Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / u-boot / drivers / mtd / nand / mxc_nand.c
diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c
new file mode 100644 (file)
index 0000000..ed0ca3a
--- /dev/null
@@ -0,0 +1,1342 @@
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
+ *
+ * SPDX-License-Identifier:    GPL-2.0+
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <linux/err.h>
+#include <asm/io.h>
+#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
+       defined(CONFIG_MX51) || defined(CONFIG_MX53)
+#include <asm/arch/imx-regs.h>
+#endif
+#include "mxc_nand.h"
+
+#define DRIVER_NAME "mxc_nand"
+
+struct mxc_nand_host {
+       struct mtd_info                 mtd;
+       struct nand_chip                *nand;
+
+       struct mxc_nand_regs __iomem    *regs;
+#ifdef MXC_NFC_V3_2
+       struct mxc_nand_ip_regs __iomem *ip_regs;
+#endif
+       int                             spare_only;
+       int                             status_request;
+       int                             pagesize_2k;
+       int                             clk_act;
+       uint16_t                        col_addr;
+       unsigned int                    page_addr;
+};
+
+static struct mxc_nand_host mxc_host;
+static struct mxc_nand_host *host = &mxc_host;
+
+/* Define delays in microsec for NAND device operations */
+#define TROP_US_DELAY   2000
+/* Macros to get byte and bit positions of ECC */
+#define COLPOS(x)  ((x) >> 3)
+#define BITPOS(x) ((x) & 0xf)
+
+/* Define single bit Error positions in Main & Spare area */
+#define MAIN_SINGLEBIT_ERROR 0x4
+#define SPARE_SINGLEBIT_ERROR 0x1
+
+/* OOB placement block for use with hardware ecc generation */
+#if defined(MXC_NFC_V1)
+#ifndef CONFIG_SYS_NAND_LARGEPAGE
+static struct nand_ecclayout nand_hw_eccoob = {
+       .eccbytes = 5,
+       .eccpos = {6, 7, 8, 9, 10},
+       .oobfree = { {0, 5}, {11, 5}, }
+};
+#else
+static struct nand_ecclayout nand_hw_eccoob2k = {
+       .eccbytes = 20,
+       .eccpos = {
+               6, 7, 8, 9, 10,
+               22, 23, 24, 25, 26,
+               38, 39, 40, 41, 42,
+               54, 55, 56, 57, 58,
+       },
+       .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
+};
+#endif
+#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+#ifndef CONFIG_SYS_NAND_LARGEPAGE
+static struct nand_ecclayout nand_hw_eccoob = {
+       .eccbytes = 9,
+       .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
+       .oobfree = { {2, 5} }
+};
+#else
+static struct nand_ecclayout nand_hw_eccoob2k = {
+       .eccbytes = 36,
+       .eccpos = {
+               7, 8, 9, 10, 11, 12, 13, 14, 15,
+               23, 24, 25, 26, 27, 28, 29, 30, 31,
+               39, 40, 41, 42, 43, 44, 45, 46, 47,
+               55, 56, 57, 58, 59, 60, 61, 62, 63,
+       },
+       .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
+};
+#endif
+#endif
+
+static int is_16bit_nand(void)
+{
+#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
+       return 1;
+#else
+       return 0;
+#endif
+}
+
+static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
+{
+       uint32_t *d = dest;
+
+       size >>= 2;
+       while (size--)
+               __raw_writel(__raw_readl(source++), d++);
+       return dest;
+}
+
+/*
+ * This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit.
+ */
+static void wait_op_done(struct mxc_nand_host *host, int max_retries,
+                               uint16_t param)
+{
+       uint32_t tmp;
+
+       while (max_retries-- > 0) {
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+               tmp = readnfc(&host->regs->config2);
+               if (tmp & NFC_V1_V2_CONFIG2_INT) {
+                       tmp &= ~NFC_V1_V2_CONFIG2_INT;
+                       writenfc(tmp, &host->regs->config2);
+#elif defined(MXC_NFC_V3_2)
+               tmp = readnfc(&host->ip_regs->ipc);
+               if (tmp & NFC_V3_IPC_INT) {
+                       tmp &= ~NFC_V3_IPC_INT;
+                       writenfc(tmp, &host->ip_regs->ipc);
+#endif
+                       break;
+               }
+               udelay(1);
+       }
+       if (max_retries < 0) {
+               MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
+                               __func__, param);
+       }
+}
+
+/*
+ * This function issues the specified command to the NAND device and
+ * waits for completion.
+ */
+static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
+{
+       MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
+
+       writenfc(cmd, &host->regs->flash_cmd);
+       writenfc(NFC_CMD, &host->regs->operation);
+
+       /* Wait for operation to complete */
+       wait_op_done(host, TROP_US_DELAY, cmd);
+}
+
+/*
+ * This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command.
+ */
+static void send_addr(struct mxc_nand_host *host, uint16_t addr)
+{
+       MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
+
+       writenfc(addr, &host->regs->flash_addr);
+       writenfc(NFC_ADDR, &host->regs->operation);
+
+       /* Wait for operation to complete */
+       wait_op_done(host, TROP_US_DELAY, addr);
+}
+
+/*
+ * This function requests the NANDFC to initiate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device.
+ */
+static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
+                       int spare_only)
+{
+       if (spare_only)
+               MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
+
+       if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
+               int i;
+               /*
+                *  The controller copies the 64 bytes of spare data from
+                *  the first 16 bytes of each of the 4 64 byte spare buffers.
+                *  Copy the contiguous data starting in spare_area[0] to
+                *  the four spare area buffers.
+                */
+               for (i = 1; i < 4; i++) {
+                       void __iomem *src = &host->regs->spare_area[0][i * 16];
+                       void __iomem *dst = &host->regs->spare_area[i][0];
+
+                       mxc_nand_memcpy32(dst, src, 16);
+               }
+       }
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+       writenfc(buf_id, &host->regs->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+       uint32_t tmp = readnfc(&host->regs->config1);
+       tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
+       tmp |= NFC_V3_CONFIG1_RBA(buf_id);
+       writenfc(tmp, &host->regs->config1);
+#endif
+
+       /* Configure spare or page+spare access */
+       if (!host->pagesize_2k) {
+               uint32_t config1 = readnfc(&host->regs->config1);
+               if (spare_only)
+                       config1 |= NFC_CONFIG1_SP_EN;
+               else
+                       config1 &= ~NFC_CONFIG1_SP_EN;
+               writenfc(config1, &host->regs->config1);
+       }
+
+       writenfc(NFC_INPUT, &host->regs->operation);
+
+       /* Wait for operation to complete */
+       wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/*
+ * Requests NANDFC to initiate the transfer of data from the
+ * NAND device into in the NANDFC ram buffer.
+ */
+static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
+               int spare_only)
+{
+       MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+       writenfc(buf_id, &host->regs->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+       uint32_t tmp = readnfc(&host->regs->config1);
+       tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
+       tmp |= NFC_V3_CONFIG1_RBA(buf_id);
+       writenfc(tmp, &host->regs->config1);
+#endif
+
+       /* Configure spare or page+spare access */
+       if (!host->pagesize_2k) {
+               uint32_t config1 = readnfc(&host->regs->config1);
+               if (spare_only)
+                       config1 |= NFC_CONFIG1_SP_EN;
+               else
+                       config1 &= ~NFC_CONFIG1_SP_EN;
+               writenfc(config1, &host->regs->config1);
+       }
+
+       writenfc(NFC_OUTPUT, &host->regs->operation);
+
+       /* Wait for operation to complete */
+       wait_op_done(host, TROP_US_DELAY, spare_only);
+
+       if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
+               int i;
+
+               /*
+                *  The controller copies the 64 bytes of spare data to
+                *  the first 16 bytes of each of the 4 spare buffers.
+                *  Make the data contiguous starting in spare_area[0].
+                */
+               for (i = 1; i < 4; i++) {
+                       void __iomem *src = &host->regs->spare_area[i][0];
+                       void __iomem *dst = &host->regs->spare_area[0][i * 16];
+
+                       mxc_nand_memcpy32(dst, src, 16);
+               }
+       }
+}
+
+/* Request the NANDFC to perform a read of the NAND device ID. */
+static void send_read_id(struct mxc_nand_host *host)
+{
+       uint32_t tmp;
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+       /* NANDFC buffer 0 is used for device ID output */
+       writenfc(0x0, &host->regs->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+       tmp = readnfc(&host->regs->config1);
+       tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
+       writenfc(tmp, &host->regs->config1);
+#endif
+
+       /* Read ID into main buffer */
+       tmp = readnfc(&host->regs->config1);
+       tmp &= ~NFC_CONFIG1_SP_EN;
+       writenfc(tmp, &host->regs->config1);
+
+       writenfc(NFC_ID, &host->regs->operation);
+
+       /* Wait for operation to complete */
+       wait_op_done(host, TROP_US_DELAY, 0);
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status.
+ */
+static uint16_t get_dev_status(struct mxc_nand_host *host)
+{
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+       void __iomem *main_buf = host->regs->main_area[1];
+       uint32_t store;
+#endif
+       uint32_t ret, tmp;
+       /* Issue status request to NAND device */
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+       /* store the main area1 first word, later do recovery */
+       store = readl(main_buf);
+       /* NANDFC buffer 1 is used for device status */
+       writenfc(1, &host->regs->buf_addr);
+#endif
+
+       /* Read status into main buffer */
+       tmp = readnfc(&host->regs->config1);
+       tmp &= ~NFC_CONFIG1_SP_EN;
+       writenfc(tmp, &host->regs->config1);
+
+       writenfc(NFC_STATUS, &host->regs->operation);
+
+       /* Wait for operation to complete */
+       wait_op_done(host, TROP_US_DELAY, 0);
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+       /*
+        *  Status is placed in first word of main buffer
+        * get status, then recovery area 1 data
+        */
+       ret = readw(main_buf);
+       writel(store, main_buf);
+#elif defined(MXC_NFC_V3_2)
+       ret = readnfc(&host->regs->config1) >> 16;
+#endif
+
+       return ret;
+}
+
+/* This function is used by upper layer to checks if device is ready */
+static int mxc_nand_dev_ready(struct mtd_info *mtd)
+{
+       /*
+        * NFC handles R/B internally. Therefore, this function
+        * always returns status as ready.
+        */
+       return 1;
+}
+
+static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+       uint16_t tmp = readnfc(&host->regs->config1);
+
+       if (on)
+               tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
+       else
+               tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
+       writenfc(tmp, &host->regs->config1);
+#elif defined(MXC_NFC_V3_2)
+       uint32_t tmp = readnfc(&host->ip_regs->config2);
+
+       if (on)
+               tmp |= NFC_V3_CONFIG2_ECC_EN;
+       else
+               tmp &= ~NFC_V3_CONFIG2_ECC_EN;
+       writenfc(tmp, &host->ip_regs->config2);
+#endif
+}
+
+#ifdef CONFIG_MXC_NAND_HWECC
+static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       /*
+        * If HW ECC is enabled, we turn it on during init. There is
+        * no need to enable again here.
+        */
+}
+
+#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
+                                     struct nand_chip *chip,
+                                     int page)
+{
+       struct mxc_nand_host *host = chip->priv;
+       uint8_t *buf = chip->oob_poi;
+       int length = mtd->oobsize;
+       int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+       uint8_t *bufpoi = buf;
+       int i, toread;
+
+       MTDDEBUG(MTD_DEBUG_LEVEL0,
+                       "%s: Reading OOB area of page %u to oob %p\n",
+                        __func__, page, buf);
+
+       chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
+       for (i = 0; i < chip->ecc.steps; i++) {
+               toread = min_t(int, length, chip->ecc.prepad);
+               if (toread) {
+                       chip->read_buf(mtd, bufpoi, toread);
+                       bufpoi += toread;
+                       length -= toread;
+               }
+               bufpoi += chip->ecc.bytes;
+               host->col_addr += chip->ecc.bytes;
+               length -= chip->ecc.bytes;
+
+               toread = min_t(int, length, chip->ecc.postpad);
+               if (toread) {
+                       chip->read_buf(mtd, bufpoi, toread);
+                       bufpoi += toread;
+                       length -= toread;
+               }
+       }
+       if (length > 0)
+               chip->read_buf(mtd, bufpoi, length);
+
+       _mxc_nand_enable_hwecc(mtd, 0);
+       chip->cmdfunc(mtd, NAND_CMD_READOOB,
+                       mtd->writesize + chip->ecc.prepad, page);
+       bufpoi = buf + chip->ecc.prepad;
+       length = mtd->oobsize - chip->ecc.prepad;
+       for (i = 0; i < chip->ecc.steps; i++) {
+               toread = min_t(int, length, chip->ecc.bytes);
+               chip->read_buf(mtd, bufpoi, toread);
+               bufpoi += eccpitch;
+               length -= eccpitch;
+               host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
+       }
+       _mxc_nand_enable_hwecc(mtd, 1);
+       return 1;
+}
+
+static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
+                                          struct nand_chip *chip,
+                                          uint8_t *buf,
+                                          int oob_required,
+                                          int page)
+{
+       struct mxc_nand_host *host = chip->priv;
+       int eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+       uint8_t *oob = chip->oob_poi;
+       int steps, size;
+       int n;
+
+       _mxc_nand_enable_hwecc(mtd, 0);
+       chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+
+       for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
+               host->col_addr = n * eccsize;
+               chip->read_buf(mtd, buf, eccsize);
+               buf += eccsize;
+
+               host->col_addr = mtd->writesize + n * eccpitch;
+               if (chip->ecc.prepad) {
+                       chip->read_buf(mtd, oob, chip->ecc.prepad);
+                       oob += chip->ecc.prepad;
+               }
+
+               chip->read_buf(mtd, oob, eccbytes);
+               oob += eccbytes;
+
+               if (chip->ecc.postpad) {
+                       chip->read_buf(mtd, oob, chip->ecc.postpad);
+                       oob += chip->ecc.postpad;
+               }
+       }
+
+       size = mtd->oobsize - (oob - chip->oob_poi);
+       if (size)
+               chip->read_buf(mtd, oob, size);
+       _mxc_nand_enable_hwecc(mtd, 1);
+
+       return 0;
+}
+
+static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
+                                      struct nand_chip *chip,
+                                      uint8_t *buf,
+                                      int oob_required,
+                                      int page)
+{
+       struct mxc_nand_host *host = chip->priv;
+       int n, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *p = buf;
+       uint8_t *oob = chip->oob_poi;
+
+       MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
+             page, buf, oob);
+
+       /* first read the data area and the available portion of OOB */
+       for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
+               int stat;
+
+               host->col_addr = n * eccsize;
+
+               chip->read_buf(mtd, p, eccsize);
+
+               host->col_addr = mtd->writesize + n * eccpitch;
+
+               if (chip->ecc.prepad) {
+                       chip->read_buf(mtd, oob, chip->ecc.prepad);
+                       oob += chip->ecc.prepad;
+               }
+
+               stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+               oob += eccbytes;
+
+               if (chip->ecc.postpad) {
+                       chip->read_buf(mtd, oob, chip->ecc.postpad);
+                       oob += chip->ecc.postpad;
+               }
+       }
+
+       /* Calculate remaining oob bytes */
+       n = mtd->oobsize - (oob - chip->oob_poi);
+       if (n)
+               chip->read_buf(mtd, oob, n);
+
+       /* Then switch ECC off and read the OOB area to get the ECC code */
+       _mxc_nand_enable_hwecc(mtd, 0);
+       chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
+       eccsteps = chip->ecc.steps;
+       oob = chip->oob_poi + chip->ecc.prepad;
+       for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
+               host->col_addr = mtd->writesize +
+                                n * eccpitch +
+                                chip->ecc.prepad;
+               chip->read_buf(mtd, oob, eccbytes);
+               oob += eccbytes + chip->ecc.postpad;
+       }
+       _mxc_nand_enable_hwecc(mtd, 1);
+       return 0;
+}
+
+static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
+                                      struct nand_chip *chip, int page)
+{
+       struct mxc_nand_host *host = chip->priv;
+       int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+       int length = mtd->oobsize;
+       int i, len, status, steps = chip->ecc.steps;
+       const uint8_t *bufpoi = chip->oob_poi;
+
+       chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+       for (i = 0; i < steps; i++) {
+               len = min_t(int, length, eccpitch);
+
+               chip->write_buf(mtd, bufpoi, len);
+               bufpoi += len;
+               length -= len;
+               host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
+       }
+       if (length > 0)
+               chip->write_buf(mtd, bufpoi, length);
+
+       chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+       status = chip->waitfunc(mtd, chip);
+       return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
+                                            struct nand_chip *chip,
+                                            const uint8_t *buf,
+                                            int oob_required)
+{
+       struct mxc_nand_host *host = chip->priv;
+       int eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+       uint8_t *oob = chip->oob_poi;
+       int steps, size;
+       int n;
+
+       for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
+               host->col_addr = n * eccsize;
+               chip->write_buf(mtd, buf, eccsize);
+               buf += eccsize;
+
+               host->col_addr = mtd->writesize + n * eccpitch;
+
+               if (chip->ecc.prepad) {
+                       chip->write_buf(mtd, oob, chip->ecc.prepad);
+                       oob += chip->ecc.prepad;
+               }
+
+               host->col_addr += eccbytes;
+               oob += eccbytes;
+
+               if (chip->ecc.postpad) {
+                       chip->write_buf(mtd, oob, chip->ecc.postpad);
+                       oob += chip->ecc.postpad;
+               }
+       }
+
+       size = mtd->oobsize - (oob - chip->oob_poi);
+       if (size)
+               chip->write_buf(mtd, oob, size);
+       return 0;
+}
+
+static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
+                                        struct nand_chip *chip,
+                                        const uint8_t *buf,
+                                        int oob_required)
+{
+       struct mxc_nand_host *host = chip->priv;
+       int i, n, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+       int eccsteps = chip->ecc.steps;
+       const uint8_t *p = buf;
+       uint8_t *oob = chip->oob_poi;
+
+       chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+       for (i = n = 0;
+            eccsteps;
+            n++, eccsteps--, i += eccbytes, p += eccsize) {
+               host->col_addr = n * eccsize;
+
+               chip->write_buf(mtd, p, eccsize);
+
+               host->col_addr = mtd->writesize + n * eccpitch;
+
+               if (chip->ecc.prepad) {
+                       chip->write_buf(mtd, oob, chip->ecc.prepad);
+                       oob += chip->ecc.prepad;
+               }
+
+               chip->write_buf(mtd, oob, eccbytes);
+               oob += eccbytes;
+
+               if (chip->ecc.postpad) {
+                       chip->write_buf(mtd, oob, chip->ecc.postpad);
+                       oob += chip->ecc.postpad;
+               }
+       }
+
+       /* Calculate remaining oob bytes */
+       i = mtd->oobsize - (oob - chip->oob_poi);
+       if (i)
+               chip->write_buf(mtd, oob, i);
+       return 0;
+}
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+                                u_char *read_ecc, u_char *calc_ecc)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+       uint32_t ecc_status = readl(&host->regs->ecc_status_result);
+       int subpages = mtd->writesize / nand_chip->subpagesize;
+       int pg2blk_shift = nand_chip->phys_erase_shift -
+                          nand_chip->page_shift;
+
+       do {
+               if ((ecc_status & 0xf) > 4) {
+                       static int last_bad = -1;
+
+                       if (last_bad != host->page_addr >> pg2blk_shift) {
+                               last_bad = host->page_addr >> pg2blk_shift;
+                               printk(KERN_DEBUG
+                                      "MXC_NAND: HWECC uncorrectable ECC error"
+                                      " in block %u page %u subpage %d\n",
+                                      last_bad, host->page_addr,
+                                      mtd->writesize / nand_chip->subpagesize
+                                           - subpages);
+                       }
+                       return -1;
+               }
+               ecc_status >>= 4;
+               subpages--;
+       } while (subpages > 0);
+
+       return 0;
+}
+#else
+#define mxc_nand_read_page_syndrome NULL
+#define mxc_nand_read_page_raw_syndrome NULL
+#define mxc_nand_read_oob_syndrome NULL
+#define mxc_nand_write_page_syndrome NULL
+#define mxc_nand_write_page_raw_syndrome NULL
+#define mxc_nand_write_oob_syndrome NULL
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+                                u_char *read_ecc, u_char *calc_ecc)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+
+       /*
+        * 1-Bit errors are automatically corrected in HW.  No need for
+        * additional correction.  2-Bit errors cannot be corrected by
+        * HW ECC, so we need to return failure
+        */
+       uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
+
+       if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+               MTDDEBUG(MTD_DEBUG_LEVEL0,
+                     "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+               return -1;
+       }
+
+       return 0;
+}
+#endif
+
+static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+                                 u_char *ecc_code)
+{
+       return 0;
+}
+#endif
+
+static u_char mxc_nand_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+       uint8_t ret = 0;
+       uint16_t col;
+       uint16_t __iomem *main_buf =
+               (uint16_t __iomem *)host->regs->main_area[0];
+       uint16_t __iomem *spare_buf =
+               (uint16_t __iomem *)host->regs->spare_area[0];
+       union {
+               uint16_t word;
+               uint8_t bytes[2];
+       } nfc_word;
+
+       /* Check for status request */
+       if (host->status_request)
+               return get_dev_status(host) & 0xFF;
+
+       /* Get column for 16-bit access */
+       col = host->col_addr >> 1;
+
+       /* If we are accessing the spare region */
+       if (host->spare_only)
+               nfc_word.word = readw(&spare_buf[col]);
+       else
+               nfc_word.word = readw(&main_buf[col]);
+
+       /* Pick upper/lower byte of word from RAM buffer */
+       ret = nfc_word.bytes[host->col_addr & 0x1];
+
+       /* Update saved column address */
+       if (nand_chip->options & NAND_BUSWIDTH_16)
+               host->col_addr += 2;
+       else
+               host->col_addr++;
+
+       return ret;
+}
+
+static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+       uint16_t col, ret;
+       uint16_t __iomem *p;
+
+       MTDDEBUG(MTD_DEBUG_LEVEL3,
+             "mxc_nand_read_word(col = %d)\n", host->col_addr);
+
+       col = host->col_addr;
+       /* Adjust saved column address */
+       if (col < mtd->writesize && host->spare_only)
+               col += mtd->writesize;
+
+       if (col < mtd->writesize) {
+               p = (uint16_t __iomem *)(host->regs->main_area[0] +
+                               (col >> 1));
+       } else {
+               p = (uint16_t __iomem *)(host->regs->spare_area[0] +
+                               ((col - mtd->writesize) >> 1));
+       }
+
+       if (col & 1) {
+               union {
+                       uint16_t word;
+                       uint8_t bytes[2];
+               } nfc_word[3];
+
+               nfc_word[0].word = readw(p);
+               nfc_word[1].word = readw(p + 1);
+
+               nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
+               nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
+
+               ret = nfc_word[2].word;
+       } else {
+               ret = readw(p);
+       }
+
+       /* Update saved column address */
+       host->col_addr = col + 2;
+
+       return ret;
+}
+
+/*
+ * Write data of length len to buffer buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash
+ */
+static void mxc_nand_write_buf(struct mtd_info *mtd,
+                               const u_char *buf, int len)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+       int n, col, i = 0;
+
+       MTDDEBUG(MTD_DEBUG_LEVEL3,
+             "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
+             len);
+
+       col = host->col_addr;
+
+       /* Adjust saved column address */
+       if (col < mtd->writesize && host->spare_only)
+               col += mtd->writesize;
+
+       n = mtd->writesize + mtd->oobsize - col;
+       n = min(len, n);
+
+       MTDDEBUG(MTD_DEBUG_LEVEL3,
+             "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
+
+       while (n > 0) {
+               void __iomem *p;
+
+               if (col < mtd->writesize) {
+                       p = host->regs->main_area[0] + (col & ~3);
+               } else {
+                       p = host->regs->spare_area[0] -
+                                               mtd->writesize + (col & ~3);
+               }
+
+               MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
+                     __LINE__, p);
+
+               if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
+                       union {
+                               uint32_t word;
+                               uint8_t bytes[4];
+                       } nfc_word;
+
+                       nfc_word.word = readl(p);
+                       nfc_word.bytes[col & 3] = buf[i++];
+                       n--;
+                       col++;
+
+                       writel(nfc_word.word, p);
+               } else {
+                       int m = mtd->writesize - col;
+
+                       if (col >= mtd->writesize)
+                               m += mtd->oobsize;
+
+                       m = min(n, m) & ~3;
+
+                       MTDDEBUG(MTD_DEBUG_LEVEL3,
+                             "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
+                             __func__,  __LINE__, n, m, i, col);
+
+                       mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
+                       col += m;
+                       i += m;
+                       n -= m;
+               }
+       }
+       /* Update saved column address */
+       host->col_addr = col;
+}
+
+/*
+ * Read the data buffer from the NAND Flash. To read the data from NAND
+ * Flash first the data output cycle is initiated by the NFC, which copies
+ * the data to RAMbuffer. This data of length len is then copied to buffer buf.
+ */
+static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+       int n, col, i = 0;
+
+       MTDDEBUG(MTD_DEBUG_LEVEL3,
+             "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
+
+       col = host->col_addr;
+
+       /* Adjust saved column address */
+       if (col < mtd->writesize && host->spare_only)
+               col += mtd->writesize;
+
+       n = mtd->writesize + mtd->oobsize - col;
+       n = min(len, n);
+
+       while (n > 0) {
+               void __iomem *p;
+
+               if (col < mtd->writesize) {
+                       p = host->regs->main_area[0] + (col & ~3);
+               } else {
+                       p = host->regs->spare_area[0] -
+                                       mtd->writesize + (col & ~3);
+               }
+
+               if (((col | (int)&buf[i]) & 3) || n < 4) {
+                       union {
+                               uint32_t word;
+                               uint8_t bytes[4];
+                       } nfc_word;
+
+                       nfc_word.word = readl(p);
+                       buf[i++] = nfc_word.bytes[col & 3];
+                       n--;
+                       col++;
+               } else {
+                       int m = mtd->writesize - col;
+
+                       if (col >= mtd->writesize)
+                               m += mtd->oobsize;
+
+                       m = min(n, m) & ~3;
+                       mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
+
+                       col += m;
+                       i += m;
+                       n -= m;
+               }
+       }
+       /* Update saved column address */
+       host->col_addr = col;
+}
+
+/*
+ * Used by the upper layer to verify the data in NAND Flash
+ * with the data in the buf.
+ */
+static int mxc_nand_verify_buf(struct mtd_info *mtd,
+                               const u_char *buf, int len)
+{
+       u_char tmp[256];
+       uint bsize;
+
+       while (len) {
+               bsize = min(len, 256);
+               mxc_nand_read_buf(mtd, tmp, bsize);
+
+               if (memcmp(buf, tmp, bsize))
+                       return 1;
+
+               buf += bsize;
+               len -= bsize;
+       }
+
+       return 0;
+}
+
+/*
+ * This function is used by upper layer for select and
+ * deselect of the NAND chip
+ */
+static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+
+       switch (chip) {
+       case -1:
+               /* TODO: Disable the NFC clock */
+               if (host->clk_act)
+                       host->clk_act = 0;
+               break;
+       case 0:
+               /* TODO: Enable the NFC clock */
+               if (!host->clk_act)
+                       host->clk_act = 1;
+               break;
+
+       default:
+               break;
+       }
+}
+
+/*
+ * Used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash
+ */
+void mxc_nand_command(struct mtd_info *mtd, unsigned command,
+                               int column, int page_addr)
+{
+       struct nand_chip *nand_chip = mtd->priv;
+       struct mxc_nand_host *host = nand_chip->priv;
+
+       MTDDEBUG(MTD_DEBUG_LEVEL3,
+             "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+             command, column, page_addr);
+
+       /* Reset command state information */
+       host->status_request = false;
+
+       /* Command pre-processing step */
+       switch (command) {
+
+       case NAND_CMD_STATUS:
+               host->col_addr = 0;
+               host->status_request = true;
+               break;
+
+       case NAND_CMD_READ0:
+               host->page_addr = page_addr;
+               host->col_addr = column;
+               host->spare_only = false;
+               break;
+
+       case NAND_CMD_READOOB:
+               host->col_addr = column;
+               host->spare_only = true;
+               if (host->pagesize_2k)
+                       command = NAND_CMD_READ0; /* only READ0 is valid */
+               break;
+
+       case NAND_CMD_SEQIN:
+               if (column >= mtd->writesize) {
+                       /*
+                        * before sending SEQIN command for partial write,
+                        * we need read one page out. FSL NFC does not support
+                        * partial write. It always sends out 512+ecc+512+ecc
+                        * for large page nand flash. But for small page nand
+                        * flash, it does support SPARE ONLY operation.
+                        */
+                       if (host->pagesize_2k) {
+                               /* call ourself to read a page */
+                               mxc_nand_command(mtd, NAND_CMD_READ0, 0,
+                                               page_addr);
+                       }
+
+                       host->col_addr = column - mtd->writesize;
+                       host->spare_only = true;
+
+                       /* Set program pointer to spare region */
+                       if (!host->pagesize_2k)
+                               send_cmd(host, NAND_CMD_READOOB);
+               } else {
+                       host->spare_only = false;
+                       host->col_addr = column;
+
+                       /* Set program pointer to page start */
+                       if (!host->pagesize_2k)
+                               send_cmd(host, NAND_CMD_READ0);
+               }
+               break;
+
+       case NAND_CMD_PAGEPROG:
+               send_prog_page(host, 0, host->spare_only);
+
+               if (host->pagesize_2k && is_mxc_nfc_1()) {
+                       /* data in 4 areas */
+                       send_prog_page(host, 1, host->spare_only);
+                       send_prog_page(host, 2, host->spare_only);
+                       send_prog_page(host, 3, host->spare_only);
+               }
+
+               break;
+       }
+
+       /* Write out the command to the device. */
+       send_cmd(host, command);
+
+       /* Write out column address, if necessary */
+       if (column != -1) {
+               /*
+                * MXC NANDFC can only perform full page+spare or
+                * spare-only read/write. When the upper layers perform
+                * a read/write buffer operation, we will use the saved
+                * column address to index into the full page.
+                */
+               send_addr(host, 0);
+               if (host->pagesize_2k)
+                       /* another col addr cycle for 2k page */
+                       send_addr(host, 0);
+       }
+
+       /* Write out page address, if necessary */
+       if (page_addr != -1) {
+               u32 page_mask = nand_chip->pagemask;
+               do {
+                       send_addr(host, page_addr & 0xFF);
+                       page_addr >>= 8;
+                       page_mask >>= 8;
+               } while (page_mask);
+       }
+
+       /* Command post-processing step */
+       switch (command) {
+
+       case NAND_CMD_RESET:
+               break;
+
+       case NAND_CMD_READOOB:
+       case NAND_CMD_READ0:
+               if (host->pagesize_2k) {
+                       /* send read confirm command */
+                       send_cmd(host, NAND_CMD_READSTART);
+                       /* read for each AREA */
+                       send_read_page(host, 0, host->spare_only);
+                       if (is_mxc_nfc_1()) {
+                               send_read_page(host, 1, host->spare_only);
+                               send_read_page(host, 2, host->spare_only);
+                               send_read_page(host, 3, host->spare_only);
+                       }
+               } else {
+                       send_read_page(host, 0, host->spare_only);
+               }
+               break;
+
+       case NAND_CMD_READID:
+               host->col_addr = 0;
+               send_read_id(host);
+               break;
+
+       case NAND_CMD_PAGEPROG:
+               break;
+
+       case NAND_CMD_STATUS:
+               break;
+
+       case NAND_CMD_ERASE2:
+               break;
+       }
+}
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+                  NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 0,
+       .len = 4,
+       .veroffs = 4,
+       .maxblocks = 4,
+       .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+                  NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 0,
+       .len = 4,
+       .veroffs = 4,
+       .maxblocks = 4,
+       .pattern = mirror_pattern,
+};
+
+#endif
+
+int board_nand_init(struct nand_chip *this)
+{
+       struct mtd_info *mtd;
+#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+       uint32_t tmp;
+#endif
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+       this->bbt_options |= NAND_BBT_USE_FLASH;
+       this->bbt_td = &bbt_main_descr;
+       this->bbt_md = &bbt_mirror_descr;
+#endif
+
+       /* structures must be linked */
+       mtd = &host->mtd;
+       mtd->priv = this;
+       host->nand = this;
+
+       /* 5 us command delay time */
+       this->chip_delay = 5;
+
+       this->priv = host;
+       this->dev_ready = mxc_nand_dev_ready;
+       this->cmdfunc = mxc_nand_command;
+       this->select_chip = mxc_nand_select_chip;
+       this->read_byte = mxc_nand_read_byte;
+       this->read_word = mxc_nand_read_word;
+       this->write_buf = mxc_nand_write_buf;
+       this->read_buf = mxc_nand_read_buf;
+       this->verify_buf = mxc_nand_verify_buf;
+
+       host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
+#ifdef MXC_NFC_V3_2
+       host->ip_regs =
+               (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
+#endif
+       host->clk_act = 1;
+
+#ifdef CONFIG_MXC_NAND_HWECC
+       this->ecc.calculate = mxc_nand_calculate_ecc;
+       this->ecc.hwctl = mxc_nand_enable_hwecc;
+       this->ecc.correct = mxc_nand_correct_data;
+       if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
+               this->ecc.mode = NAND_ECC_HW_SYNDROME;
+               this->ecc.read_page = mxc_nand_read_page_syndrome;
+               this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
+               this->ecc.read_oob = mxc_nand_read_oob_syndrome;
+               this->ecc.write_page = mxc_nand_write_page_syndrome;
+               this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
+               this->ecc.write_oob = mxc_nand_write_oob_syndrome;
+               this->ecc.bytes = 9;
+               this->ecc.prepad = 7;
+       } else {
+               this->ecc.mode = NAND_ECC_HW;
+       }
+
+       if (is_mxc_nfc_1())
+               this->ecc.strength = 1;
+       else
+               this->ecc.strength = 4;
+
+       host->pagesize_2k = 0;
+
+       this->ecc.size = 512;
+       _mxc_nand_enable_hwecc(mtd, 1);
+#else
+       this->ecc.layout = &nand_soft_eccoob;
+       this->ecc.mode = NAND_ECC_SOFT;
+       _mxc_nand_enable_hwecc(mtd, 0);
+#endif
+       /* Reset NAND */
+       this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+       /* NAND bus width determines access functions used by upper layer */
+       if (is_16bit_nand())
+               this->options |= NAND_BUSWIDTH_16;
+
+#ifdef CONFIG_SYS_NAND_LARGEPAGE
+       host->pagesize_2k = 1;
+       this->ecc.layout = &nand_hw_eccoob2k;
+#else
+       host->pagesize_2k = 0;
+       this->ecc.layout = &nand_hw_eccoob;
+#endif
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+#ifdef MXC_NFC_V2_1
+       tmp = readnfc(&host->regs->config1);
+       tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
+       tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
+       writenfc(tmp, &host->regs->config1);
+       if (host->pagesize_2k)
+               writenfc(64/2, &host->regs->spare_area_size);
+       else
+               writenfc(16/2, &host->regs->spare_area_size);
+#endif
+
+       /*
+        * preset operation
+        * Unlock the internal RAM Buffer
+        */
+       writenfc(0x2, &host->regs->config);
+
+       /* Blocks to be unlocked */
+       writenfc(0x0, &host->regs->unlockstart_blkaddr);
+       /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
+        * unlockend_blkaddr, but the magic 0x4000 does not always work
+        * when writing more than some 32 megabytes (on 2k page nands)
+        * However 0xFFFF doesn't seem to have this kind
+        * of limitation (tried it back and forth several times).
+        * The linux kernel driver sets this to 0xFFFF for the v2 controller
+        * only, but probably this was not tested there for v1.
+        * The very same limitation seems to apply to this kernel driver.
+        * This might be NAND chip specific and the i.MX31 datasheet is
+        * extremely vague about the semantics of this register.
+        */
+       writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
+
+       /* Unlock Block Command for given address range */
+       writenfc(0x4, &host->regs->wrprot);
+#elif defined(MXC_NFC_V3_2)
+       writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
+       writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
+
+       /* Unlock the internal RAM Buffer */
+       writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
+                       &host->ip_regs->wrprot);
+
+       /* Blocks to be unlocked */
+       for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
+               writenfc(0x0 | 0xFFFF << 16,
+                               &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
+
+       writenfc(0, &host->ip_regs->ipc);
+
+       tmp = readnfc(&host->ip_regs->config2);
+       tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
+                       NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
+       tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
+
+       if (host->pagesize_2k) {
+               tmp |= NFC_V3_CONFIG2_SPAS(64/2);
+               tmp |= NFC_V3_CONFIG2_PS_2048;
+       } else {
+               tmp |= NFC_V3_CONFIG2_SPAS(16/2);
+               tmp |= NFC_V3_CONFIG2_PS_512;
+       }
+
+       writenfc(tmp, &host->ip_regs->config2);
+
+       tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
+                       NFC_V3_CONFIG3_NO_SDMA |
+                       NFC_V3_CONFIG3_RBB_MODE |
+                       NFC_V3_CONFIG3_SBB(6) | /* Reset default */
+                       NFC_V3_CONFIG3_ADD_OP(0);
+
+       if (!(this->options & NAND_BUSWIDTH_16))
+               tmp |= NFC_V3_CONFIG3_FW8;
+
+       writenfc(tmp, &host->ip_regs->config3);
+
+       writenfc(0, &host->ip_regs->delay_line);
+#endif
+
+       return 0;
+}