hw->mac_type = e1000_82547;
+               break;
+       case E1000_DEV_ID_82547GI:
+               hw->mac_type = e1000_82547_rev_2;
+               break;
+       case E1000_DEV_ID_82571EB_COPPER:
+       case E1000_DEV_ID_82571EB_FIBER:
+       case E1000_DEV_ID_82571EB_SERDES:
+       case E1000_DEV_ID_82571EB_SERDES_DUAL:
+       case E1000_DEV_ID_82571EB_SERDES_QUAD:
+       case E1000_DEV_ID_82571EB_QUAD_COPPER:
+       case E1000_DEV_ID_82571PT_QUAD_COPPER:
+       case E1000_DEV_ID_82571EB_QUAD_FIBER:
+       case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
+               hw->mac_type = e1000_82571;
+               break;
+       case E1000_DEV_ID_82572EI_COPPER:
+       case E1000_DEV_ID_82572EI_FIBER:
+       case E1000_DEV_ID_82572EI_SERDES:
+       case E1000_DEV_ID_82572EI:
+               hw->mac_type = e1000_82572;
+               break;
+       case E1000_DEV_ID_82573E:
+       case E1000_DEV_ID_82573E_IAMT:
+       case E1000_DEV_ID_82573L:
+               hw->mac_type = e1000_82573;
+               break;
+       case E1000_DEV_ID_82574L:
+               hw->mac_type = e1000_82574;
+               break;
+       case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+       case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+       case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+       case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+               hw->mac_type = e1000_80003es2lan;
+               break;
+       case E1000_DEV_ID_ICH8_IGP_M_AMT:
+       case E1000_DEV_ID_ICH8_IGP_AMT:
+       case E1000_DEV_ID_ICH8_IGP_C:
+       case E1000_DEV_ID_ICH8_IFE:
+       case E1000_DEV_ID_ICH8_IFE_GT:
+       case E1000_DEV_ID_ICH8_IFE_G:
+       case E1000_DEV_ID_ICH8_IGP_M:
+               hw->mac_type = e1000_ich8lan;
+               break;
+       default:
+               /* Should never have loaded on this device */
+               return -E1000_ERR_MAC_TYPE;
+       }
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_reset_hw(struct e1000_hw *hw)
+{
+       uint32_t ctrl;
+       uint32_t ctrl_ext;
+       uint32_t manc;
+       uint32_t pba = 0;
+
+       DEBUGFUNC();
+
+       /* get the correct pba value for both PCI and PCIe*/
+       if (hw->mac_type <  e1000_82571)
+               pba = E1000_DEFAULT_PCI_PBA;
+       else
+               pba = E1000_DEFAULT_PCIE_PBA;
+
+       /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+       if (hw->mac_type == e1000_82542_rev2_0) {
+               DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+               pci_write_config_word(hw->pdev, PCI_COMMAND,
+                               hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+       }
+
+       /* Clear interrupt mask to stop board from generating interrupts */
+       DEBUGOUT("Masking off all interrupts\n");
+       E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+       /* Disable the Transmit and Receive units.  Then delay to allow
+        * any pending transactions to complete before we hit the MAC with
+        * the global reset.
+        */
+       E1000_WRITE_REG(hw, RCTL, 0);
+       E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+       E1000_WRITE_FLUSH(hw);
+
+       /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+       hw->tbi_compatibility_on = false;
+
+       /* Delay to allow any outstanding PCI transactions to complete before
+        * resetting the device
+        */
+       mdelay(10);
+
+       /* Issue a global reset to the MAC.  This will reset the chip's
+        * transmit, receive, DMA, and link units.  It will not effect
+        * the current PCI configuration.  The global reset bit is self-
+        * clearing, and should clear within a microsecond.
+        */
+       DEBUGOUT("Issuing a global reset to MAC\n");
+       ctrl = E1000_READ_REG(hw, CTRL);
+
+       E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+
+       /* Force a reload from the EEPROM if necessary */
+       if (hw->mac_type < e1000_82540) {
+               /* Wait for reset to complete */
+               udelay(10);
+               ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+               ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+               E1000_WRITE_FLUSH(hw);
+               /* Wait for EEPROM reload */
+               mdelay(2);
+       } else {
+               /* Wait for EEPROM reload (it happens automatically) */
+               mdelay(4);
+               /* Dissable HW ARPs on ASF enabled adapters */
+               manc = E1000_READ_REG(hw, MANC);
+               manc &= ~(E1000_MANC_ARP_EN);
+               E1000_WRITE_REG(hw, MANC, manc);
+       }
+
+       /* Clear interrupt mask to stop board from generating interrupts */
+       DEBUGOUT("Masking off all interrupts\n");
+       E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+       /* Clear any pending interrupt events. */
+       E1000_READ_REG(hw, ICR);
+
+       /* If MWI was previously enabled, reenable it. */
+       if (hw->mac_type == e1000_82542_rev2_0) {
+               pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+       }
+       E1000_WRITE_REG(hw, PBA, pba);
+}
+
+/******************************************************************************
+ *
+ * Initialize a number of hardware-dependent bits
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * This function contains hardware limitation workarounds for PCI-E adapters
+ *
+ *****************************************************************************/
+static void
+e1000_initialize_hardware_bits(struct e1000_hw *hw)
+{
+       if ((hw->mac_type >= e1000_82571) &&
+                       (!hw->initialize_hw_bits_disable)) {
+               /* Settings common to all PCI-express silicon */
+               uint32_t reg_ctrl, reg_ctrl_ext;
+               uint32_t reg_tarc0, reg_tarc1;
+               uint32_t reg_tctl;
+               uint32_t reg_txdctl, reg_txdctl1;
+
+               /* link autonegotiation/sync workarounds */
+               reg_tarc0 = E1000_READ_REG(hw, TARC0);
+               reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
+
+               /* Enable not-done TX descriptor counting */
+               reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+               reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
+               E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+
+               reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+               reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
+               E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+
+               switch (hw->mac_type) {
+               case e1000_82571:
+               case e1000_82572:
+                       /* Clear PHY TX compatible mode bits */
+                       reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                       reg_tarc1 &= ~((1 << 30)|(1 << 29));
+
+                       /* link autonegotiation/sync workarounds */
+                       reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
+
+                       /* TX ring control fixes */
+                       reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
+
+                       /* Multiple read bit is reversed polarity */
+                       reg_tctl = E1000_READ_REG(hw, TCTL);
+                       if (reg_tctl & E1000_TCTL_MULR)
+                               reg_tarc1 &= ~(1 << 28);
+                       else
+                               reg_tarc1 |= (1 << 28);
+
+                       E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                       break;
+               case e1000_82573:
+               case e1000_82574:
+                       reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+                       reg_ctrl_ext &= ~(1 << 23);
+                       reg_ctrl_ext |= (1 << 22);
+
+                       /* TX byte count fix */
+                       reg_ctrl = E1000_READ_REG(hw, CTRL);
+                       reg_ctrl &= ~(1 << 29);
+
+                       E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+                       E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+                       break;
+               case e1000_80003es2lan:
+       /* improve small packet performace for fiber/serdes */
+                       if ((hw->media_type == e1000_media_type_fiber)
+                       || (hw->media_type ==
+                               e1000_media_type_internal_serdes)) {
+                               reg_tarc0 &= ~(1 << 20);
+                       }
+
+               /* Multiple read bit is reversed polarity */
+                       reg_tctl = E1000_READ_REG(hw, TCTL);
+                       reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                       if (reg_tctl & E1000_TCTL_MULR)
+                               reg_tarc1 &= ~(1 << 28);
+                       else
+                               reg_tarc1 |= (1 << 28);
+
+                       E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                       break;
+               case e1000_ich8lan:
+                       /* Reduce concurrent DMA requests to 3 from 4 */
+                       if ((hw->revision_id < 3) ||
+                       ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+                               (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
+                               reg_tarc0 |= ((1 << 29)|(1 << 28));
+
+                       reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+                       reg_ctrl_ext |= (1 << 22);
+                       E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+
+                       /* workaround TX hang with TSO=on */
+                       reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
+
+                       /* Multiple read bit is reversed polarity */
+                       reg_tctl = E1000_READ_REG(hw, TCTL);
+                       reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                       if (reg_tctl & E1000_TCTL_MULR)
+                               reg_tarc1 &= ~(1 << 28);
+                       else
+                               reg_tarc1 |= (1 << 28);
+
+                       /* workaround TX hang with TSO=on */
+                       reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
+
+                       E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                       break;
+               default:
+                       break;
+               }
+
+               E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+       }
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ *****************************************************************************/
+static int
+e1000_init_hw(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       uint32_t ctrl;
+       uint32_t i;
+       int32_t ret_val;
+       uint16_t pcix_cmd_word;
+       uint16_t pcix_stat_hi_word;
+       uint16_t cmd_mmrbc;
+       uint16_t stat_mmrbc;
+       uint32_t mta_size;
+       uint32_t reg_data;
+       uint32_t ctrl_ext;
+       DEBUGFUNC();
+       /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
+       if ((hw->mac_type == e1000_ich8lan) &&
+               ((hw->revision_id < 3) ||
+               ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+               (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
+                       reg_data = E1000_READ_REG(hw, STATUS);
+                       reg_data &= ~0x80000000;
+                       E1000_WRITE_REG(hw, STATUS, reg_data);
+       }
+       /* Do not need initialize Identification LED */
+
+       /* Set the media type and TBI compatibility */
+       e1000_set_media_type(hw);
+
+       /* Must be called after e1000_set_media_type
+        * because media_type is used */
+       e1000_initialize_hardware_bits(hw);
+
+       /* Disabling VLAN filtering. */
+       DEBUGOUT("Initializing the IEEE VLAN\n");
+       /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
+       if (hw->mac_type != e1000_ich8lan) {
+               if (hw->mac_type < e1000_82545_rev_3)
+                       E1000_WRITE_REG(hw, VET, 0);
+               e1000_clear_vfta(hw);
+       }
+
+       /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+       if (hw->mac_type == e1000_82542_rev2_0) {
+               DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+               pci_write_config_word(hw->pdev, PCI_COMMAND,
+                                     hw->
+                                     pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+               E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+               E1000_WRITE_FLUSH(hw);
+               mdelay(5);
+       }
+
+       /* Setup the receive address. This involves initializing all of the Receive
+        * Address Registers (RARs 0 - 15).
+        */
+       e1000_init_rx_addrs(nic);
+
+       /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+       if (hw->mac_type == e1000_82542_rev2_0) {
+               E1000_WRITE_REG(hw, RCTL, 0);
+               E1000_WRITE_FLUSH(hw);
+               mdelay(1);
+               pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+       }
+
+       /* Zero out the Multicast HASH table */
+       DEBUGOUT("Zeroing the MTA\n");
+       mta_size = E1000_MC_TBL_SIZE;
+       if (hw->mac_type == e1000_ich8lan)
+               mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+       for (i = 0; i < mta_size; i++) {
+               E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+               /* use write flush to prevent Memory Write Block (MWB) from
+                * occuring when accessing our register space */
+               E1000_WRITE_FLUSH(hw);
+       }
+#if 0
+       /* Set the PCI priority bit correctly in the CTRL register.  This
+        * determines if the adapter gives priority to receives, or if it
+        * gives equal priority to transmits and receives.  Valid only on
+        * 82542 and 82543 silicon.
+        */
+       if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+               ctrl = E1000_READ_REG(hw, CTRL);
+               E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+       }
+#endif
+       switch (hw->mac_type) {
+       case e1000_82545_rev_3:
+       case e1000_82546_rev_3:
+               break;
+       default:
+       /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+       if (hw->bus_type == e1000_bus_type_pcix) {
+               pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
+                                    &pcix_cmd_word);
+               pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
+                                    &pcix_stat_hi_word);
+               cmd_mmrbc =
+                   (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
+                   PCIX_COMMAND_MMRBC_SHIFT;
+               stat_mmrbc =
+                   (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+                   PCIX_STATUS_HI_MMRBC_SHIFT;
+               if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+                       stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+               if (cmd_mmrbc > stat_mmrbc) {
+                       pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+                       pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+                       pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
+                                             pcix_cmd_word);
+               }
+       }
+               break;
+       }
+
+       /* More time needed for PHY to initialize */
+       if (hw->mac_type == e1000_ich8lan)
+               mdelay(15);
+
+       /* Call a subroutine to configure the link and setup flow control. */
+       ret_val = e1000_setup_link(nic);
+
+       /* Set the transmit descriptor write-back policy */
+       if (hw->mac_type > e1000_82544) {
+               ctrl = E1000_READ_REG(hw, TXDCTL);
+               ctrl =
+                   (ctrl & ~E1000_TXDCTL_WTHRESH) |
+                   E1000_TXDCTL_FULL_TX_DESC_WB;
+               E1000_WRITE_REG(hw, TXDCTL, ctrl);
+       }
+
+       /* Set the receive descriptor write back policy */
+
+       if (hw->mac_type >= e1000_82571) {
+               ctrl = E1000_READ_REG(hw, RXDCTL);
+               ctrl =
+                   (ctrl & ~E1000_RXDCTL_WTHRESH) |
+                   E1000_RXDCTL_FULL_RX_DESC_WB;
+               E1000_WRITE_REG(hw, RXDCTL, ctrl);
+       }
+
+       switch (hw->mac_type) {
+       default:
+               break;
+       case e1000_80003es2lan:
+               /* Enable retransmit on late collisions */
+               reg_data = E1000_READ_REG(hw, TCTL);
+               reg_data |= E1000_TCTL_RTLC;
+               E1000_WRITE_REG(hw, TCTL, reg_data);
+
+               /* Configure Gigabit Carry Extend Padding */
+               reg_data = E1000_READ_REG(hw, TCTL_EXT);
+               reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+               reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
+               E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
+
+               /* Configure Transmit Inter-Packet Gap */
+               reg_data = E1000_READ_REG(hw, TIPG);
+               reg_data &= ~E1000_TIPG_IPGT_MASK;
+               reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+               E1000_WRITE_REG(hw, TIPG, reg_data);
+
+               reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
+               reg_data &= ~0x00100000;
+               E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
+               /* Fall through */
+       case e1000_82571:
+       case e1000_82572:
+       case e1000_ich8lan:
+               ctrl = E1000_READ_REG(hw, TXDCTL1);
+               ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
+                       | E1000_TXDCTL_FULL_TX_DESC_WB;
+               E1000_WRITE_REG(hw, TXDCTL1, ctrl);
+               break;
+       case e1000_82573:
+       case e1000_82574:
+               reg_data = E1000_READ_REG(hw, GCR);
+               reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+               E1000_WRITE_REG(hw, GCR, reg_data);
+       }
+
+#if 0
+       /* Clear all of the statistics registers (clear on read).  It is
+        * important that we do this after we have tried to establish link
+        * because the symbol error count will increment wildly if there
+        * is no link.
+        */
+       e1000_clear_hw_cntrs(hw);
+
+       /* ICH8 No-snoop bits are opposite polarity.
+        * Set to snoop by default after reset. */
+       if (hw->mac_type == e1000_ich8lan)
+               e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
+#endif
+
+       if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+               hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+               ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+               /* Relaxed ordering must be disabled to avoid a parity
+                * error crash in a PCI slot. */
+               ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+       }
+
+       return ret_val;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+static int
+e1000_setup_link(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       int32_t ret_val;
+#ifndef CONFIG_E1000_NO_NVM
+       uint32_t ctrl_ext;
+       uint16_t eeprom_data;
+#endif
+
+       DEBUGFUNC();
+
+       /* In the case of the phy reset being blocked, we already have a link.
+        * We do not have to set it up again. */
+       if (e1000_check_phy_reset_block(hw))
+               return E1000_SUCCESS;
+
+#ifndef CONFIG_E1000_NO_NVM
+       /* Read and store word 0x0F of the EEPROM. This word contains bits
+        * that determine the hardware's default PAUSE (flow control) mode,
+        * a bit that determines whether the HW defaults to enabling or
+        * disabling auto-negotiation, and the direction of the
+        * SW defined pins. If there is no SW over-ride of the flow
+        * control setting, then the variable hw->fc will
+        * be initialized based on a value in the EEPROM.
+        */
+       if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
+                               &eeprom_data) < 0) {
+               DEBUGOUT("EEPROM Read Error\n");
+               return -E1000_ERR_EEPROM;
+       }
+#endif
+       if (hw->fc == e1000_fc_default) {
+               switch (hw->mac_type) {
+               case e1000_ich8lan:
+               case e1000_82573:
+               case e1000_82574:
+                       hw->fc = e1000_fc_full;
+                       break;
+               default:
+#ifndef CONFIG_E1000_NO_NVM
+                       ret_val = e1000_read_eeprom(hw,
+                               EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+                       if (ret_val) {
+                               DEBUGOUT("EEPROM Read Error\n");
+                               return -E1000_ERR_EEPROM;
+                       }
+                       if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+                               hw->fc = e1000_fc_none;
+                       else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+                                   EEPROM_WORD0F_ASM_DIR)
+                               hw->fc = e1000_fc_tx_pause;
+                       else
+#endif
+                               hw->fc = e1000_fc_full;
+                       break;
+               }
+       }
+
+       /* We want to save off the original Flow Control configuration just
+        * in case we get disconnected and then reconnected into a different
+        * hub or switch with different Flow Control capabilities.
+        */
+       if (hw->mac_type == e1000_82542_rev2_0)
+               hw->fc &= (~e1000_fc_tx_pause);
+
+       if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+               hw->fc &= (~e1000_fc_rx_pause);
+
+       hw->original_fc = hw->fc;
+
+       DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+#ifndef CONFIG_E1000_NO_NVM
+       /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+        * polarity value for the SW controlled pins, and setup the
+        * Extended Device Control reg with that info.
+        * This is needed because one of the SW controlled pins is used for
+        * signal detection.  So this should be done before e1000_setup_pcs_link()
+        * or e1000_phy_setup() is called.
+        */
+       if (hw->mac_type == e1000_82543) {
+               ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+                           SWDPIO__EXT_SHIFT);
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+       }
+#endif
+
+       /* Call the necessary subroutine to configure the link. */
+       ret_val = (hw->media_type == e1000_media_type_fiber) ?
+           e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
+       if (ret_val < 0) {
+               return ret_val;
+       }
+
+       /* Initialize the flow control address, type, and PAUSE timer
+        * registers to their default values.  This is done even if flow
+        * control is disabled, because it does not hurt anything to
+        * initialize these registers.
+        */
+       DEBUGOUT("Initializing the Flow Control address, type"
+                       "and timer regs\n");
+
+       /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
+       if (hw->mac_type != e1000_ich8lan) {
+               E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+               E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+               E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+       }
+
+       E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+
+       /* Set the flow control receive threshold registers.  Normally,
+        * these registers will be set to a default threshold that may be
+        * adjusted later by the driver's runtime code.  However, if the
+        * ability to transmit pause frames in not enabled, then these
+        * registers will be set to 0.
+        */
+       if (!(hw->fc & e1000_fc_tx_pause)) {
+               E1000_WRITE_REG(hw, FCRTL, 0);
+               E1000_WRITE_REG(hw, FCRTH, 0);
+       } else {
+               /* We need to set up the Receive Threshold high and low water marks
+                * as well as (optionally) enabling the transmission of XON frames.
+                */
+               if (hw->fc_send_xon) {
+                       E1000_WRITE_REG(hw, FCRTL,
+                                       (hw->fc_low_water | E1000_FCRTL_XONE));
+                       E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+               } else {
+                       E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+                       E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+               }
+       }
+       return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int
+e1000_setup_fiber_link(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       uint32_t ctrl;
+       uint32_t status;
+       uint32_t txcw = 0;
+       uint32_t i;
+       uint32_t signal;
+       int32_t ret_val;
+
+       DEBUGFUNC();
+       /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+        * set when the optics detect a signal. On older adapters, it will be
+        * cleared when there is a signal
+        */
+       ctrl = E1000_READ_REG(hw, CTRL);
+       if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
+               signal = E1000_CTRL_SWDPIN1;
+       else
+               signal = 0;
+
+       printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
+              ctrl);
+       /* Take the link out of reset */
+       ctrl &= ~(E1000_CTRL_LRST);
+
+       e1000_config_collision_dist(hw);
+
+       /* Check for a software override of the flow control settings, and setup
+        * the device accordingly.  If auto-negotiation is enabled, then software
+        * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+        * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+        * auto-negotiation is disabled, then software will have to manually
+        * configure the two flow control enable bits in the CTRL register.
+        *
+        * The possible values of the "fc" parameter are:
+        *      0:  Flow control is completely disabled
+        *      1:  Rx flow control is enabled (we can receive pause frames, but
+        *          not send pause frames).
+        *      2:  Tx flow control is enabled (we can send pause frames but we do
+        *          not support receiving pause frames).
+        *      3:  Both Rx and TX flow control (symmetric) are enabled.
+        */
+       switch (hw->fc) {
+       case e1000_fc_none:
+               /* Flow control is completely disabled by a software over-ride. */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+               break;
+       case e1000_fc_rx_pause:
+               /* RX Flow control is enabled and TX Flow control is disabled by a
+                * software over-ride. Since there really isn't a way to advertise
+                * that we are capable of RX Pause ONLY, we will advertise that we
+                * support both symmetric and asymmetric RX PAUSE. Later, we will
+                *  disable the adapter's ability to send PAUSE frames.
+                */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+               break;
+       case e1000_fc_tx_pause:
+               /* TX Flow control is enabled, and RX Flow control is disabled, by a
+                * software over-ride.
+                */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+               break;
+       case e1000_fc_full:
+               /* Flow control (both RX and TX) is enabled by a software over-ride. */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+               break;
+       default:
+               DEBUGOUT("Flow control param set incorrectly\n");
+               return -E1000_ERR_CONFIG;
+               break;
+       }
+
+       /* Since auto-negotiation is enabled, take the link out of reset (the link
+        * will be in reset, because we previously reset the chip). This will
+        * restart auto-negotiation.  If auto-neogtiation is successful then the
+        * link-up status bit will be set and the flow control enable bits (RFCE
+        * and TFCE) will be set according to their negotiated value.
+        */
+       DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
+
+       E1000_WRITE_REG(hw, TXCW, txcw);
+       E1000_WRITE_REG(hw, CTRL, ctrl);
+       E1000_WRITE_FLUSH(hw);
+
+       hw->txcw = txcw;
+       mdelay(1);
+
+       /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+        * indication in the Device Status Register.  Time-out if a link isn't
+        * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+        * less than 500 milliseconds even if the other end is doing it in SW).
+        */
+       if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+               DEBUGOUT("Looking for Link\n");
+               for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+                       mdelay(10);
+                       status = E1000_READ_REG(hw, STATUS);
+                       if (status & E1000_STATUS_LU)
+                               break;
+               }
+               if (i == (LINK_UP_TIMEOUT / 10)) {
+                       /* AutoNeg failed to achieve a link, so we'll call
+                        * e1000_check_for_link. This routine will force the link up if we
+                        * detect a signal. This will allow us to communicate with
+                        * non-autonegotiating link partners.
+                        */
+                       DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+                       hw->autoneg_failed = 1;
+                       ret_val = e1000_check_for_link(nic);
+                       if (ret_val < 0) {
+                               DEBUGOUT("Error while checking for link\n");
+                               return ret_val;
+                       }
+                       hw->autoneg_failed = 0;
+               } else {
+                       hw->autoneg_failed = 0;
+                       DEBUGOUT("Valid Link Found\n");
+               }
+       } else {
+               DEBUGOUT("No Signal Detected\n");
+               return -E1000_ERR_NOLINK;
+       }
+       return 0;
+}
+
+/******************************************************************************
+* Make sure we have a valid PHY and change PHY mode before link setup.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+       uint32_t ctrl;
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       ctrl = E1000_READ_REG(hw, CTRL);
+       /* With 82543, we need to force speed and duplex on the MAC equal to what
+        * the PHY speed and duplex configuration is. In addition, we need to
+        * perform a hardware reset on the PHY to take it out of reset.
+        */
+       if (hw->mac_type > e1000_82543) {
+               ctrl |= E1000_CTRL_SLU;
+               ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+               E1000_WRITE_REG(hw, CTRL, ctrl);
+       } else {
+               ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
+                               | E1000_CTRL_SLU);
+               E1000_WRITE_REG(hw, CTRL, ctrl);
+               ret_val = e1000_phy_hw_reset(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       /* Make sure we have a valid PHY */
+       ret_val = e1000_detect_gig_phy(hw);
+       if (ret_val) {
+               DEBUGOUT("Error, did not detect valid phy.\n");
+               return ret_val;
+       }
+       DEBUGOUT("Phy ID = %x \n", hw->phy_id);
+
+       /* Set PHY to class A mode (if necessary) */
+       ret_val = e1000_set_phy_mode(hw);
+       if (ret_val)
+               return ret_val;
+       if ((hw->mac_type == e1000_82545_rev_3) ||
+               (hw->mac_type == e1000_82546_rev_3)) {
+               ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+                               &phy_data);
+               phy_data |= 0x00000008;
+               ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+                               phy_data);
+       }
+
+       if (hw->mac_type <= e1000_82543 ||
+               hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+               hw->mac_type == e1000_82541_rev_2
+               || hw->mac_type == e1000_82547_rev_2)
+                       hw->phy_reset_disable = false;
+
+       return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t
+e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+       uint32_t phy_ctrl = 0;
+       int32_t ret_val;
+       uint16_t phy_data;
+       DEBUGFUNC();
+
+       if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
+           && hw->phy_type != e1000_phy_igp_3)
+               return E1000_SUCCESS;
+
+       /* During driver activity LPLU should not be used or it will attain link
+        * from the lowest speeds starting from 10Mbps. The capability is used
+        * for Dx transitions and states */
+       if (hw->mac_type == e1000_82541_rev_2
+                       || hw->mac_type == e1000_82547_rev_2) {
+               ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+       } else if (hw->mac_type == e1000_ich8lan) {
+               /* MAC writes into PHY register based on the state transition
+                * and start auto-negotiation. SW driver can overwrite the
+                * settings in CSR PHY power control E1000_PHY_CTRL register. */
+               phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+       } else {
+               ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if (!active) {
+               if (hw->mac_type == e1000_82541_rev_2 ||
+                       hw->mac_type == e1000_82547_rev_2) {
+                       phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+                       ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+                                       phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else {
+                       if (hw->mac_type == e1000_ich8lan) {
+                               phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+                               E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+                       } else {
+                               phy_data &= ~IGP02E1000_PM_D3_LPLU;
+                               ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                               if (ret_val)
+                                       return ret_val;
+                       }
+               }
+
+       /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+        * Dx states where the power conservation is most important.  During
+        * driver activity we should enable SmartSpeed, so performance is
+        * maintained. */
+               if (hw->smart_speed == e1000_smart_speed_on) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else if (hw->smart_speed == e1000_smart_speed_off) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+       } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+               || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
+               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+
+               if (hw->mac_type == e1000_82541_rev_2 ||
+                   hw->mac_type == e1000_82547_rev_2) {
+                       phy_data |= IGP01E1000_GMII_FLEX_SPD;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_GMII_FIFO, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else {
+                       if (hw->mac_type == e1000_ich8lan) {
+                               phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+                               E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+                       } else {
+                               phy_data |= IGP02E1000_PM_D3_LPLU;
+                               ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                               if (ret_val)
+                                       return ret_val;
+                       }
+               }
+
+               /* When LPLU is enabled we should disable SmartSpeed */
+               ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+               ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                               phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+       return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu d0 state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t
+e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+       uint32_t phy_ctrl = 0;
+       int32_t ret_val;
+       uint16_t phy_data;
+       DEBUGFUNC();
+
+       if (hw->mac_type <= e1000_82547_rev_2)
+               return E1000_SUCCESS;
+
+       if (hw->mac_type == e1000_ich8lan) {
+               phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+       } else {
+               ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if (!active) {
+               if (hw->mac_type == e1000_ich8lan) {
+                       phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+                       E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+               } else {
+                       phy_data &= ~IGP02E1000_PM_D0_LPLU;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+       /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+        * Dx states where the power conservation is most important.  During
+        * driver activity we should enable SmartSpeed, so performance is
+        * maintained. */
+               if (hw->smart_speed == e1000_smart_speed_on) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else if (hw->smart_speed == e1000_smart_speed_off) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+
+       } else {
+
+               if (hw->mac_type == e1000_ich8lan) {
+                       phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+                       E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+               } else {
+                       phy_data |= IGP02E1000_PM_D0_LPLU;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+               /* When LPLU is enabled we should disable SmartSpeed */
+               ret_val = e1000_read_phy_reg(hw,
+                               IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+               ret_val = e1000_write_phy_reg(hw,
+                               IGP01E1000_PHY_PORT_CONFIG, phy_data);
+               if (ret_val)
+                       return ret_val;
+
+       }
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_igp series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+       uint32_t led_ctrl;
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       if (hw->phy_reset_disable)
+               return E1000_SUCCESS;
+
+       ret_val = e1000_phy_reset(hw);
+       if (ret_val) {
+               DEBUGOUT("Error Resetting the PHY\n");
+               return ret_val;
+       }
+
+       /* Wait 15ms for MAC to configure PHY from eeprom settings */
+       mdelay(15);
+       if (hw->mac_type != e1000_ich8lan) {
+               /* Configure activity LED after PHY reset */
+               led_ctrl = E1000_READ_REG(hw, LEDCTL);
+               led_ctrl &= IGP_ACTIVITY_LED_MASK;
+               led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+               E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+       }
+
+       /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+       if (hw->phy_type == e1000_phy_igp) {
+               /* disable lplu d3 during driver init */
+               ret_val = e1000_set_d3_lplu_state(hw, false);
+               if (ret_val) {
+                       DEBUGOUT("Error Disabling LPLU D3\n");
+                       return ret_val;
+               }
+       }
+
+       /* disable lplu d0 during driver init */
+       ret_val = e1000_set_d0_lplu_state(hw, false);
+       if (ret_val) {
+               DEBUGOUT("Error Disabling LPLU D0\n");
+               return ret_val;
+       }
+       /* Configure mdi-mdix settings */
+       ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+               hw->dsp_config_state = e1000_dsp_config_disabled;
+               /* Force MDI for earlier revs of the IGP PHY */
+               phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
+                               | IGP01E1000_PSCR_FORCE_MDI_MDIX);
+               hw->mdix = 1;
+
+       } else {
+               hw->dsp_config_state = e1000_dsp_config_enabled;
+               phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+               switch (hw->mdix) {
+               case 1:
+                       phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+                       break;
+               case 2:
+                       phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+                       break;
+               case 0:
+               default:
+                       phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+                       break;
+               }
+       }
+       ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* set auto-master slave resolution settings */
+       if (hw->autoneg) {
+               e1000_ms_type phy_ms_setting = hw->master_slave;
+
+               if (hw->ffe_config_state == e1000_ffe_config_active)
+                       hw->ffe_config_state = e1000_ffe_config_enabled;
+
+               if (hw->dsp_config_state == e1000_dsp_config_activated)
+                       hw->dsp_config_state = e1000_dsp_config_enabled;
+
+               /* when autonegotiation advertisment is only 1000Mbps then we
+                 * should disable SmartSpeed and enable Auto MasterSlave
+                 * resolution as hardware default. */
+               if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+                       /* Disable SmartSpeed */
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       /* Set auto Master/Slave resolution process */
+                       ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+                                       &phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       phy_data &= ~CR_1000T_MS_ENABLE;
+                       ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+                                       phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+               ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* load defaults for future use */
+               hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+                               ((phy_data & CR_1000T_MS_VALUE) ?
+                               e1000_ms_force_master :
+                               e1000_ms_force_slave) :
+                               e1000_ms_auto;
+
+               switch (phy_ms_setting) {
+               case e1000_ms_force_master:
+                       phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+                       break;
+               case e1000_ms_force_slave:
+                       phy_data |= CR_1000T_MS_ENABLE;
+                       phy_data &= ~(CR_1000T_MS_VALUE);
+                       break;
+               case e1000_ms_auto:
+                       phy_data &= ~CR_1000T_MS_ENABLE;
+               default:
+                       break;
+               }
+               ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * This function checks the mode of the firmware.
+ *
+ * returns  - true when the mode is IAMT or false.
+ ****************************************************************************/
+bool
+e1000_check_mng_mode(struct e1000_hw *hw)
+{
+       uint32_t fwsm;
+       DEBUGFUNC();
+
+       fwsm = E1000_READ_REG(hw, FWSM);
+
+       if (hw->mac_type == e1000_ich8lan) {
+               if ((fwsm & E1000_FWSM_MODE_MASK) ==
+                   (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+                       return true;
+       } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+                      (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+                       return true;
+
+       return false;
+}
+
+static int32_t
+e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
+{
+       uint16_t swfw = E1000_SWFW_PHY0_SM;
+       uint32_t reg_val;
+       DEBUGFUNC();
+
+       if (e1000_is_second_port(hw))
+               swfw = E1000_SWFW_PHY1_SM;
+
+       if (e1000_swfw_sync_acquire(hw, swfw))
+               return -E1000_ERR_SWFW_SYNC;
+
+       reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
+                       & E1000_KUMCTRLSTA_OFFSET) | data;
+       E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+       udelay(2);
+
+       return E1000_SUCCESS;
+}
+
+static int32_t
+e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
+{
+       uint16_t swfw = E1000_SWFW_PHY0_SM;
+       uint32_t reg_val;
+       DEBUGFUNC();
+
+       if (e1000_is_second_port(hw))
+               swfw = E1000_SWFW_PHY1_SM;
+
+       if (e1000_swfw_sync_acquire(hw, swfw))
+               return -E1000_ERR_SWFW_SYNC;
+
+       /* Write register address */
+       reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+                       E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
+       E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+       udelay(2);
+
+       /* Read the data returned */
+       reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
+       *data = (uint16_t)reg_val;
+
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_gg82563 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_ggp_setup(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t phy_data;
+       uint32_t reg_data;
+
+       DEBUGFUNC();
+
+       if (!hw->phy_reset_disable) {
+               /* Enable CRS on TX for half-duplex operation. */
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+               /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
+               phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
+
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* Options:
+                *   MDI/MDI-X = 0 (default)
+                *   0 - Auto for all speeds
+                *   1 - MDI mode
+                *   2 - MDI-X mode
+                *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+                */
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+               switch (hw->mdix) {
+               case 1:
+                       phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+                       break;
+               case 2:
+                       phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+                       break;
+               case 0:
+               default:
+                       phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+                       break;
+               }
+
+               /* Options:
+                *   disable_polarity_correction = 0 (default)
+                *       Automatic Correction for Reversed Cable Polarity
+                *   0 - Disabled
+                *   1 - Enabled
+                */
+               phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL, phy_data);
+
+               if (ret_val)
+                       return ret_val;
+
+               /* SW Reset the PHY so all changes take effect */
+               ret_val = e1000_phy_reset(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error Resetting the PHY\n");
+                       return ret_val;
+               }
+       } /* phy_reset_disable */
+
+       if (hw->mac_type == e1000_80003es2lan) {
+               /* Bypass RX and TX FIFO's */
+               ret_val = e1000_write_kmrn_reg(hw,
+                               E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
+                               E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
+                               | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL_2, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL_2, phy_data);
+
+               if (ret_val)
+                       return ret_val;
+
+               reg_data = E1000_READ_REG(hw, CTRL_EXT);
+               reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+               E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
+
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+       /* Do not init these registers when the HW is in IAMT mode, since the
+        * firmware will have already initialized them.  We only initialize
+        * them if the HW is not in IAMT mode.
+        */
+               if (e1000_check_mng_mode(hw) == false) {
+                       /* Enable Electrical Idle on the PHY */
+                       phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       GG82563_PHY_PWR_MGMT_CTRL, phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       ret_val = e1000_read_phy_reg(hw,
+                                       GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       GG82563_PHY_KMRN_MODE_CTRL, phy_data);
+
+                       if (ret_val)
+                               return ret_val;
+               }
+
+               /* Workaround: Disable padding in Kumeran interface in the MAC
+                * and in the PHY to avoid CRC errors.
+                */
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_INBAND_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+               phy_data |= GG82563_ICR_DIS_PADDING;
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_INBAND_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_m88 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       if (hw->phy_reset_disable)
+               return E1000_SUCCESS;
+
+       /* Enable CRS on TX. This must be set for half-duplex operation. */
+       ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+       /* Options:
+        *   MDI/MDI-X = 0 (default)
+        *   0 - Auto for all speeds
+        *   1 - MDI mode
+        *   2 - MDI-X mode
+        *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+        */
+       phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+       switch (hw->mdix) {
+       case 1:
+               phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+               break;
+       case 2:
+               phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+               break;
+       case 3:
+               phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+               break;
+       case 0:
+       default:
+               phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+               break;
+       }
+
+       /* Options:
+        *   disable_polarity_correction = 0 (default)
+        *       Automatic Correction for Reversed Cable Polarity
+        *   0 - Disabled
+        *   1 - Enabled
+        */
+       phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+       ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       if (hw->phy_revision < M88E1011_I_REV_4) {
+               /* Force TX_CLK in the Extended PHY Specific Control Register
+                * to 25MHz clock.
+                */
+               ret_val = e1000_read_phy_reg(hw,
+                               M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+               if ((hw->phy_revision == E1000_REVISION_2) &&
+                       (hw->phy_id == M88E1111_I_PHY_ID)) {
+                       /* Vidalia Phy, set the downshift counter to 5x */
+                       phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+                       phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else {
+                       /* Configure Master and Slave downshift values */
+                       phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
+                                       | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+                       phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
+                                       | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+       }
+
+       /* SW Reset the PHY so all changes take effect */
+       ret_val = e1000_phy_reset(hw);
+       if (ret_val) {
+               DEBUGOUT("Error Resetting the PHY\n");
+               return ret_val;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Setup auto-negotiation and flow control advertisements,
+* and then perform auto-negotiation.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       /* Perform some bounds checking on the hw->autoneg_advertised
+        * parameter.  If this variable is zero, then set it to the default.
+        */
+       hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+       /* If autoneg_advertised is zero, we assume it was not defaulted
+        * by the calling code so we set to advertise full capability.
+        */
+       if (hw->autoneg_advertised == 0)
+               hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+       /* IFE phy only supports 10/100 */
+       if (hw->phy_type == e1000_phy_ife)
+               hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
+       DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+       ret_val = e1000_phy_setup_autoneg(hw);
+       if (ret_val) {
+               DEBUGOUT("Error Setting up Auto-Negotiation\n");
+               return ret_val;
+       }
+       DEBUGOUT("Restarting Auto-Neg\n");
+
+       /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+        * the Auto Neg Restart bit in the PHY control register.
+        */
+       ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+       ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Does the user want to wait for Auto-Neg to complete here, or
+        * check at a later time (for example, callback routine).
+        */
+       /* If we do not wait for autonegtation to complete I
+        * do not see a valid link status.
+        * wait_autoneg_complete = 1 .
+        */
+       if (hw->wait_autoneg_complete) {
+               ret_val = e1000_wait_autoneg(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error while waiting for autoneg"
+                                       "to complete\n");
+                       return ret_val;
+               }
+       }
+
+       hw->get_link_status = true;
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Config the MAC and the PHY after link is up.
+*   1) Set up the MAC to the current PHY speed/duplex
+*      if we are on 82543.  If we
+*      are on newer silicon, we only need to configure
+*      collision distance in the Transmit Control Register.
+*   2) Set up flow control on the MAC to that established with
+*      the link partner.
+*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       DEBUGFUNC();
+
+       if (hw->mac_type >= e1000_82544) {
+               e1000_config_collision_dist(hw);
+       } else {
+               ret_val = e1000_config_mac_to_phy(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error configuring MAC to PHY settings\n");
+                       return ret_val;
+               }
+       }
+       ret_val = e1000_config_fc_after_link_up(hw);
+       if (ret_val) {
+               DEBUGOUT("Error Configuring Flow Control\n");
+               return ret_val;
+       }
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Detects which PHY is present and setup the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int
+e1000_setup_copper_link(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       int32_t ret_val;
+       uint16_t i;
+       uint16_t phy_data;
+       uint16_t reg_data;
+
+       DEBUGFUNC();
+
+       switch (hw->mac_type) {
+       case e1000_80003es2lan:
+       case e1000_ich8lan:
+               /* Set the mac to wait the maximum time between each
+                * iteration and increase the max iterations when
+                * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+               ret_val = e1000_write_kmrn_reg(hw,
+                               GG82563_REG(0x34, 4), 0xFFFF);
+               if (ret_val)
+                       return ret_val;
+               ret_val = e1000_read_kmrn_reg(hw,
+                               GG82563_REG(0x34, 9), &reg_data);
+               if (ret_val)
+                       return ret_val;
+               reg_data |= 0x3F;
+               ret_val = e1000_write_kmrn_reg(hw,
+                               GG82563_REG(0x34, 9), reg_data);
+               if (ret_val)
+                       return ret_val;
+       default:
+               break;
+       }
+
+       /* Check if it is a valid PHY and set PHY mode if necessary. */
+       ret_val = e1000_copper_link_preconfig(hw);
+       if (ret_val)
+               return ret_val;
+       switch (hw->mac_type) {
+       case e1000_80003es2lan:
+               /* Kumeran registers are written-only */
+               reg_data =
+               E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
+               reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
+               ret_val = e1000_write_kmrn_reg(hw,
+                               E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
+               if (ret_val)
+                       return ret_val;
+               break;
+       default:
+               break;
+       }
+
+       if (hw->phy_type == e1000_phy_igp ||
+               hw->phy_type == e1000_phy_igp_3 ||
+               hw->phy_type == e1000_phy_igp_2) {
+               ret_val = e1000_copper_link_igp_setup(hw);
+               if (ret_val)
+                       return ret_val;
+       } else if (hw->phy_type == e1000_phy_m88) {
+               ret_val = e1000_copper_link_mgp_setup(hw);
+               if (ret_val)
+                       return ret_val;
+       } else if (hw->phy_type == e1000_phy_gg82563) {
+               ret_val = e1000_copper_link_ggp_setup(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       /* always auto */
+       /* Setup autoneg and flow control advertisement
+         * and perform autonegotiation */
+       ret_val = e1000_copper_link_autoneg(hw);
+       if (ret_val)
+               return ret_val;
+
+       /* Check link status. Wait up to 100 microseconds for link to become
+        * valid.
+        */
+       for (i = 0; i < 10; i++) {
+               ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+               if (ret_val)
+                       return ret_val;
+               ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               if (phy_data & MII_SR_LINK_STATUS) {
+                       /* Config the MAC and PHY after link is up */
+                       ret_val = e1000_copper_link_postconfig(hw);
+                       if (ret_val)
+                               return ret_val;
+
+                       DEBUGOUT("Valid link established!!!\n");
+                       return E1000_SUCCESS;
+               }
+               udelay(10);
+       }
+
+       DEBUGOUT("Unable to establish link!!!\n");
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t mii_autoneg_adv_reg;
+       uint16_t mii_1000t_ctrl_reg;
+
+       DEBUGFUNC();
+
+       /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+       ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+       if (ret_val)
+               return ret_val;
+
+       if (hw->phy_type != e1000_phy_ife) {
+               /* Read the MII 1000Base-T Control Register (Address 9). */
+               ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+                               &mii_1000t_ctrl_reg);
+               if (ret_val)
+                       return ret_val;
+       } else
+               mii_1000t_ctrl_reg = 0;
+
+       /* Need to parse both autoneg_advertised and fc and set up
+        * the appropriate PHY registers.  First we will parse for
+        * autoneg_advertised software override.  Since we can advertise
+        * a plethora of combinations, we need to check each bit
+        * individually.
+        */
+
+       /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+        * Advertisement Register (Address 4) and the 1000 mb speed bits in
+        * the  1000Base-T Control Register (Address 9).
+        */
+       mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+       mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+       DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+       /* Do we want to advertise 10 Mb Half Duplex? */
+       if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+               DEBUGOUT("Advertise 10mb Half duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+       }
+
+       /* Do we want to advertise 10 Mb Full Duplex? */
+       if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+               DEBUGOUT("Advertise 10mb Full duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+       }
+
+       /* Do we want to advertise 100 Mb Half Duplex? */
+       if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+               DEBUGOUT("Advertise 100mb Half duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+       }
+
+       /* Do we want to advertise 100 Mb Full Duplex? */
+       if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+               DEBUGOUT("Advertise 100mb Full duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+       }
+
+       /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+       if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+               DEBUGOUT
+                   ("Advertise 1000mb Half duplex requested, request denied!\n");
+       }
+
+       /* Do we want to advertise 1000 Mb Full Duplex? */
+       if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+               DEBUGOUT("Advertise 1000mb Full duplex\n");
+               mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+       }
+
+       /* Check for a software override of the flow control settings, and
+        * setup the PHY advertisement registers accordingly.  If
+        * auto-negotiation is enabled, then software will have to set the
+        * "PAUSE" bits to the correct value in the Auto-Negotiation
+        * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+        *
+        * The possible values of the "fc" parameter are:
+        *      0:  Flow control is completely disabled
+        *      1:  Rx flow control is enabled (we can receive pause frames
+        *          but not send pause frames).
+        *      2:  Tx flow control is enabled (we can send pause frames
+        *          but we do not support receiving pause frames).
+        *      3:  Both Rx and TX flow control (symmetric) are enabled.
+        *  other:  No software override.  The flow control configuration
+        *          in the EEPROM is used.
+        */
+       switch (hw->fc) {
+       case e1000_fc_none:     /* 0 */
+               /* Flow control (RX & TX) is completely disabled by a
+                * software over-ride.
+                */
+               mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+               break;
+       case e1000_fc_rx_pause: /* 1 */
+               /* RX Flow control is enabled, and TX Flow control is
+                * disabled, by a software over-ride.
+                */
+               /* Since there really isn't a way to advertise that we are
+                * capable of RX Pause ONLY, we will advertise that we
+                * support both symmetric and asymmetric RX PAUSE.  Later
+                * (in e1000_config_fc_after_link_up) we will disable the
+                *hw's ability to send PAUSE frames.
+                */
+               mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+               break;
+       case e1000_fc_tx_pause: /* 2 */
+               /* TX Flow control is enabled, and RX Flow control is
+                * disabled, by a software over-ride.
+                */
+               mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+               mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+               break;
+       case e1000_fc_full:     /* 3 */
+               /* Flow control (both RX and TX) is enabled by a software
+                * over-ride.
+                */
+               mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+               break;
+       default:
+               DEBUGOUT("Flow control param set incorrectly\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+       if (ret_val)
+               return ret_val;
+
+       DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+       if (hw->phy_type != e1000_phy_ife) {
+               ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+                               mii_1000t_ctrl_reg);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+static void
+e1000_config_collision_dist(struct e1000_hw *hw)
+{
+       uint32_t tctl, coll_dist;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type < e1000_82543)
+               coll_dist = E1000_COLLISION_DISTANCE_82542;
+       else
+               coll_dist = E1000_COLLISION_DISTANCE;
+
+       tctl = E1000_READ_REG(hw, TCTL);
+
+       tctl &= ~E1000_TCTL_COLD;
+       tctl |= coll_dist << E1000_COLD_SHIFT;
+
+       E1000_WRITE_REG(hw, TCTL, tctl);
+       E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int
+e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+       uint32_t ctrl;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       /* Read the Device Control Register and set the bits to Force Speed
+        * and Duplex.
+        */
+       ctrl = E1000_READ_REG(hw, CTRL);
+       ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+       ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+       /* Set up duplex in the Device Control and Transmit Control
+        * registers depending on negotiated values.
+        */
+       if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
+               DEBUGOUT("PHY Read Error\n");
+               return -E1000_ERR_PHY;
+       }
+       if (phy_data & M88E1000_PSSR_DPLX)
+               ctrl |= E1000_CTRL_FD;
+       else
+               ctrl &= ~E1000_CTRL_FD;
+
+       e1000_config_collision_dist(hw);
+
+       /* Set up speed in the Device Control register depending on
+        * negotiated values.
+        */
+       if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+               ctrl |= E1000_CTRL_SPD_1000;
+       else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+               ctrl |= E1000_CTRL_SPD_100;
+       /* Write the configured values back to the Device Control Reg. */
+       E1000_WRITE_REG(hw, CTRL, ctrl);
+       return 0;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+static int
+e1000_force_mac_fc(struct e1000_hw *hw)
+{
+       uint32_t ctrl;
+
+       DEBUGFUNC();
+
+       /* Get the current configuration of the Device Control Register */
+       ctrl = E1000_READ_REG(hw, CTRL);
+
+       /* Because we didn't get link via the internal auto-negotiation
+        * mechanism (we either forced link or we got link via PHY
+        * auto-neg), we have to manually enable/disable transmit an
+        * receive flow control.
+        *
+        * The "Case" statement below enables/disable flow control
+        * according to the "hw->fc" parameter.
+        *
+        * The possible values of the "fc" parameter are:
+        *      0:  Flow control is completely disabled
+        *      1:  Rx flow control is enabled (we can receive pause
+        *          frames but not send pause frames).
+        *      2:  Tx flow control is enabled (we can send pause frames
+        *          frames but we do not receive pause frames).
+        *      3:  Both Rx and TX flow control (symmetric) is enabled.
+        *  other:  No other values should be possible at this point.
+        */
+
+       switch (hw->fc) {
+       case e1000_fc_none:
+               ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+               break;
+       case e1000_fc_rx_pause:
+               ctrl &= (~E1000_CTRL_TFCE);
+               ctrl |= E1000_CTRL_RFCE;
+               break;
+       case e1000_fc_tx_pause:
+               ctrl &= (~E1000_CTRL_RFCE);
+               ctrl |= E1000_CTRL_TFCE;
+               break;
+       case e1000_fc_full:
+               ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+               break;
+       default:
+               DEBUGOUT("Flow control param set incorrectly\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       /* Disable TX Flow Control for 82542 (rev 2.0) */
+       if (hw->mac_type == e1000_82542_rev2_0)
+               ctrl &= (~E1000_CTRL_TFCE);
+
+       E1000_WRITE_REG(hw, CTRL, ctrl);
+       return 0;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+static int32_t
+e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t mii_status_reg;
+       uint16_t mii_nway_adv_reg;
+       uint16_t mii_nway_lp_ability_reg;
+       uint16_t speed;
+       uint16_t duplex;
+
+       DEBUGFUNC();
+
+       /* Check for the case where we have fiber media and auto-neg failed
+        * so we had to force link.  In this case, we need to force the
+        * configuration of the MAC to match the "fc" parameter.
+        */
+       if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+               || ((hw->media_type == e1000_media_type_internal_serdes)
+               && (hw->autoneg_failed))
+               || ((hw->media_type == e1000_media_type_copper)
+               && (!hw->autoneg))) {
+               ret_val = e1000_force_mac_fc(hw);
+               if (ret_val < 0) {
+                       DEBUGOUT("Error forcing flow control settings\n");
+                       return ret_val;
+               }
+       }
+
+       /* Check for the case where we have copper media and auto-neg is
+        * enabled.  In this case, we need to check and see if Auto-Neg
+        * has completed, and if so, how the PHY and link partner has
+        * flow control configured.
+        */
+       if (hw->media_type == e1000_media_type_copper) {
+               /* Read the MII Status Register and check to see if AutoNeg
+                * has completed.  We read this twice because this reg has
+                * some "sticky" (latched) bits.
+                */
+               if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+                       DEBUGOUT("PHY Read Error \n");
+                       return -E1000_ERR_PHY;
+               }
+               if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+                       DEBUGOUT("PHY Read Error \n");
+                       return -E1000_ERR_PHY;
+               }
+
+               if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+                       /* The AutoNeg process has completed, so we now need to
+                        * read both the Auto Negotiation Advertisement Register
+                        * (Address 4) and the Auto_Negotiation Base Page Ability
+                        * Register (Address 5) to determine how flow control was
+                        * negotiated.
+                        */
+                       if (e1000_read_phy_reg
+                           (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
+                               DEBUGOUT("PHY Read Error\n");
+                               return -E1000_ERR_PHY;
+                       }
+                       if (e1000_read_phy_reg
+                           (hw, PHY_LP_ABILITY,
+                            &mii_nway_lp_ability_reg) < 0) {
+                               DEBUGOUT("PHY Read Error\n");
+                               return -E1000_ERR_PHY;
+                       }
+
+                       /* Two bits in the Auto Negotiation Advertisement Register
+                        * (Address 4) and two bits in the Auto Negotiation Base
+                        * Page Ability Register (Address 5) determine flow control
+                        * for both the PHY and the link partner.  The following
+                        * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+                        * 1999, describes these PAUSE resolution bits and how flow
+                        * control is determined based upon these settings.
+                        * NOTE:  DC = Don't Care
+                        *
+                        *   LOCAL DEVICE  |   LINK PARTNER
+                        * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+                        *-------|---------|-------|---------|--------------------
+                        *   0   |    0    |  DC   |   DC    | e1000_fc_none
+                        *   0   |    1    |   0   |   DC    | e1000_fc_none
+                        *   0   |    1    |   1   |    0    | e1000_fc_none
+                        *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+                        *   1   |    0    |   0   |   DC    | e1000_fc_none
+                        *   1   |   DC    |   1   |   DC    | e1000_fc_full
+                        *   1   |    1    |   0   |    0    | e1000_fc_none
+                        *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+                        *
+                        */
+                       /* Are both PAUSE bits set to 1?  If so, this implies
+                        * Symmetric Flow Control is enabled at both ends.  The
+                        * ASM_DIR bits are irrelevant per the spec.
+                        *
+                        * For Symmetric Flow Control:
+                        *
+                        *   LOCAL DEVICE  |   LINK PARTNER
+                        * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                        *-------|---------|-------|---------|--------------------
+                        *   1   |   DC    |   1   |   DC    | e1000_fc_full
+                        *
+                        */
+                       if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                           (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+                               /* Now we need to check if the user selected RX ONLY
+                                * of pause frames.  In this case, we had to advertise
+                                * FULL flow control because we could not advertise RX
+                                * ONLY. Hence, we must now check to see if we need to
+                                * turn OFF  the TRANSMISSION of PAUSE frames.
+                                */
+                               if (hw->original_fc == e1000_fc_full) {
+                                       hw->fc = e1000_fc_full;
+                                       DEBUGOUT("Flow Control = FULL.\r\n");
+                               } else {
+                                       hw->fc = e1000_fc_rx_pause;
+                                       DEBUGOUT
+                                           ("Flow Control = RX PAUSE frames only.\r\n");
+                               }
+                       }
+                       /* For receiving PAUSE frames ONLY.
+                        *
+                        *   LOCAL DEVICE  |   LINK PARTNER
+                        * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                        *-------|---------|-------|---------|--------------------
+                        *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+                        *
+                        */
+                       else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                                (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                                (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+                       {
+                               hw->fc = e1000_fc_tx_pause;
+                               DEBUGOUT
+                                   ("Flow Control = TX PAUSE frames only.\r\n");
+                       }
+                       /* For transmitting PAUSE frames ONLY.
+                        *
+                        *   LOCAL DEVICE  |   LINK PARTNER
+                        * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                        *-------|---------|-------|---------|--------------------
+                        *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+                        *
+                        */
+                       else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                                (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                                !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                                (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+                       {
+                               hw->fc = e1000_fc_rx_pause;
+                               DEBUGOUT
+                                   ("Flow Control = RX PAUSE frames only.\r\n");
+                       }
+                       /* Per the IEEE spec, at this point flow control should be
+                        * disabled.  However, we want to consider that we could
+                        * be connected to a legacy switch that doesn't advertise
+                        * desired flow control, but can be forced on the link
+                        * partner.  So if we advertised no flow control, that is
+                        * what we will resolve to.  If we advertised some kind of
+                        * receive capability (Rx Pause Only or Full Flow Control)
+                        * and the link partner advertised none, we will configure
+                        * ourselves to enable Rx Flow Control only.  We can do
+                        * this safely for two reasons:  If the link partner really
+                        * didn't want flow control enabled, and we enable Rx, no
+                        * harm done since we won't be receiving any PAUSE frames
+                        * anyway.  If the intent on the link partner was to have
+                        * flow control enabled, then by us enabling RX only, we
+                        * can at least receive pause frames and process them.
+                        * This is a good idea because in most cases, since we are
+                        * predominantly a server NIC, more times than not we will
+                        * be asked to delay transmission of packets than asking
+                        * our link partner to pause transmission of frames.
+                        */
+                       else if (hw->original_fc == e1000_fc_none ||
+                                hw->original_fc == e1000_fc_tx_pause) {
+                               hw->fc = e1000_fc_none;
+                               DEBUGOUT("Flow Control = NONE.\r\n");
+                       } else {
+                               hw->fc = e1000_fc_rx_pause;
+                               DEBUGOUT
+                                   ("Flow Control = RX PAUSE frames only.\r\n");
+                       }
+
+                       /* Now we need to do one last check...  If we auto-
+                        * negotiated to HALF DUPLEX, flow control should not be
+                        * enabled per IEEE 802.3 spec.
+                        */
+                       e1000_get_speed_and_duplex(hw, &speed, &duplex);
+
+                       if (duplex == HALF_DUPLEX)
+                               hw->fc = e1000_fc_none;
+
+                       /* Now we call a subroutine to actually force the MAC
+                        * controller to use the correct flow control settings.
+                        */
+                       ret_val = e1000_force_mac_fc(hw);
+                       if (ret_val < 0) {
+                               DEBUGOUT
+                                   ("Error forcing flow control settings\n");
+                               return ret_val;
+                       }
+               } else {
+                       DEBUGOUT
+                           ("Copper PHY and Auto Neg has not completed.\r\n");
+               }
+       }
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+static int
+e1000_check_for_link(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       uint32_t rxcw;
+       uint32_t ctrl;
+       uint32_t status;
+       uint32_t rctl;
+       uint32_t signal;
+       int32_t ret_val;
+       uint16_t phy_data;
+       uint16_t lp_capability;
+
+       DEBUGFUNC();
+
+       /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+        * set when the optics detect a signal. On older adapters, it will be
+        * cleared when there is a signal
+        */
+       ctrl = E1000_READ_REG(hw, CTRL);
+       if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
+               signal = E1000_CTRL_SWDPIN1;
+       else
+               signal = 0;
+
+       status = E1000_READ_REG(hw, STATUS);
+       rxcw = E1000_READ_REG(hw, RXCW);
+       DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
+
+       /* If we have a copper PHY then we only want to go out to the PHY
+        * registers to see if Auto-Neg has completed and/or if our link
+        * status has changed.  The get_link_status flag will be set if we
+        * receive a Link Status Change interrupt or we have Rx Sequence
+        * Errors.
+        */
+       if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+               /* First we want to see if the MII Status Register reports
+                * link.  If so, then we want to get the current speed/duplex
+                * of the PHY.
+                * Read the register twice since the link bit is sticky.
+                */
+               if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+                       DEBUGOUT("PHY Read Error\n");
+                       return -E1000_ERR_PHY;
+               }
+               if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+                       DEBUGOUT("PHY Read Error\n");
+                       return -E1000_ERR_PHY;
+               }
+
+               if (phy_data & MII_SR_LINK_STATUS) {
+                       hw->get_link_status = false;
+               } else {
+                       /* No link detected */
+                       return -E1000_ERR_NOLINK;
+               }
+
+               /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+                * have Si on board that is 82544 or newer, Auto
+                * Speed Detection takes care of MAC speed/duplex
+                * configuration.  So we only need to configure Collision
+                * Distance in the MAC.  Otherwise, we need to force
+                * speed/duplex on the MAC to the current PHY speed/duplex
+                * settings.
+                */
+               if (hw->mac_type >= e1000_82544)
+                       e1000_config_collision_dist(hw);
+               else {
+                       ret_val = e1000_config_mac_to_phy(hw);
+                       if (ret_val < 0) {
+                               DEBUGOUT
+                                   ("Error configuring MAC to PHY settings\n");
+                               return ret_val;
+                       }
+               }
+
+               /* Configure Flow Control now that Auto-Neg has completed. First, we
+                * need to restore the desired flow control settings because we may
+                * have had to re-autoneg with a different link partner.
+                */
+               ret_val = e1000_config_fc_after_link_up(hw);
+               if (ret_val < 0) {
+                       DEBUGOUT("Error configuring flow control\n");
+                       return ret_val;
+               }
+
+               /* At this point we know that we are on copper and we have
+                * auto-negotiated link.  These are conditions for checking the link
+                * parter capability register.  We use the link partner capability to
+                * determine if TBI Compatibility needs to be turned on or off.  If
+                * the link partner advertises any speed in addition to Gigabit, then
+                * we assume that they are GMII-based, and TBI compatibility is not
+                * needed. If no other speeds are advertised, we assume the link
+                * partner is TBI-based, and we turn on TBI Compatibility.
+                */
+               if (hw->tbi_compatibility_en) {
+                       if (e1000_read_phy_reg
+                           (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
+                               DEBUGOUT("PHY Read Error\n");
+                               return -E1000_ERR_PHY;
+                       }
+                       if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
+                                            NWAY_LPAR_10T_FD_CAPS |
+                                            NWAY_LPAR_100TX_HD_CAPS |
+                                            NWAY_LPAR_100TX_FD_CAPS |
+                                            NWAY_LPAR_100T4_CAPS)) {
+                               /* If our link partner advertises anything in addition to
+                                * gigabit, we do not need to enable TBI compatibility.
+                                */
+                               if (hw->tbi_compatibility_on) {
+                                       /* If we previously were in the mode, turn it off. */
+                                       rctl = E1000_READ_REG(hw, RCTL);
+                                       rctl &= ~E1000_RCTL_SBP;
+                                       E1000_WRITE_REG(hw, RCTL, rctl);
+                                       hw->tbi_compatibility_on = false;
+                               }
+                       } else {
+                               /* If TBI compatibility is was previously off, turn it on. For
+                                * compatibility with a TBI link partner, we will store bad
+                                * packets. Some frames have an additional byte on the end and
+                                * will look like CRC errors to to the hardware.
+                                */
+                               if (!hw->tbi_compatibility_on) {
+                                       hw->tbi_compatibility_on = true;
+                                       rctl = E1000_READ_REG(hw, RCTL);
+                                       rctl |= E1000_RCTL_SBP;
+                                       E1000_WRITE_REG(hw, RCTL, rctl);
+                               }
+                       }
+               }
+       }
+       /* If we don't have link (auto-negotiation failed or link partner cannot
+        * auto-negotiate), the cable is plugged in (we have signal), and our
+        * link partner is not trying to auto-negotiate with us (we are receiving
+        * idles or data), we need to force link up. We also need to give
+        * auto-negotiation time to complete, in case the cable was just plugged
+        * in. The autoneg_failed flag does this.
+        */
+       else if ((hw->media_type == e1000_media_type_fiber) &&
+                (!(status & E1000_STATUS_LU)) &&
+                ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
+                (!(rxcw & E1000_RXCW_C))) {
+               if (hw->autoneg_failed == 0) {
+                       hw->autoneg_failed = 1;
+                       return 0;
+               }
+               DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
+
+               /* Disable auto-negotiation in the TXCW register */
+               E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+               /* Force link-up and also force full-duplex. */
+               ctrl = E1000_READ_REG(hw, CTRL);
+               ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+               E1000_WRITE_REG(hw, CTRL, ctrl);
+
+               /* Configure Flow Control after forcing link up. */
+               ret_val = e1000_config_fc_after_link_up(hw);
+               if (ret_val < 0) {
+                       DEBUGOUT("Error configuring flow control\n");
+                       return ret_val;
+               }
+       }
+       /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
+        * auto-negotiation in the TXCW register and disable forced link in the
+        * Device Control register in an attempt to auto-negotiate with our link
+        * partner.
+        */
+       else if ((hw->media_type == e1000_media_type_fiber) &&
+                (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+               DEBUGOUT
+                   ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
+               E1000_WRITE_REG(hw, TXCW, hw->txcw);
+               E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+       }
+       return 0;
+}
+
+/******************************************************************************
+* Configure the MAC-to-PHY interface for 10/100Mbps
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
+{
+       int32_t ret_val = E1000_SUCCESS;
+       uint32_t tipg;
+       uint16_t reg_data;
+
+       DEBUGFUNC();
+
+       reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
+       ret_val = e1000_write_kmrn_reg(hw,
+                       E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Configure Transmit Inter-Packet Gap */
+       tipg = E1000_READ_REG(hw, TIPG);
+       tipg &= ~E1000_TIPG_IPGT_MASK;
+       tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
+       E1000_WRITE_REG(hw, TIPG, tipg);
+
+       ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+       if (ret_val)
+               return ret_val;
+
+       if (duplex == HALF_DUPLEX)
+               reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+       else
+               reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+       ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+       return ret_val;
+}
+
+static int32_t
+e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
+{
+       int32_t ret_val = E1000_SUCCESS;
+       uint16_t reg_data;
+       uint32_t tipg;
+
+       DEBUGFUNC();
+
+       reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
+       ret_val = e1000_write_kmrn_reg(hw,
+                       E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Configure Transmit Inter-Packet Gap */
+       tipg = E1000_READ_REG(hw, TIPG);
+       tipg &= ~E1000_TIPG_IPGT_MASK;
+       tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+       E1000_WRITE_REG(hw, TIPG, tipg);
+
+       ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+       if (ret_val)
+               return ret_val;
+
+       reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+       ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+       return ret_val;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+static int
+e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
+               uint16_t *duplex)
+{
+       uint32_t status;
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type >= e1000_82543) {
+               status = E1000_READ_REG(hw, STATUS);
+               if (status & E1000_STATUS_SPEED_1000) {
+                       *speed = SPEED_1000;
+                       DEBUGOUT("1000 Mbs, ");
+               } else if (status & E1000_STATUS_SPEED_100) {
+                       *speed = SPEED_100;
+                       DEBUGOUT("100 Mbs, ");
+               } else {
+                       *speed = SPEED_10;
+                       DEBUGOUT("10 Mbs, ");
+               }
+
+               if (status & E1000_STATUS_FD) {
+                       *duplex = FULL_DUPLEX;
+                       DEBUGOUT("Full Duplex\r\n");
+               } else {
+                       *duplex = HALF_DUPLEX;
+                       DEBUGOUT(" Half Duplex\r\n");
+               }
+       } else {
+               DEBUGOUT("1000 Mbs, Full Duplex\r\n");
+               *speed = SPEED_1000;
+               *duplex = FULL_DUPLEX;
+       }
+
+       /* IGP01 PHY may advertise full duplex operation after speed downgrade
+        * even if it is operating at half duplex.  Here we set the duplex
+        * settings to match the duplex in the link partner's capabilities.
+        */
+       if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+               ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+                       *duplex = HALF_DUPLEX;
+               else {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       PHY_LP_ABILITY, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       if ((*speed == SPEED_100 &&
+                               !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+                               || (*speed == SPEED_10
+                               && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+                               *duplex = HALF_DUPLEX;
+               }
+       }
+
+       if ((hw->mac_type == e1000_80003es2lan) &&
+               (hw->media_type == e1000_media_type_copper)) {
+               if (*speed == SPEED_1000)
+                       ret_val = e1000_configure_kmrn_for_1000(hw);
+               else
+                       ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
+               if (ret_val)
+                       return ret_val;
+       }
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int
+e1000_wait_autoneg(struct e1000_hw *hw)
+{
+       uint16_t i;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+       DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+       /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+       for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+               /* Read the MII Status Register and wait for Auto-Neg
+                * Complete bit to be set.
+                */
+               if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+                       DEBUGOUT("PHY Read Error\n");
+                       return -E1000_ERR_PHY;
+               }
+               if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+                       DEBUGOUT("PHY Read Error\n");
+                       return -E1000_ERR_PHY;
+               }
+               if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+                       DEBUGOUT("Auto-Neg complete.\n");
+                       return 0;
+               }
+               mdelay(100);
+       }
+       DEBUGOUT("Auto-Neg timedout.\n");
+       return -E1000_ERR_TIMEOUT;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+       /* Raise the clock input to the Management Data Clock (by setting the MDC
+        * bit), and then delay 2 microseconds.
+        */
+       E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+       E1000_WRITE_FLUSH(hw);
+       udelay(2);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+       /* Lower the clock input to the Management Data Clock (by clearing the MDC
+        * bit), and then delay 2 microseconds.
+        */
+       E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+       E1000_WRITE_FLUSH(hw);
+       udelay(2);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void
+e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
+{
+       uint32_t ctrl;
+       uint32_t mask;
+
+       /* We need to shift "count" number of bits out to the PHY. So, the value
+        * in the "data" parameter will be shifted out to the PHY one bit at a
+        * time. In order to do this, "data" must be broken down into bits.
+        */
+       mask = 0x01;
+       mask <<= (count - 1);
+
+       ctrl = E1000_READ_REG(hw, CTRL);
+
+       /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+       ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+       while (mask) {
+               /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+                * then raising and lowering the Management Data Clock. A "0" is
+                * shifted out to the PHY by setting the MDIO bit to "0" and then
+                * raising and lowering the clock.
+                */
+               if (data & mask)
+                       ctrl |= E1000_CTRL_MDIO;
+               else
+                       ctrl &= ~E1000_CTRL_MDIO;
+
+               E1000_WRITE_REG(hw, CTRL, ctrl);
+               E1000_WRITE_FLUSH(hw);
+
+               udelay(2);
+
+               e1000_raise_mdi_clk(hw, &ctrl);
+               e1000_lower_mdi_clk(hw, &ctrl);
+
+               mask = mask >> 1;
+       }
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t
+e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+       uint32_t ctrl;
+       uint16_t data = 0;
+       uint8_t i;
+
+       /* In order to read a register from the PHY, we need to shift in a total
+        * of 18 bits from the PHY. The first two bit (turnaround) times are used
+        * to avoid contention on the MDIO pin when a read operation is performed.
+        * These two bits are ignored by us and thrown away. Bits are "shifted in"
+        * by raising the input to the Management Data Clock (setting the MDC bit),
+        * and then reading the value of the MDIO bit.
+        */
+       ctrl = E1000_READ_REG(hw, CTRL);
+
+       /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+       ctrl &= ~E1000_CTRL_MDIO_DIR;
+       ctrl &= ~E1000_CTRL_MDIO;
+
+       E1000_WRITE_REG(hw, CTRL, ctrl);
+       E1000_WRITE_FLUSH(hw);
+
+       /* Raise and Lower the clock before reading in the data. This accounts for
+        * the turnaround bits. The first clock occurred when we clocked out the
+        * last bit of the Register Address.
+        */
+       e1000_raise_mdi_clk(hw, &ctrl);
+       e1000_lower_mdi_clk(hw, &ctrl);
+
+       for (data = 0, i = 0; i < 16; i++) {
+               data = data << 1;
+               e1000_raise_mdi_clk(hw, &ctrl);
+               ctrl = E1000_READ_REG(hw, CTRL);
+               /* Check to see if we shifted in a "1". */
+               if (ctrl & E1000_CTRL_MDIO)
+                       data |= 1;
+               e1000_lower_mdi_clk(hw, &ctrl);
+       }
+
+       e1000_raise_mdi_clk(hw, &ctrl);
+       e1000_lower_mdi_clk(hw, &ctrl);
+
+       return data;
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+static int
+e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
+{
+       uint32_t i;
+       uint32_t mdic = 0;
+       const uint32_t phy_addr = 1;
+
+       if (reg_addr > MAX_PHY_REG_ADDRESS) {
+               DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
+               return -E1000_ERR_PARAM;
+       }
+
+       if (hw->mac_type > e1000_82543) {
+               /* Set up Op-code, Phy Address, and register address in the MDI
+                * Control register.  The MAC will take care of interfacing with the
+                * PHY to retrieve the desired data.
+                */
+               mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+                       (phy_addr << E1000_MDIC_PHY_SHIFT) |
+                       (E1000_MDIC_OP_READ));
+
+               E1000_WRITE_REG(hw, MDIC, mdic);
+
+               /* Poll the ready bit to see if the MDI read completed */
+               for (i = 0; i < 64; i++) {
+                       udelay(10);
+                       mdic = E1000_READ_REG(hw, MDIC);
+                       if (mdic & E1000_MDIC_READY)
+                               break;
+               }
+               if (!(mdic & E1000_MDIC_READY)) {
+                       DEBUGOUT("MDI Read did not complete\n");
+                       return -E1000_ERR_PHY;
+               }
+               if (mdic & E1000_MDIC_ERROR) {
+                       DEBUGOUT("MDI Error\n");
+                       return -E1000_ERR_PHY;
+               }
+               *phy_data = (uint16_t) mdic;
+       } else {
+               /* We must first send a preamble through the MDIO pin to signal the
+                * beginning of an MII instruction.  This is done by sending 32
+                * consecutive "1" bits.
+                */
+               e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+               /* Now combine the next few fields that are required for a read
+                * operation.  We use this method instead of calling the
+                * e1000_shift_out_mdi_bits routine five different times. The format of
+                * a MII read instruction consists of a shift out of 14 bits and is
+                * defined as follows:
+                *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+                * followed by a shift in of 18 bits.  This first two bits shifted in
+                * are TurnAround bits used to avoid contention on the MDIO pin when a
+                * READ operation is performed.  These two bits are thrown away
+                * followed by a shift in of 16 bits which contains the desired data.
+                */
+               mdic = ((reg_addr) | (phy_addr << 5) |
+                       (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+               e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+               /* Now that we've shifted out the read command to the MII, we need to
+                * "shift in" the 16-bit value (18 total bits) of the requested PHY
+                * register address.
+                */
+               *phy_data = e1000_shift_in_mdi_bits(hw);
+       }
+       return 0;
+}
+
+/******************************************************************************
+* Writes a value to a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to write
+* data - data to write to the PHY
+******************************************************************************/
+static int
+e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
+{
+       uint32_t i;
+       uint32_t mdic = 0;
+       const uint32_t phy_addr = 1;
+
+       if (reg_addr > MAX_PHY_REG_ADDRESS) {
+               DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
+               return -E1000_ERR_PARAM;
+       }
+
+       if (hw->mac_type > e1000_82543) {
+               /* Set up Op-code, Phy Address, register address, and data intended
+                * for the PHY register in the MDI Control register.  The MAC will take
+                * care of interfacing with the PHY to send the desired data.
+                */
+               mdic = (((uint32_t) phy_data) |
+                       (reg_addr << E1000_MDIC_REG_SHIFT) |
+                       (phy_addr << E1000_MDIC_PHY_SHIFT) |
+                       (E1000_MDIC_OP_WRITE));
+
+               E1000_WRITE_REG(hw, MDIC, mdic);
+
+               /* Poll the ready bit to see if the MDI read completed */
+               for (i = 0; i < 64; i++) {
+                       udelay(10);
+                       mdic = E1000_READ_REG(hw, MDIC);
+                       if (mdic & E1000_MDIC_READY)
+                               break;
+               }
+               if (!(mdic & E1000_MDIC_READY)) {
+                       DEBUGOUT("MDI Write did not complete\n");
+                       return -E1000_ERR_PHY;
+               }
+       } else {
+               /* We'll need to use the SW defined pins to shift the write command
+                * out to the PHY. We first send a preamble to the PHY to signal the
+                * beginning of the MII instruction.  This is done by sending 32
+                * consecutive "1" bits.
+                */
+               e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+               /* Now combine the remaining required fields that will indicate a
+                * write operation. We use this method instead of calling the
+                * e1000_shift_out_mdi_bits routine for each field in the command. The
+                * format of a MII write instruction is as follows:
+                * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+                */
+               mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+                       (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+               mdic <<= 16;
+               mdic |= (uint32_t) phy_data;
+
+               e1000_shift_out_mdi_bits(hw, mdic, 32);
+       }
+       return 0;
+}
+
+/******************************************************************************
+ * Checks if PHY reset is blocked due to SOL/IDER session, for example.
+ * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
+ * the caller to figure out how to deal with it.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_BLK_PHY_RESET
+ *            E1000_SUCCESS
+ *
+ *****************************************************************************/
+int32_t
+e1000_check_phy_reset_block(struct e1000_hw *hw)
+{
+       uint32_t manc = 0;
+       uint32_t fwsm = 0;
+
+       if (hw->mac_type == e1000_ich8lan) {
+               fwsm = E1000_READ_REG(hw, FWSM);
+               return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
+                                               : E1000_BLK_PHY_RESET;
+       }
+
+       if (hw->mac_type > e1000_82547_rev_2)
+               manc = E1000_READ_REG(hw, MANC);
+       return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+               E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * Checks if the PHY configuration is done
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t
+e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+       int32_t timeout = PHY_CFG_TIMEOUT;
+       uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
+
+       DEBUGFUNC();
+
+       switch (hw->mac_type) {
+       default:
+               mdelay(10);
+               break;
+
+       case e1000_80003es2lan:
+               /* Separate *_CFG_DONE_* bit for each port */
+               if (e1000_is_second_port(hw))
+                       cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
+               /* Fall Through */
+
+       case e1000_82571:
+       case e1000_82572:
+               while (timeout) {
+                       if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
+                               break;
+                       else
+                               mdelay(1);
+                       timeout--;
+               }
+               if (!timeout) {
+                       DEBUGOUT("MNG configuration cycle has not "
+                                       "completed.\n");
+                       return -E1000_ERR_RESET;
+               }
+               break;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+       uint16_t swfw = E1000_SWFW_PHY0_SM;
+       uint32_t ctrl, ctrl_ext;
+       uint32_t led_ctrl;
+       int32_t ret_val;
+
+       DEBUGFUNC();
+
+       /* In the case of the phy reset being blocked, it's not an error, we
+        * simply return success without performing the reset. */
+       ret_val = e1000_check_phy_reset_block(hw);
+       if (ret_val)
+               return E1000_SUCCESS;
+
+       DEBUGOUT("Resetting Phy...\n");
+
+       if (hw->mac_type > e1000_82543) {
+               if (e1000_is_second_port(hw))
+                       swfw = E1000_SWFW_PHY1_SM;
+
+               if (e1000_swfw_sync_acquire(hw, swfw)) {
+                       DEBUGOUT("Unable to acquire swfw sync\n");
+                       return -E1000_ERR_SWFW_SYNC;
+               }
+
+               /* Read the device control register and assert the E1000_CTRL_PHY_RST
+                * bit. Then, take it out of reset.
+                */
+               ctrl = E1000_READ_REG(hw, CTRL);
+               E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+               E1000_WRITE_FLUSH(hw);
+
+               if (hw->mac_type < e1000_82571)
+                       udelay(10);
+               else
+                       udelay(100);
+
+               E1000_WRITE_REG(hw, CTRL, ctrl);
+               E1000_WRITE_FLUSH(hw);
+
+               if (hw->mac_type >= e1000_82571)
+                       mdelay(10);
+
+       } else {
+               /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+                * bit to put the PHY into reset. Then, take it out of reset.
+                */
+               ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+               ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+               ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+               E1000_WRITE_FLUSH(hw);
+               mdelay(10);
+               ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+               E1000_WRITE_FLUSH(hw);
+       }
+       udelay(150);
+
+       if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+               /* Configure activity LED after PHY reset */
+               led_ctrl = E1000_READ_REG(hw, LEDCTL);
+               led_ctrl &= IGP_ACTIVITY_LED_MASK;
+               led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+               E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+       }
+
+       /* Wait for FW to finish PHY configuration. */
+       ret_val = e1000_get_phy_cfg_done(hw);
+       if (ret_val != E1000_SUCCESS)
+               return ret_val;
+
+       return ret_val;
+}
+
+/******************************************************************************
+ * IGP phy init script - initializes the GbE PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_phy_init_script(struct e1000_hw *hw)
+{
+       uint32_t ret_val;
+       uint16_t phy_saved_data;
+       DEBUGFUNC();
+
+       if (hw->phy_init_script) {
+               mdelay(20);
+
+               /* Save off the current value of register 0x2F5B to be
+                * restored at the end of this routine. */
+               ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+               /* Disabled the PHY transmitter */
+               e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+               mdelay(20);
+
+               e1000_write_phy_reg(hw, 0x0000, 0x0140);
+
+               mdelay(5);
+
+               switch (hw->mac_type) {
+               case e1000_82541:
+               case e1000_82547:
+                       e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+                       e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+                       e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+                       e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+                       e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+                       e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+                       e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+                       e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+                       e1000_write_phy_reg(hw, 0x2010, 0x0008);
+                       break;
+
+               case e1000_82541_rev_2:
+               case e1000_82547_rev_2:
+                       e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+                       break;
+               default:
+                       break;
+               }
+
+               e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+               mdelay(20);
+
+               /* Now enable the transmitter */
+               if (!ret_val)
+                       e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+               if (hw->mac_type == e1000_82547) {
+                       uint16_t fused, fine, coarse;
+
+                       /* Move to analog registers page */
+                       e1000_read_phy_reg(hw,
+                               IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
+
+                       if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+                               e1000_read_phy_reg(hw,
+                                       IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+
+                               fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+                               coarse = fused
+                                       & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+                               if (coarse >
+                                       IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+                                       coarse -=
+                                       IGP01E1000_ANALOG_FUSE_COARSE_10;
+                                       fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+                               } else if (coarse
+                                       == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+                                       fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+                               fused = (fused
+                                       & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+                                       (fine
+                                       & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+                                       (coarse
+                                       & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+                               e1000_write_phy_reg(hw,
+                                       IGP01E1000_ANALOG_FUSE_CONTROL, fused);
+                               e1000_write_phy_reg(hw,
+                                       IGP01E1000_ANALOG_FUSE_BYPASS,
+                               IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+                       }
+               }
+       }
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control register
+******************************************************************************/
+int32_t
+e1000_phy_reset(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       /* In the case of the phy reset being blocked, it's not an error, we
+        * simply return success without performing the reset. */
+       ret_val = e1000_check_phy_reset_block(hw);
+       if (ret_val)
+               return E1000_SUCCESS;
+
+       switch (hw->phy_type) {
+       case e1000_phy_igp:
+       case e1000_phy_igp_2:
+       case e1000_phy_igp_3:
+       case e1000_phy_ife:
+               ret_val = e1000_phy_hw_reset(hw);
+               if (ret_val)
+                       return ret_val;
+               break;
+       default:
+               ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data |= MII_CR_RESET;
+               ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               udelay(1);
+               break;
+       }
+
+       if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
+               e1000_phy_init_script(hw);
+
+       return E1000_SUCCESS;
+}
+
+static int e1000_set_phy_type (struct e1000_hw *hw)
+{
+       DEBUGFUNC ();
+
+       if (hw->mac_type == e1000_undefined)
+               return -E1000_ERR_PHY_TYPE;
+
+       switch (hw->phy_id) {
+       case M88E1000_E_PHY_ID:
+       case M88E1000_I_PHY_ID:
+       case M88E1011_I_PHY_ID:
+       case M88E1111_I_PHY_ID:
+               hw->phy_type = e1000_phy_m88;
+               break;
+       case IGP01E1000_I_PHY_ID:
+               if (hw->mac_type == e1000_82541 ||
+                       hw->mac_type == e1000_82541_rev_2 ||
+                       hw->mac_type == e1000_82547 ||
+                       hw->mac_type == e1000_82547_rev_2) {
+                       hw->phy_type = e1000_phy_igp;
+                       break;
+               }
+       case IGP03E1000_E_PHY_ID:
+               hw->phy_type = e1000_phy_igp_3;
+               break;
+       case IFE_E_PHY_ID:
+       case IFE_PLUS_E_PHY_ID:
+       case IFE_C_E_PHY_ID:
+               hw->phy_type = e1000_phy_ife;
+               break;
+       case GG82563_E_PHY_ID:
+               if (hw->mac_type == e1000_80003es2lan) {
+                       hw->phy_type = e1000_phy_gg82563;
+                       break;
+               }
+       case BME1000_E_PHY_ID:
+               hw->phy_type = e1000_phy_bm;
+               break;
+               /* Fall Through */
+       default:
+               /* Should never have loaded on this device */
+               hw->phy_type = e1000_phy_undefined;
+               return -E1000_ERR_PHY_TYPE;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+       int32_t phy_init_status, ret_val;
+       uint16_t phy_id_high, phy_id_low;
+       bool match = false;
+
+       DEBUGFUNC();
+
+       /* The 82571 firmware may still be configuring the PHY.  In this
+        * case, we cannot access the PHY until the configuration is done.  So
+        * we explicitly set the PHY values. */
+       if (hw->mac_type == e1000_82571 ||
+               hw->mac_type == e1000_82572) {
+               hw->phy_id = IGP01E1000_I_PHY_ID;
+               hw->phy_type = e1000_phy_igp_2;
+               return E1000_SUCCESS;
+       }
+
+       /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
+        * work- around that forces PHY page 0 to be set or the reads fail.
+        * The rest of the code in this routine uses e1000_read_phy_reg to
+        * read the PHY ID.  So for ESB-2 we need to have this set so our
+        * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
+        * the routines below will figure this out as well. */
+       if (hw->mac_type == e1000_80003es2lan)
+               hw->phy_type = e1000_phy_gg82563;
+
+       /* Read the PHY ID Registers to identify which PHY is onboard. */
+       ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+       if (ret_val)
+               return ret_val;
+
+       hw->phy_id = (uint32_t) (phy_id_high << 16);
+       udelay(20);
+       ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+       if (ret_val)
+               return ret_val;
+
+       hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+       hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+
+       switch (hw->mac_type) {
+       case e1000_82543:
+               if (hw->phy_id == M88E1000_E_PHY_ID)
+                       match = true;
+               break;
+       case e1000_82544:
+               if (hw->phy_id == M88E1000_I_PHY_ID)
+                       match = true;
+               break;
+       case e1000_82540:
+       case e1000_82545:
+       case e1000_82545_rev_3:
+       case e1000_82546:
+       case e1000_82546_rev_3:
+               if (hw->phy_id == M88E1011_I_PHY_ID)
+                       match = true;
+               break;
+       case e1000_82541:
+       case e1000_82541_rev_2:
+       case e1000_82547:
+       case e1000_82547_rev_2:
+               if(hw->phy_id == IGP01E1000_I_PHY_ID)
+                       match = true;
+
+               break;
+       case e1000_82573:
+               if (hw->phy_id == M88E1111_I_PHY_ID)
+                       match = true;
+               break;
+       case e1000_82574:
+               if (hw->phy_id == BME1000_E_PHY_ID)
+                       match = true;
+               break;
+       case e1000_80003es2lan:
+               if (hw->phy_id == GG82563_E_PHY_ID)
+                       match = true;
+               break;
+       case e1000_ich8lan:
+               if (hw->phy_id == IGP03E1000_E_PHY_ID)
+                       match = true;
+               if (hw->phy_id == IFE_E_PHY_ID)
+                       match = true;
+               if (hw->phy_id == IFE_PLUS_E_PHY_ID)
+                       match = true;
+               if (hw->phy_id == IFE_C_E_PHY_ID)
+                       match = true;
+               break;
+       default:
+               DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
+               return -E1000_ERR_CONFIG;
+       }
+
+       phy_init_status = e1000_set_phy_type(hw);
+
+       if ((match) && (phy_init_status == E1000_SUCCESS)) {
+               DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
+               return 0;
+       }
+       DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
+       return -E1000_ERR_PHY;
+}
+
+/*****************************************************************************
+ * Set media type and TBI compatibility.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * **************************************************************************/
+void
+e1000_set_media_type(struct e1000_hw *hw)
+{
+       uint32_t status;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type != e1000_82543) {
+               /* tbi_compatibility is only valid on 82543 */
+               hw->tbi_compatibility_en = false;
+       }
+
+       switch (hw->device_id) {
+       case E1000_DEV_ID_82545GM_SERDES:
+       case E1000_DEV_ID_82546GB_SERDES:
+       case E1000_DEV_ID_82571EB_SERDES:
+       case E1000_DEV_ID_82571EB_SERDES_DUAL:
+       case E1000_DEV_ID_82571EB_SERDES_QUAD:
+       case E1000_DEV_ID_82572EI_SERDES:
+       case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+               hw->media_type = e1000_media_type_internal_serdes;
+               break;
+       default:
+               switch (hw->mac_type) {
+               case e1000_82542_rev2_0:
+               case e1000_82542_rev2_1:
+                       hw->media_type = e1000_media_type_fiber;
+                       break;
+               case e1000_ich8lan:
+               case e1000_82573:
+               case e1000_82574:
+                       /* The STATUS_TBIMODE bit is reserved or reused
+                        * for the this device.
+                        */
+                       hw->media_type = e1000_media_type_copper;
+                       break;
+               default:
+                       status = E1000_READ_REG(hw, STATUS);
+                       if (status & E1000_STATUS_TBIMODE) {
+                               hw->media_type = e1000_media_type_fiber;
+                               /* tbi_compatibility not valid on fiber */
+                               hw->tbi_compatibility_en = false;
+                       } else {
+                               hw->media_type = e1000_media_type_copper;
+                       }
+                       break;
+               }
+       }
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int
+e1000_sw_init(struct eth_device *nic)
+{
+       struct e1000_hw *hw = (typeof(hw)) nic->priv;
+       int result;
+
+       /* PCI config space info */
+       pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
+       pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
+       pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
+                            &hw->subsystem_vendor_id);
+       pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
+
+       pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
+       pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+       /* identify the MAC */
+       result = e1000_set_mac_type(hw);
+       if (result) {
+               E1000_ERR(hw->nic, "Unknown MAC Type\n");
+               return result;
+       }
+
+       switch (hw->mac_type) {
+       default:
+               break;
+       case e1000_82541:
+       case e1000_82547:
+       case e1000_82541_rev_2:
+       case e1000_82547_rev_2:
+               hw->phy_init_script = 1;
+               break;
+       }
+
+       /* flow control settings */
+       hw->fc_high_water = E1000_FC_HIGH_THRESH;
+       hw->fc_low_water = E1000_FC_LOW_THRESH;
+       hw->fc_pause_time = E1000_FC_PAUSE_TIME;
+       hw->fc_send_xon = 1;
+
+       /* Media type - copper or fiber */
+       e1000_set_media_type(hw);
+
+       if (hw->mac_type >= e1000_82543) {
+               uint32_t status = E1000_READ_REG(hw, STATUS);
+
+               if (status & E1000_STATUS_TBIMODE) {
+                       DEBUGOUT("fiber interface\n");
+                       hw->media_type = e1000_media_type_fiber;
+               } else {
+                       DEBUGOUT("copper interface\n");
+                       hw->media_type = e1000_media_type_copper;
+               }
+       } else {
+               hw->media_type = e1000_media_type_fiber;
+       }
+
+       hw->tbi_compatibility_en = true;
+       hw->wait_autoneg_complete = true;
+       if (hw->mac_type < e1000_82543)
+               hw->report_tx_early = 0;
+       else
+               hw->report_tx_early = 1;
+
+       return E1000_SUCCESS;
+}
+
+void
+fill_rx(struct e1000_hw *hw)
+{
+       struct e1000_rx_desc *rd;
+
+       rx_last = rx_tail;
+       rd = rx_base + rx_tail;
+       rx_tail = (rx_tail + 1) % 8;
+       memset(rd, 0, 16);
+       rd->buffer_addr = cpu_to_le64((u32) & packet);
+       E1000_WRITE_REG(hw, RDT, rx_tail);
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void
+e1000_configure_tx(struct e1000_hw *hw)
+{
+       unsigned long ptr;
+       unsigned long tctl;
+       unsigned long tipg, tarc;
+       uint32_t ipgr1, ipgr2;
+
+       ptr = (u32) tx_pool;
+       if (ptr & 0xf)
+               ptr = (ptr + 0x10) & (~0xf);
+
+       tx_base = (typeof(tx_base)) ptr;
+
+       E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
+       E1000_WRITE_REG(hw, TDBAH, 0);
+
+       E1000_WRITE_REG(hw, TDLEN, 128);
+
+       /* Setup the HW Tx Head and Tail descriptor pointers */
+       E1000_WRITE_REG(hw, TDH, 0);
+       E1000_WRITE_REG(hw, TDT, 0);
+       tx_tail = 0;
+
+       /* Set the default values for the Tx Inter Packet Gap timer */
+       if (hw->mac_type <= e1000_82547_rev_2 &&
+           (hw->media_type == e1000_media_type_fiber ||
+            hw->media_type == e1000_media_type_internal_serdes))
+               tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+       else
+               tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+       /* Set the default values for the Tx Inter Packet Gap timer */
+       switch (hw->mac_type) {
+       case e1000_82542_rev2_0:
+       case e1000_82542_rev2_1:
+               tipg = DEFAULT_82542_TIPG_IPGT;
+               ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+               ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+               break;
+       case e1000_80003es2lan:
+               ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+               ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
+               break;
+       default:
+               ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+               ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+               break;
+       }
+       tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+       tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+       E1000_WRITE_REG(hw, TIPG, tipg);
+       /* Program the Transmit Control Register */
+       tctl = E1000_READ_REG(hw, TCTL);
+       tctl &= ~E1000_TCTL_CT;
+       tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
+           (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+       if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
+               tarc = E1000_READ_REG(hw, TARC0);
+               /* set the speed mode bit, we'll clear it if we're not at
+                * gigabit link later */
+               /* git bit can be set to 1*/
+       } else if (hw->mac_type == e1000_80003es2lan) {
+               tarc = E1000_READ_REG(hw, TARC0);
+               tarc |= 1;
+               E1000_WRITE_REG(hw, TARC0, tarc);
+               tarc = E1000_READ_REG(hw, TARC1);
+               tarc |= 1;
+               E1000_WRITE_REG(hw, TARC1, tarc);
+       }
+
+
+       e1000_config_collision_dist(hw);
+       /* Setup Transmit Descriptor Settings for eop descriptor */
+       hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+       /* Need to set up RS bit */
+       if (hw->mac_type < e1000_82543)
+               hw->txd_cmd |= E1000_TXD_CMD_RPS;
+       else
+               hw->txd_cmd |= E1000_TXD_CMD_RS;
+       E1000_WRITE_REG(hw, TCTL, tctl);
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control register
+ * @adapter: Board private structure
+ **/
+static void
+e1000_setup_rctl(struct e1000_hw *hw)
+{
+       uint32_t rctl;
+
+       rctl = E1000_READ_REG(hw, RCTL);
+
+       rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+       rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
+               | E1000_RCTL_RDMTS_HALF;        /* |
+                       (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
+
+       if (hw->tbi_compatibility_on == 1)
+               rctl |= E1000_RCTL_SBP;
+       else
+               rctl &= ~E1000_RCTL_SBP;
+
+       rctl &= ~(E1000_RCTL_SZ_4096);
+               rctl |= E1000_RCTL_SZ_2048;
+               rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
+       E1000_WRITE_REG(hw, RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+static void
+e1000_configure_rx(struct e1000_hw *hw)
+{
+       unsigned long ptr;
+       unsigned long rctl, ctrl_ext;
+       rx_tail = 0;
+       /* make sure receives are disabled while setting up the descriptors */
+       rctl = E1000_READ_REG(hw, RCTL);
+       E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
+       if (hw->mac_type >= e1000_82540) {
+               /* Set the interrupt throttling rate.  Value is calculated
+                * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
+#define MAX_INTS_PER_SEC       8000
+#define DEFAULT_ITR            1000000000/(MAX_INTS_PER_SEC * 256)
+               E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
+       }
+
+       if (hw->mac_type >= e1000_82571) {
+               ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+               /* Reset delay timers after every interrupt */
+               ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+               E1000_WRITE_FLUSH(hw);
+       }
+       /* Setup the Base and Length of the Rx Descriptor Ring */
+       ptr = (u32) rx_pool;
+       if (ptr & 0xf)
+               ptr = (ptr + 0x10) & (~0xf);
+       rx_base = (typeof(rx_base)) ptr;
+       E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
+       E1000_WRITE_REG(hw, RDBAH, 0);
+
+       E1000_WRITE_REG(hw, RDLEN, 128);
+
+       /* Setup the HW Rx Head and Tail Descriptor Pointers */
+       E1000_WRITE_REG(hw, RDH, 0);
+       E1000_WRITE_REG(hw, RDT, 0);
+       /* Enable Receives */
+
+       E1000_WRITE_REG(hw, RCTL, rctl);
+       fill_rx(hw);
+}
+
+/**************************************************************************
+POLL - Wait for a frame
+***************************************************************************/
+static int
+e1000_poll(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       struct e1000_rx_desc *rd;
+       /* return true if there's an ethernet packet ready to read */
+       rd = rx_base + rx_last;
+       if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
+               return 0;
+       /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
+       NetReceive((uchar *)packet, le32_to_cpu(rd->length));
+       fill_rx(hw);
+       return 1;
+}
+
+/**************************************************************************
+TRANSMIT - Transmit a frame
+***************************************************************************/
+static int e1000_transmit(struct eth_device *nic, void *packet, int length)
+{
+       void *nv_packet = (void *)packet;
+       struct e1000_hw *hw = nic->priv;
+       struct e1000_tx_desc *txp;
+       int i = 0;
+
+       txp = tx_base + tx_tail;
+       tx_tail = (tx_tail + 1) % 8;
+
+       txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
+       txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
+       txp->upper.data = 0;
+       E1000_WRITE_REG(hw, TDT, tx_tail);
+
+       E1000_WRITE_FLUSH(hw);
+       while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
+               if (i++ > TOUT_LOOP) {
+                       DEBUGOUT("e1000: tx timeout\n");
+                       return 0;
+               }
+               udelay(10);     /* give the nic a chance to write to the register */
+       }
+       return 1;
+}
+
+/*reset function*/
+static inline int
+e1000_reset(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+
+       e1000_reset_hw(hw);
+       if (hw->mac_type >= e1000_82544) {
+               E1000_WRITE_REG(hw, WUC, 0);
+       }
+       return e1000_init_hw(nic);
+}
+
+/**************************************************************************
+DISABLE - Turn off ethernet interface
+***************************************************************************/
+static void
+e1000_disable(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+
+       /* Turn off the ethernet interface */
+       E1000_WRITE_REG(hw, RCTL, 0);
+       E1000_WRITE_REG(hw, TCTL, 0);
+
+       /* Clear the transmit ring */
+       E1000_WRITE_REG(hw, TDH, 0);
+       E1000_WRITE_REG(hw, TDT, 0);
+
+       /* Clear the receive ring */
+       E1000_WRITE_REG(hw, RDH, 0);
+       E1000_WRITE_REG(hw, RDT, 0);
+
+       /* put the card in its initial state */
+#if 0
+       E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
+#endif
+       mdelay(10);
+
+}
+
+/**************************************************************************
+INIT - set up ethernet interface(s)
+***************************************************************************/
+static int
+e1000_init(struct eth_device *nic, bd_t * bis)
+{
+       struct e1000_hw *hw = nic->priv;
+       int ret_val = 0;
+
+       ret_val = e1000_reset(nic);
+       if (ret_val < 0) {
+               if ((ret_val == -E1000_ERR_NOLINK) ||
+                   (ret_val == -E1000_ERR_TIMEOUT)) {
+                       E1000_ERR(hw->nic, "Valid Link not detected\n");
+               } else {
+                       E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
+               }
+               return 0;
+       }
+       e1000_configure_tx(hw);
+       e1000_setup_rctl(hw);
+       e1000_configure_rx(hw);
+       return 1;
+}
+
+/******************************************************************************
+ * Gets the current PCI bus type of hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void e1000_get_bus_type(struct e1000_hw *hw)
+{
+       uint32_t status;
+
+       switch (hw->mac_type) {
+       case e1000_82542_rev2_0:
+       case e1000_82542_rev2_1:
+               hw->bus_type = e1000_bus_type_pci;
+               break;
+       case e1000_82571:
+       case e1000_82572:
+       case e1000_82573:
+       case e1000_82574:
+       case e1000_80003es2lan:
+               hw->bus_type = e1000_bus_type_pci_express;
+               break;
+       case e1000_ich8lan:
+               hw->bus_type = e1000_bus_type_pci_express;
+               break;
+       default:
+               status = E1000_READ_REG(hw, STATUS);
+               hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+                               e1000_bus_type_pcix : e1000_bus_type_pci;
+               break;
+       }
+}
+
+/* A list of all registered e1000 devices */
+static LIST_HEAD(e1000_hw_list);
+
+/**************************************************************************
+PROBE - Look for an adapter, this routine's visible to the outside
+You should omit the last argument struct pci_device * for a non-PCI NIC
+***************************************************************************/
+int
+e1000_initialize(bd_t * bis)
+{
+       unsigned int i;
+       pci_dev_t devno;
+
+       DEBUGFUNC();
+
+       /* Find and probe all the matching PCI devices */
+       for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
+               u32 val;
+
+               /*
+                * These will never get freed due to errors, this allows us to
+                * perform SPI EEPROM programming from U-boot, for example.
+                */
+               struct eth_device *nic = malloc(sizeof(*nic));
+               struct e1000_hw *hw = malloc(sizeof(*hw));
+               if (!nic || !hw) {
+                       printf("e1000#%u: Out of Memory!\n", i);
+                       free(nic);
+                       free(hw);
+                       continue;
+               }
+
+               /* Make sure all of the fields are initially zeroed */
+               memset(nic, 0, sizeof(*nic));
+               memset(hw, 0, sizeof(*hw));
+
+               /* Assign the passed-in values */
+               hw->cardnum = i;
+               hw->pdev = devno;
+               hw->nic = nic;
+               nic->priv = hw;
+
+               /* Generate a card name */
+               sprintf(nic->name, "e1000#%u", hw->cardnum);
+
+               /* Print a debug message with the IO base address */
+               pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
+               E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
+
+               /* Try to enable I/O accesses and bus-mastering */
+               val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
+               pci_write_config_dword(devno, PCI_COMMAND, val);
+
+               /* Make sure it worked */
+               pci_read_config_dword(devno, PCI_COMMAND, &val);
+               if (!(val & PCI_COMMAND_MEMORY)) {
+                       E1000_ERR(nic, "Can't enable I/O memory\n");
+                       continue;
+               }
+               if (!(val & PCI_COMMAND_MASTER)) {
+                       E1000_ERR(nic, "Can't enable bus-mastering\n");
+                       continue;
+               }
+
+               /* Are these variables needed? */
+               hw->fc = e1000_fc_default;
+               hw->original_fc = e1000_fc_default;
+               hw->autoneg_failed = 0;
+               hw->autoneg = 1;
+               hw->get_link_status = true;
+               hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
+                                                       PCI_REGION_MEM);
+               hw->mac_type = e1000_undefined;
+
+               /* MAC and Phy settings */
+               if (e1000_sw_init(nic) < 0) {
+                       E1000_ERR(nic, "Software init failed\n");
+                       continue;
+               }
+               if (e1000_check_phy_reset_block(hw))
+                       E1000_ERR(nic, "PHY Reset is blocked!\n");
+
+               /* Basic init was OK, reset the hardware and allow SPI access */
+               e1000_reset_hw(hw);
+               list_add_tail(&hw->list_node, &e1000_hw_list);
+
+#ifndef CONFIG_E1000_NO_NVM
+               /* Validate the EEPROM and get chipset information */
+#if !defined(CONFIG_MVBC_1G)
+               if (e1000_init_eeprom_params(hw)) {
+                       E1000_ERR(nic, "EEPROM is invalid!\n");
+                       continue;
+               }
+               if (e1000_validate_eeprom_checksum(hw))
+                       continue;
+#endif
+               e1000_read_mac_addr(nic);
+#endif
+               e1000_get_bus_type(hw);
+
+#ifndef CONFIG_E1000_NO_NVM
+               printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
+                      nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
+                      nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
+#else
+               memset(nic->enetaddr, 0, 6);
+               printf("e1000: no NVM\n");
+#endif
+
+               /* Set up the function pointers and register the device */
+               nic->init = e1000_init;
+               nic->recv = e1000_poll;
+               nic->send = e1000_transmit;
+               nic->halt = e1000_disable;
+               eth_register(nic);
+       }
+
+       return i;
+}
+
+struct e1000_hw *e1000_find_card(unsigned int cardnum)
+{
+       struct e1000_hw *hw;
+
+       list_for_each_entry(hw, &e1000_hw_list, list_node)
+               if (hw->cardnum == cardnum)
+                       return hw;
+
+       return NULL;
+}
+
+#ifdef CONFIG_CMD_E1000
+static int do_e1000(cmd_tbl_t *cmdtp, int flag,
+               int argc, char * const argv[])
+{
+       struct e1000_hw *hw;
+
+       if (argc < 3) {
+               cmd_usage(cmdtp);
+               return 1;
+       }
+
+       /* Make sure we can find the requested e1000 card */
+       hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
+       if (!hw) {
+               printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
+               return 1;
+       }
+
+       if (!strcmp(argv[2], "print-mac-address")) {
+               unsigned char *mac = hw->nic->enetaddr;
+               printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
+                       mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
+               return 0;
+       }
+
+#ifdef CONFIG_E1000_SPI
+       /* Handle the "SPI" subcommand */
+       if (!strcmp(argv[2], "spi"))
+               return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
+#endif
+
+       cmd_usage(cmdtp);
+       return 1;
+}
+
+U_BOOT_CMD(
+       e1000, 7, 0, do_e1000,
+       "Intel e1000 controller management",
+       /*  */"<card#> print-mac-address\n"
+#ifdef CONFIG_E1000_SPI
+       "e1000 <card#> spi show [<offset> [<length>]]\n"
+       "e1000 <card#> spi dump <addr> <offset> <length>\n"
+       "e1000 <card#> spi program <addr> <offset> <length>\n"
+       "e1000 <card#> spi checksum [update]\n"
+#endif
+       "       - Manage the Intel E1000 PCI device"
+);
+#endif /* not CONFIG_CMD_E1000 */