Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / u-boot / drivers / mtd / nand / tegra_nand.c
diff --git a/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.c
new file mode 100644 (file)
index 0000000..163cf29
--- /dev/null
@@ -0,0 +1,1041 @@
+/*
+ * Copyright (c) 2011 The Chromium OS Authors.
+ * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
+ * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
+ * (C) Copyright 2006 DENX Software Engineering
+ *
+ * SPDX-License-Identifier:    GPL-2.0+
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <nand.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/funcmux.h>
+#include <asm/arch-tegra/clk_rst.h>
+#include <asm/errno.h>
+#include <asm/gpio.h>
+#include <fdtdec.h>
+#include "tegra_nand.h"
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#define NAND_CMD_TIMEOUT_MS            10
+
+#define SKIPPED_SPARE_BYTES            4
+
+/* ECC bytes to be generated for tag data */
+#define TAG_ECC_BYTES                  4
+
+/* 64 byte oob block info for large page (== 2KB) device
+ *
+ * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
+ *      Skipped bytes(4)
+ *      Main area Ecc(36)
+ *      Tag data(20)
+ *      Tag data Ecc(4)
+ *
+ * Yaffs2 will use 16 tag bytes.
+ */
+static struct nand_ecclayout eccoob = {
+       .eccbytes = 36,
+       .eccpos = {
+               4,  5,  6,  7,  8,  9,  10, 11, 12,
+               13, 14, 15, 16, 17, 18, 19, 20, 21,
+               22, 23, 24, 25, 26, 27, 28, 29, 30,
+               31, 32, 33, 34, 35, 36, 37, 38, 39,
+       },
+       .oobavail = 20,
+       .oobfree = {
+                       {
+                       .offset = 40,
+                       .length = 20,
+                       },
+       }
+};
+
+enum {
+       ECC_OK,
+       ECC_TAG_ERROR = 1 << 0,
+       ECC_DATA_ERROR = 1 << 1
+};
+
+/* Timing parameters */
+enum {
+       FDT_NAND_MAX_TRP_TREA,
+       FDT_NAND_TWB,
+       FDT_NAND_MAX_TCR_TAR_TRR,
+       FDT_NAND_TWHR,
+       FDT_NAND_MAX_TCS_TCH_TALS_TALH,
+       FDT_NAND_TWH,
+       FDT_NAND_TWP,
+       FDT_NAND_TRH,
+       FDT_NAND_TADL,
+
+       FDT_NAND_TIMING_COUNT
+};
+
+/* Information about an attached NAND chip */
+struct fdt_nand {
+       struct nand_ctlr *reg;
+       int enabled;            /* 1 to enable, 0 to disable */
+       struct fdt_gpio_state wp_gpio;  /* write-protect GPIO */
+       s32 width;              /* bit width, normally 8 */
+       u32 timing[FDT_NAND_TIMING_COUNT];
+};
+
+struct nand_drv {
+       struct nand_ctlr *reg;
+
+       /*
+       * When running in PIO mode to get READ ID bytes from register
+       * RESP_0, we need this variable as an index to know which byte in
+       * register RESP_0 should be read.
+       * Because common code in nand_base.c invokes read_byte function two
+       * times for NAND_CMD_READID.
+       * And our controller returns 4 bytes at once in register RESP_0.
+       */
+       int pio_byte_index;
+       struct fdt_nand config;
+};
+
+static struct nand_drv nand_ctrl;
+static struct mtd_info *our_mtd;
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+
+#ifdef CONFIG_SYS_DCACHE_OFF
+static inline void dma_prepare(void *start, unsigned long length,
+                              int is_writing)
+{
+}
+#else
+/**
+ * Prepare for a DMA transaction
+ *
+ * For a write we flush out our data. For a read we invalidate, since we
+ * need to do this before we read from the buffer after the DMA has
+ * completed, so may as well do it now.
+ *
+ * @param start                Start address for DMA buffer (should be cache-aligned)
+ * @param length       Length of DMA buffer in bytes
+ * @param is_writing   0 if reading, non-zero if writing
+ */
+static void dma_prepare(void *start, unsigned long length, int is_writing)
+{
+       unsigned long addr = (unsigned long)start;
+
+       length = ALIGN(length, ARCH_DMA_MINALIGN);
+       if (is_writing)
+               flush_dcache_range(addr, addr + length);
+       else
+               invalidate_dcache_range(addr, addr + length);
+}
+#endif
+
+/**
+ * Wait for command completion
+ *
+ * @param reg  nand_ctlr structure
+ * @return
+ *     1 - Command completed
+ *     0 - Timeout
+ */
+static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
+{
+       u32 reg_val;
+       int running;
+       int i;
+
+       for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
+               if ((readl(&reg->command) & CMD_GO) ||
+                               !(readl(&reg->status) & STATUS_RBSY0) ||
+                               !(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
+                       udelay(1);
+                       continue;
+               }
+               reg_val = readl(&reg->dma_mst_ctrl);
+               /*
+                * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
+                * is set, that means DMA engine is running.
+                *
+                * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
+                * is cleared, indicating DMA transfer completion.
+                */
+               running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
+                               DMA_MST_CTRL_EN_B_ENABLE);
+               if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
+                       return 1;
+               udelay(1);
+       }
+       return 0;
+}
+
+/**
+ * Read one byte from the chip
+ *
+ * @param mtd  MTD device structure
+ * @return     data byte
+ *
+ * Read function for 8bit bus-width
+ */
+static uint8_t read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       u32 dword_read;
+       struct nand_drv *info;
+
+       info = (struct nand_drv *)chip->priv;
+
+       /* In PIO mode, only 4 bytes can be transferred with single CMD_GO. */
+       if (info->pio_byte_index > 3) {
+               info->pio_byte_index = 0;
+               writel(CMD_GO | CMD_PIO
+                       | CMD_RX | CMD_CE0,
+                       &info->reg->command);
+               if (!nand_waitfor_cmd_completion(info->reg))
+                       printf("Command timeout\n");
+       }
+
+       dword_read = readl(&info->reg->resp);
+       dword_read = dword_read >> (8 * info->pio_byte_index);
+       info->pio_byte_index++;
+       return (uint8_t)dword_read;
+}
+
+/**
+ * Read len bytes from the chip into a buffer
+ *
+ * @param mtd  MTD device structure
+ * @param buf  buffer to store data to
+ * @param len  number of bytes to read
+ *
+ * Read function for 8bit bus-width
+ */
+static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+       int i, s;
+       unsigned int reg;
+       struct nand_chip *chip = mtd->priv;
+       struct nand_drv *info = (struct nand_drv *)chip->priv;
+
+       for (i = 0; i < len; i += 4) {
+               s = (len - i) > 4 ? 4 : len - i;
+               writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
+                       ((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
+                       &info->reg->command);
+               if (!nand_waitfor_cmd_completion(info->reg))
+                       puts("Command timeout during read_buf\n");
+               reg = readl(&info->reg->resp);
+               memcpy(buf + i, &reg, s);
+       }
+}
+
+/**
+ * Check NAND status to see if it is ready or not
+ *
+ * @param mtd  MTD device structure
+ * @return
+ *     1 - ready
+ *     0 - not ready
+ */
+static int nand_dev_ready(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       int reg_val;
+       struct nand_drv *info;
+
+       info = (struct nand_drv *)chip->priv;
+
+       reg_val = readl(&info->reg->status);
+       if (reg_val & STATUS_RBSY0)
+               return 1;
+       else
+               return 0;
+}
+
+/* Dummy implementation: we don't support multiple chips */
+static void nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+       switch (chipnr) {
+       case -1:
+       case 0:
+               break;
+
+       default:
+               BUG();
+       }
+}
+
+/**
+ * Clear all interrupt status bits
+ *
+ * @param reg  nand_ctlr structure
+ */
+static void nand_clear_interrupt_status(struct nand_ctlr *reg)
+{
+       u32 reg_val;
+
+       /* Clear interrupt status */
+       reg_val = readl(&reg->isr);
+       writel(reg_val, &reg->isr);
+}
+
+/**
+ * Send command to NAND device
+ *
+ * @param mtd          MTD device structure
+ * @param command      the command to be sent
+ * @param column       the column address for this command, -1 if none
+ * @param page_addr    the page address for this command, -1 if none
+ */
+static void nand_command(struct mtd_info *mtd, unsigned int command,
+       int column, int page_addr)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_drv *info;
+
+       info = (struct nand_drv *)chip->priv;
+
+       /*
+        * Write out the command to the device.
+        *
+        * Only command NAND_CMD_RESET or NAND_CMD_READID will come
+        * here before mtd->writesize is initialized.
+        */
+
+       /* Emulate NAND_CMD_READOOB */
+       if (command == NAND_CMD_READOOB) {
+               assert(mtd->writesize != 0);
+               column += mtd->writesize;
+               command = NAND_CMD_READ0;
+       }
+
+       /* Adjust columns for 16 bit bus-width */
+       if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
+               column >>= 1;
+
+       nand_clear_interrupt_status(info->reg);
+
+       /* Stop DMA engine, clear DMA completion status */
+       writel(DMA_MST_CTRL_EN_A_DISABLE
+               | DMA_MST_CTRL_EN_B_DISABLE
+               | DMA_MST_CTRL_IS_DMA_DONE,
+               &info->reg->dma_mst_ctrl);
+
+       /*
+        * Program and erase have their own busy handlers
+        * status and sequential in needs no delay
+        */
+       switch (command) {
+       case NAND_CMD_READID:
+               writel(NAND_CMD_READID, &info->reg->cmd_reg1);
+               writel(column & 0xFF, &info->reg->addr_reg1);
+               writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_PIO
+                       | CMD_RX |
+                       ((4 - 1) << CMD_TRANS_SIZE_SHIFT)
+                       | CMD_CE0,
+                       &info->reg->command);
+               info->pio_byte_index = 0;
+               break;
+       case NAND_CMD_PARAM:
+               writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
+               writel(column & 0xFF, &info->reg->addr_reg1);
+               writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
+                       &info->reg->command);
+               break;
+       case NAND_CMD_READ0:
+               writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
+               writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
+               writel((page_addr << 16) | (column & 0xFFFF),
+                       &info->reg->addr_reg1);
+               writel(page_addr >> 16, &info->reg->addr_reg2);
+               return;
+       case NAND_CMD_SEQIN:
+               writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
+               writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
+               writel((page_addr << 16) | (column & 0xFFFF),
+                       &info->reg->addr_reg1);
+               writel(page_addr >> 16,
+                       &info->reg->addr_reg2);
+               return;
+       case NAND_CMD_PAGEPROG:
+               return;
+       case NAND_CMD_ERASE1:
+               writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
+               writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
+               writel(page_addr, &info->reg->addr_reg1);
+               writel(CMD_GO | CMD_CLE | CMD_ALE |
+                       CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
+                       &info->reg->command);
+               break;
+       case NAND_CMD_ERASE2:
+               return;
+       case NAND_CMD_STATUS:
+               writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
+               writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
+                       | ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
+                       | CMD_CE0,
+                       &info->reg->command);
+               info->pio_byte_index = 0;
+               break;
+       case NAND_CMD_RESET:
+               writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
+               writel(CMD_GO | CMD_CLE | CMD_CE0,
+                       &info->reg->command);
+               break;
+       case NAND_CMD_RNDOUT:
+       default:
+               printf("%s: Unsupported command %d\n", __func__, command);
+               return;
+       }
+       if (!nand_waitfor_cmd_completion(info->reg))
+               printf("Command 0x%02X timeout\n", command);
+}
+
+/**
+ * Check whether the pointed buffer are all 0xff (blank).
+ *
+ * @param buf  data buffer for blank check
+ * @param len  length of the buffer in byte
+ * @return
+ *     1 - blank
+ *     0 - non-blank
+ */
+static int blank_check(u8 *buf, int len)
+{
+       int i;
+
+       for (i = 0; i < len; i++)
+               if (buf[i] != 0xFF)
+                       return 0;
+       return 1;
+}
+
+/**
+ * After a DMA transfer for read, we call this function to see whether there
+ * is any uncorrectable error on the pointed data buffer or oob buffer.
+ *
+ * @param reg          nand_ctlr structure
+ * @param databuf      data buffer
+ * @param a_len                data buffer length
+ * @param oobbuf       oob buffer
+ * @param b_len                oob buffer length
+ * @return
+ *     ECC_OK - no ECC error or correctable ECC error
+ *     ECC_TAG_ERROR - uncorrectable tag ECC error
+ *     ECC_DATA_ERROR - uncorrectable data ECC error
+ *     ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
+ */
+static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
+       int a_len, u8 *oobbuf, int b_len)
+{
+       int return_val = ECC_OK;
+       u32 reg_val;
+
+       if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
+               return ECC_OK;
+
+       /*
+        * Area A is used for the data block (databuf). Area B is used for
+        * the spare block (oobbuf)
+        */
+       reg_val = readl(&reg->dec_status);
+       if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
+               reg_val = readl(&reg->bch_dec_status_buf);
+               /*
+                * If uncorrectable error occurs on data area, then see whether
+                * they are all FF. If all are FF, it's a blank page.
+                * Not error.
+                */
+               if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
+                               !blank_check(databuf, a_len))
+                       return_val |= ECC_DATA_ERROR;
+       }
+
+       if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
+               reg_val = readl(&reg->bch_dec_status_buf);
+               /*
+                * If uncorrectable error occurs on tag area, then see whether
+                * they are all FF. If all are FF, it's a blank page.
+                * Not error.
+                */
+               if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
+                               !blank_check(oobbuf, b_len))
+                       return_val |= ECC_TAG_ERROR;
+       }
+
+       return return_val;
+}
+
+/**
+ * Set GO bit to send command to device
+ *
+ * @param reg  nand_ctlr structure
+ */
+static void start_command(struct nand_ctlr *reg)
+{
+       u32 reg_val;
+
+       reg_val = readl(&reg->command);
+       reg_val |= CMD_GO;
+       writel(reg_val, &reg->command);
+}
+
+/**
+ * Clear command GO bit, DMA GO bit, and DMA completion status
+ *
+ * @param reg  nand_ctlr structure
+ */
+static void stop_command(struct nand_ctlr *reg)
+{
+       /* Stop command */
+       writel(0, &reg->command);
+
+       /* Stop DMA engine and clear DMA completion status */
+       writel(DMA_MST_CTRL_GO_DISABLE
+               | DMA_MST_CTRL_IS_DMA_DONE,
+               &reg->dma_mst_ctrl);
+}
+
+/**
+ * Set up NAND bus width and page size
+ *
+ * @param info         nand_info structure
+ * @param *reg_val     address of reg_val
+ * @return 0 if ok, -1 on error
+ */
+static int set_bus_width_page_size(struct fdt_nand *config,
+       u32 *reg_val)
+{
+       if (config->width == 8)
+               *reg_val = CFG_BUS_WIDTH_8BIT;
+       else if (config->width == 16)
+               *reg_val = CFG_BUS_WIDTH_16BIT;
+       else {
+               debug("%s: Unsupported bus width %d\n", __func__,
+                     config->width);
+               return -1;
+       }
+
+       if (our_mtd->writesize == 512)
+               *reg_val |= CFG_PAGE_SIZE_512;
+       else if (our_mtd->writesize == 2048)
+               *reg_val |= CFG_PAGE_SIZE_2048;
+       else if (our_mtd->writesize == 4096)
+               *reg_val |= CFG_PAGE_SIZE_4096;
+       else {
+               debug("%s: Unsupported page size %d\n", __func__,
+                     our_mtd->writesize);
+               return -1;
+       }
+
+       return 0;
+}
+
+/**
+ * Page read/write function
+ *
+ * @param mtd          mtd info structure
+ * @param chip         nand chip info structure
+ * @param buf          data buffer
+ * @param page         page number
+ * @param with_ecc     1 to enable ECC, 0 to disable ECC
+ * @param is_writing   0 for read, 1 for write
+ * @return     0 when successfully completed
+ *             -EIO when command timeout
+ */
+static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
+       uint8_t *buf, int page, int with_ecc, int is_writing)
+{
+       u32 reg_val;
+       int tag_size;
+       struct nand_oobfree *free = chip->ecc.layout->oobfree;
+       /* 4*128=512 (byte) is the value that our HW can support. */
+       ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
+       char *tag_ptr;
+       struct nand_drv *info;
+       struct fdt_nand *config;
+
+       if ((uintptr_t)buf & 0x03) {
+               printf("buf %p has to be 4-byte aligned\n", buf);
+               return -EINVAL;
+       }
+
+       info = (struct nand_drv *)chip->priv;
+       config = &info->config;
+       if (set_bus_width_page_size(config, &reg_val))
+               return -EINVAL;
+
+       /* Need to be 4-byte aligned */
+       tag_ptr = (char *)tag_buf;
+
+       stop_command(info->reg);
+
+       writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
+       writel(virt_to_phys(buf), &info->reg->data_block_ptr);
+
+       if (with_ecc) {
+               writel(virt_to_phys(tag_ptr), &info->reg->tag_ptr);
+               if (is_writing)
+                       memcpy(tag_ptr, chip->oob_poi + free->offset,
+                               chip->ecc.layout->oobavail +
+                               TAG_ECC_BYTES);
+       } else {
+               writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr);
+       }
+
+       /* Set ECC selection, configure ECC settings */
+       if (with_ecc) {
+               tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
+               reg_val |= (CFG_SKIP_SPARE_SEL_4
+                       | CFG_SKIP_SPARE_ENABLE
+                       | CFG_HW_ECC_CORRECTION_ENABLE
+                       | CFG_ECC_EN_TAG_DISABLE
+                       | CFG_HW_ECC_SEL_RS
+                       | CFG_HW_ECC_ENABLE
+                       | CFG_TVAL4
+                       | (tag_size - 1));
+
+               if (!is_writing)
+                       tag_size += SKIPPED_SPARE_BYTES;
+               dma_prepare(tag_ptr, tag_size, is_writing);
+       } else {
+               tag_size = mtd->oobsize;
+               reg_val |= (CFG_SKIP_SPARE_DISABLE
+                       | CFG_HW_ECC_CORRECTION_DISABLE
+                       | CFG_ECC_EN_TAG_DISABLE
+                       | CFG_HW_ECC_DISABLE
+                       | (tag_size - 1));
+               dma_prepare(chip->oob_poi, tag_size, is_writing);
+       }
+       writel(reg_val, &info->reg->config);
+
+       dma_prepare(buf, 1 << chip->page_shift, is_writing);
+
+       writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
+
+       writel(tag_size - 1, &info->reg->dma_cfg_b);
+
+       nand_clear_interrupt_status(info->reg);
+
+       reg_val = CMD_CLE | CMD_ALE
+               | CMD_SEC_CMD
+               | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
+               | CMD_A_VALID
+               | CMD_B_VALID
+               | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
+               | CMD_CE0;
+       if (!is_writing)
+               reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
+       else
+               reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
+       writel(reg_val, &info->reg->command);
+
+       /* Setup DMA engine */
+       reg_val = DMA_MST_CTRL_GO_ENABLE
+               | DMA_MST_CTRL_BURST_8WORDS
+               | DMA_MST_CTRL_EN_A_ENABLE
+               | DMA_MST_CTRL_EN_B_ENABLE;
+
+       if (!is_writing)
+               reg_val |= DMA_MST_CTRL_DIR_READ;
+       else
+               reg_val |= DMA_MST_CTRL_DIR_WRITE;
+
+       writel(reg_val, &info->reg->dma_mst_ctrl);
+
+       start_command(info->reg);
+
+       if (!nand_waitfor_cmd_completion(info->reg)) {
+               if (!is_writing)
+                       printf("Read Page 0x%X timeout ", page);
+               else
+                       printf("Write Page 0x%X timeout ", page);
+               if (with_ecc)
+                       printf("with ECC");
+               else
+                       printf("without ECC");
+               printf("\n");
+               return -EIO;
+       }
+
+       if (with_ecc && !is_writing) {
+               memcpy(chip->oob_poi, tag_ptr,
+                       SKIPPED_SPARE_BYTES);
+               memcpy(chip->oob_poi + free->offset,
+                       tag_ptr + SKIPPED_SPARE_BYTES,
+                       chip->ecc.layout->oobavail);
+               reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
+                       1 << chip->page_shift,
+                       (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
+                       chip->ecc.layout->oobavail);
+               if (reg_val & ECC_TAG_ERROR)
+                       printf("Read Page 0x%X tag ECC error\n", page);
+               if (reg_val & ECC_DATA_ERROR)
+                       printf("Read Page 0x%X data ECC error\n",
+                               page);
+               if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
+                       return -EIO;
+       }
+       return 0;
+}
+
+/**
+ * Hardware ecc based page read function
+ *
+ * @param mtd  mtd info structure
+ * @param chip nand chip info structure
+ * @param buf  buffer to store read data
+ * @param page page number to read
+ * @return     0 when successfully completed
+ *             -EIO when command timeout
+ */
+static int nand_read_page_hwecc(struct mtd_info *mtd,
+       struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+       return nand_rw_page(mtd, chip, buf, page, 1, 0);
+}
+
+/**
+ * Hardware ecc based page write function
+ *
+ * @param mtd  mtd info structure
+ * @param chip nand chip info structure
+ * @param buf  data buffer
+ */
+static int nand_write_page_hwecc(struct mtd_info *mtd,
+       struct nand_chip *chip, const uint8_t *buf, int oob_required)
+{
+       int page;
+       struct nand_drv *info;
+
+       info = (struct nand_drv *)chip->priv;
+
+       page = (readl(&info->reg->addr_reg1) >> 16) |
+               (readl(&info->reg->addr_reg2) << 16);
+
+       nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
+       return 0;
+}
+
+
+/**
+ * Read raw page data without ecc
+ *
+ * @param mtd  mtd info structure
+ * @param chip nand chip info structure
+ * @param buf  buffer to store read data
+ * @param page page number to read
+ * @return     0 when successfully completed
+ *             -EINVAL when chip->oob_poi is not double-word aligned
+ *             -EIO when command timeout
+ */
+static int nand_read_page_raw(struct mtd_info *mtd,
+       struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+       return nand_rw_page(mtd, chip, buf, page, 0, 0);
+}
+
+/**
+ * Raw page write function
+ *
+ * @param mtd  mtd info structure
+ * @param chip nand chip info structure
+ * @param buf  data buffer
+ */
+static int nand_write_page_raw(struct mtd_info *mtd,
+               struct nand_chip *chip, const uint8_t *buf, int oob_required)
+{
+       int page;
+       struct nand_drv *info;
+
+       info = (struct nand_drv *)chip->priv;
+       page = (readl(&info->reg->addr_reg1) >> 16) |
+               (readl(&info->reg->addr_reg2) << 16);
+
+       nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
+       return 0;
+}
+
+/**
+ * OOB data read/write function
+ *
+ * @param mtd          mtd info structure
+ * @param chip         nand chip info structure
+ * @param page         page number to read
+ * @param with_ecc     1 to enable ECC, 0 to disable ECC
+ * @param is_writing   0 for read, 1 for write
+ * @return     0 when successfully completed
+ *             -EINVAL when chip->oob_poi is not double-word aligned
+ *             -EIO when command timeout
+ */
+static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
+       int page, int with_ecc, int is_writing)
+{
+       u32 reg_val;
+       int tag_size;
+       struct nand_oobfree *free = chip->ecc.layout->oobfree;
+       struct nand_drv *info;
+
+       if (((int)chip->oob_poi) & 0x03)
+               return -EINVAL;
+       info = (struct nand_drv *)chip->priv;
+       if (set_bus_width_page_size(&info->config, &reg_val))
+               return -EINVAL;
+
+       stop_command(info->reg);
+
+       writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr);
+
+       /* Set ECC selection */
+       tag_size = mtd->oobsize;
+       if (with_ecc)
+               reg_val |= CFG_ECC_EN_TAG_ENABLE;
+       else
+               reg_val |= (CFG_ECC_EN_TAG_DISABLE);
+
+       reg_val |= ((tag_size - 1) |
+               CFG_SKIP_SPARE_DISABLE |
+               CFG_HW_ECC_CORRECTION_DISABLE |
+               CFG_HW_ECC_DISABLE);
+       writel(reg_val, &info->reg->config);
+
+       dma_prepare(chip->oob_poi, tag_size, is_writing);
+
+       writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
+
+       if (is_writing && with_ecc)
+               tag_size -= TAG_ECC_BYTES;
+
+       writel(tag_size - 1, &info->reg->dma_cfg_b);
+
+       nand_clear_interrupt_status(info->reg);
+
+       reg_val = CMD_CLE | CMD_ALE
+               | CMD_SEC_CMD
+               | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
+               | CMD_B_VALID
+               | CMD_CE0;
+       if (!is_writing)
+               reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
+       else
+               reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
+       writel(reg_val, &info->reg->command);
+
+       /* Setup DMA engine */
+       reg_val = DMA_MST_CTRL_GO_ENABLE
+               | DMA_MST_CTRL_BURST_8WORDS
+               | DMA_MST_CTRL_EN_B_ENABLE;
+       if (!is_writing)
+               reg_val |= DMA_MST_CTRL_DIR_READ;
+       else
+               reg_val |= DMA_MST_CTRL_DIR_WRITE;
+
+       writel(reg_val, &info->reg->dma_mst_ctrl);
+
+       start_command(info->reg);
+
+       if (!nand_waitfor_cmd_completion(info->reg)) {
+               if (!is_writing)
+                       printf("Read OOB of Page 0x%X timeout\n", page);
+               else
+                       printf("Write OOB of Page 0x%X timeout\n", page);
+               return -EIO;
+       }
+
+       if (with_ecc && !is_writing) {
+               reg_val = (u32)check_ecc_error(info->reg, 0, 0,
+                       (u8 *)(chip->oob_poi + free->offset),
+                       chip->ecc.layout->oobavail);
+               if (reg_val & ECC_TAG_ERROR)
+                       printf("Read OOB of Page 0x%X tag ECC error\n", page);
+       }
+       return 0;
+}
+
+/**
+ * OOB data read function
+ *
+ * @param mtd          mtd info structure
+ * @param chip         nand chip info structure
+ * @param page         page number to read
+ */
+static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+       int page)
+{
+       chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+       nand_rw_oob(mtd, chip, page, 0, 0);
+       return 0;
+}
+
+/**
+ * OOB data write function
+ *
+ * @param mtd  mtd info structure
+ * @param chip nand chip info structure
+ * @param page page number to write
+ * @return     0 when successfully completed
+ *             -EINVAL when chip->oob_poi is not double-word aligned
+ *             -EIO when command timeout
+ */
+static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+       int page)
+{
+       chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+
+       return nand_rw_oob(mtd, chip, page, 0, 1);
+}
+
+/**
+ * Set up NAND memory timings according to the provided parameters
+ *
+ * @param timing       Timing parameters
+ * @param reg          NAND controller register address
+ */
+static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
+                        struct nand_ctlr *reg)
+{
+       u32 reg_val, clk_rate, clk_period, time_val;
+
+       clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
+               CLOCK_ID_PERIPH) / 1000000;
+       clk_period = 1000 / clk_rate;
+       reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
+               TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
+       reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
+               TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
+       time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
+       if (time_val > 2)
+               reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
+                       TIMING_TCR_TAR_TRR_CNT_MASK;
+       reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
+               TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
+       time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
+       if (time_val > 1)
+               reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
+                       TIMING_TCS_CNT_MASK;
+       reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
+               TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
+       reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
+               TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
+       reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
+               TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
+       reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
+               TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
+       writel(reg_val, &reg->timing);
+
+       reg_val = 0;
+       time_val = timing[FDT_NAND_TADL] / clk_period;
+       if (time_val > 2)
+               reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
+       writel(reg_val, &reg->timing2);
+}
+
+/**
+ * Decode NAND parameters from the device tree
+ *
+ * @param blob Device tree blob
+ * @param node Node containing "nand-flash" compatble node
+ * @return 0 if ok, -ve on error (FDT_ERR_...)
+ */
+static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config)
+{
+       int err;
+
+       config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg");
+       config->enabled = fdtdec_get_is_enabled(blob, node);
+       config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8);
+       err = fdtdec_decode_gpio(blob, node, "nvidia,wp-gpios",
+                                &config->wp_gpio);
+       if (err)
+               return err;
+       err = fdtdec_get_int_array(blob, node, "nvidia,timing",
+                       config->timing, FDT_NAND_TIMING_COUNT);
+       if (err < 0)
+               return err;
+
+       /* Now look up the controller and decode that */
+       node = fdt_next_node(blob, node, NULL);
+       if (node < 0)
+               return node;
+
+       return 0;
+}
+
+/**
+ * Board-specific NAND initialization
+ *
+ * @param nand nand chip info structure
+ * @return 0, after initialized, -1 on error
+ */
+int tegra_nand_init(struct nand_chip *nand, int devnum)
+{
+       struct nand_drv *info = &nand_ctrl;
+       struct fdt_nand *config = &info->config;
+       int node, ret;
+
+       node = fdtdec_next_compatible(gd->fdt_blob, 0,
+                                     COMPAT_NVIDIA_TEGRA20_NAND);
+       if (node < 0)
+               return -1;
+       if (fdt_decode_nand(gd->fdt_blob, node, config)) {
+               printf("Could not decode nand-flash in device tree\n");
+               return -1;
+       }
+       if (!config->enabled)
+               return -1;
+       info->reg = config->reg;
+       nand->ecc.mode = NAND_ECC_HW;
+       nand->ecc.layout = &eccoob;
+
+       nand->options = LP_OPTIONS;
+       nand->cmdfunc = nand_command;
+       nand->read_byte = read_byte;
+       nand->read_buf = read_buf;
+       nand->ecc.read_page = nand_read_page_hwecc;
+       nand->ecc.write_page = nand_write_page_hwecc;
+       nand->ecc.read_page_raw = nand_read_page_raw;
+       nand->ecc.write_page_raw = nand_write_page_raw;
+       nand->ecc.read_oob = nand_read_oob;
+       nand->ecc.write_oob = nand_write_oob;
+       nand->ecc.strength = 1;
+       nand->select_chip = nand_select_chip;
+       nand->dev_ready  = nand_dev_ready;
+       nand->priv = &nand_ctrl;
+
+       /* Adjust controller clock rate */
+       clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
+
+       /* Adjust timing for NAND device */
+       setup_timing(config->timing, info->reg);
+
+       fdtdec_setup_gpio(&config->wp_gpio);
+       gpio_direction_output(config->wp_gpio.gpio, 1);
+
+       our_mtd = &nand_info[devnum];
+       our_mtd->priv = nand;
+       ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
+       if (ret)
+               return ret;
+
+       nand->ecc.size = our_mtd->writesize;
+       nand->ecc.bytes = our_mtd->oobsize;
+
+       ret = nand_scan_tail(our_mtd);
+       if (ret)
+               return ret;
+
+       ret = nand_register(devnum);
+       if (ret)
+               return ret;
+
+       return 0;
+}
+
+void board_nand_init(void)
+{
+       struct nand_chip *nand = &nand_chip[0];
+
+       if (tegra_nand_init(nand, 0))
+               puts("Tegra NAND init failed\n");
+}