Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / u-boot / drivers / ddr / fsl / lc_common_dimm_params.c
diff --git a/qemu/roms/u-boot/drivers/ddr/fsl/lc_common_dimm_params.c b/qemu/roms/u-boot/drivers/ddr/fsl/lc_common_dimm_params.c
new file mode 100644 (file)
index 0000000..05a24dd
--- /dev/null
@@ -0,0 +1,567 @@
+/*
+ * Copyright 2008-2014 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
+static unsigned int
+compute_cas_latency(const dimm_params_t *dimm_params,
+                   common_timing_params_t *outpdimm,
+                   unsigned int number_of_dimms)
+{
+       unsigned int i;
+       unsigned int common_caslat;
+       unsigned int caslat_actual;
+       unsigned int retry = 16;
+       unsigned int tmp;
+       const unsigned int mclk_ps = get_memory_clk_period_ps();
+#ifdef CONFIG_SYS_FSL_DDR3
+       const unsigned int taamax = 20000;
+#else
+       const unsigned int taamax = 18000;
+#endif
+
+       /* compute the common CAS latency supported between slots */
+       tmp = dimm_params[0].caslat_x;
+       for (i = 1; i < number_of_dimms; i++) {
+               if (dimm_params[i].n_ranks)
+                       tmp &= dimm_params[i].caslat_x;
+       }
+       common_caslat = tmp;
+
+       /* validate if the memory clk is in the range of dimms */
+       if (mclk_ps < outpdimm->tckmin_x_ps) {
+               printf("DDR clock (MCLK cycle %u ps) is faster than "
+                       "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
+                       mclk_ps, outpdimm->tckmin_x_ps);
+       }
+#ifdef CONFIG_SYS_FSL_DDR4
+       if (mclk_ps > outpdimm->tckmax_ps) {
+               printf("DDR clock (MCLK cycle %u ps) is slower than DIMM(s) (tCKmax %u ps) can support.\n",
+                      mclk_ps, outpdimm->tckmax_ps);
+       }
+#endif
+       /* determine the acutal cas latency */
+       caslat_actual = (outpdimm->taamin_ps + mclk_ps - 1) / mclk_ps;
+       /* check if the dimms support the CAS latency */
+       while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
+               caslat_actual++;
+               retry--;
+       }
+       /* once the caculation of caslat_actual is completed
+        * we must verify that this CAS latency value does not
+        * exceed tAAmax, which is 20 ns for all DDR3 speed grades,
+        * 18ns for all DDR4 speed grades.
+        */
+       if (caslat_actual * mclk_ps > taamax) {
+               printf("The choosen cas latency %d is too large\n",
+                       caslat_actual);
+       }
+       outpdimm->lowest_common_spd_caslat = caslat_actual;
+       debug("lowest_common_spd_caslat is 0x%x\n", caslat_actual);
+
+       return 0;
+}
+#else  /* for DDR1 and DDR2 */
+static unsigned int
+compute_cas_latency(const dimm_params_t *dimm_params,
+                   common_timing_params_t *outpdimm,
+                   unsigned int number_of_dimms)
+{
+       int i;
+       const unsigned int mclk_ps = get_memory_clk_period_ps();
+       unsigned int lowest_good_caslat;
+       unsigned int not_ok;
+       unsigned int temp1, temp2;
+
+       debug("using mclk_ps = %u\n", mclk_ps);
+       if (mclk_ps > outpdimm->tckmax_ps) {
+               printf("Warning: DDR clock (%u ps) is slower than DIMM(s) (tCKmax %u ps)\n",
+                      mclk_ps, outpdimm->tckmax_ps);
+       }
+
+       /*
+        * Compute a CAS latency suitable for all DIMMs
+        *
+        * Strategy for SPD-defined latencies: compute only
+        * CAS latency defined by all DIMMs.
+        */
+
+       /*
+        * Step 1: find CAS latency common to all DIMMs using bitwise
+        * operation.
+        */
+       temp1 = 0xFF;
+       for (i = 0; i < number_of_dimms; i++) {
+               if (dimm_params[i].n_ranks) {
+                       temp2 = 0;
+                       temp2 |= 1 << dimm_params[i].caslat_x;
+                       temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
+                       temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
+                       /*
+                        * If there was no entry for X-2 (X-1) in
+                        * the SPD, then caslat_x_minus_2
+                        * (caslat_x_minus_1) contains either 255 or
+                        * 0xFFFFFFFF because that's what the glorious
+                        * __ilog2 function returns for an input of 0.
+                        * On 32-bit PowerPC, left shift counts with bit
+                        * 26 set (that the value of 255 or 0xFFFFFFFF
+                        * will have), cause the destination register to
+                        * be 0.  That is why this works.
+                        */
+                       temp1 &= temp2;
+               }
+       }
+
+       /*
+        * Step 2: check each common CAS latency against tCK of each
+        * DIMM's SPD.
+        */
+       lowest_good_caslat = 0;
+       temp2 = 0;
+       while (temp1) {
+               not_ok = 0;
+               temp2 =  __ilog2(temp1);
+               debug("checking common caslat = %u\n", temp2);
+
+               /* Check if this CAS latency will work on all DIMMs at tCK. */
+               for (i = 0; i < number_of_dimms; i++) {
+                       if (!dimm_params[i].n_ranks)
+                               continue;
+
+                       if (dimm_params[i].caslat_x == temp2) {
+                               if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
+                                       debug("CL = %u ok on DIMM %u at tCK=%u ps with tCKmin_X_ps of %u\n",
+                                             temp2, i, mclk_ps,
+                                             dimm_params[i].tckmin_x_ps);
+                                       continue;
+                               } else {
+                                       not_ok++;
+                               }
+                       }
+
+                       if (dimm_params[i].caslat_x_minus_1 == temp2) {
+                               unsigned int tckmin_x_minus_1_ps
+                                       = dimm_params[i].tckmin_x_minus_1_ps;
+                               if (mclk_ps >= tckmin_x_minus_1_ps) {
+                                       debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_1_ps of %u\n",
+                                             temp2, i, mclk_ps,
+                                             tckmin_x_minus_1_ps);
+                                       continue;
+                               } else {
+                                       not_ok++;
+                               }
+                       }
+
+                       if (dimm_params[i].caslat_x_minus_2 == temp2) {
+                               unsigned int tckmin_x_minus_2_ps
+                                       = dimm_params[i].tckmin_x_minus_2_ps;
+                               if (mclk_ps >= tckmin_x_minus_2_ps) {
+                                       debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_2_ps of %u\n",
+                                             temp2, i, mclk_ps,
+                                             tckmin_x_minus_2_ps);
+                                       continue;
+                               } else {
+                                       not_ok++;
+                               }
+                       }
+               }
+
+               if (!not_ok)
+                       lowest_good_caslat = temp2;
+
+               temp1 &= ~(1 << temp2);
+       }
+
+       debug("lowest common SPD-defined CAS latency = %u\n",
+             lowest_good_caslat);
+       outpdimm->lowest_common_spd_caslat = lowest_good_caslat;
+
+
+       /*
+        * Compute a common 'de-rated' CAS latency.
+        *
+        * The strategy here is to find the *highest* dereated cas latency
+        * with the assumption that all of the DIMMs will support a dereated
+        * CAS latency higher than or equal to their lowest dereated value.
+        */
+       temp1 = 0;
+       for (i = 0; i < number_of_dimms; i++)
+               temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
+
+       outpdimm->highest_common_derated_caslat = temp1;
+       debug("highest common dereated CAS latency = %u\n", temp1);
+
+       return 0;
+}
+#endif
+
+/*
+ * compute_lowest_common_dimm_parameters()
+ *
+ * Determine the worst-case DIMM timing parameters from the set of DIMMs
+ * whose parameters have been computed into the array pointed to
+ * by dimm_params.
+ */
+unsigned int
+compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
+                                     common_timing_params_t *outpdimm,
+                                     const unsigned int number_of_dimms)
+{
+       unsigned int i, j;
+
+       unsigned int tckmin_x_ps = 0;
+       unsigned int tckmax_ps = 0xFFFFFFFF;
+       unsigned int trcd_ps = 0;
+       unsigned int trp_ps = 0;
+       unsigned int tras_ps = 0;
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
+       unsigned int taamin_ps = 0;
+#endif
+#ifdef CONFIG_SYS_FSL_DDR4
+       unsigned int twr_ps = 15000;
+       unsigned int trfc1_ps = 0;
+       unsigned int trfc2_ps = 0;
+       unsigned int trfc4_ps = 0;
+       unsigned int trrds_ps = 0;
+       unsigned int trrdl_ps = 0;
+       unsigned int tccdl_ps = 0;
+#else
+       unsigned int twr_ps = 0;
+       unsigned int twtr_ps = 0;
+       unsigned int trfc_ps = 0;
+       unsigned int trrd_ps = 0;
+       unsigned int trtp_ps = 0;
+#endif
+       unsigned int trc_ps = 0;
+       unsigned int refresh_rate_ps = 0;
+       unsigned int extended_op_srt = 1;
+#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
+       unsigned int tis_ps = 0;
+       unsigned int tih_ps = 0;
+       unsigned int tds_ps = 0;
+       unsigned int tdh_ps = 0;
+       unsigned int tdqsq_max_ps = 0;
+       unsigned int tqhs_ps = 0;
+#endif
+       unsigned int temp1, temp2;
+       unsigned int additive_latency = 0;
+
+       temp1 = 0;
+       for (i = 0; i < number_of_dimms; i++) {
+               /*
+                * If there are no ranks on this DIMM,
+                * it probably doesn't exist, so skip it.
+                */
+               if (dimm_params[i].n_ranks == 0) {
+                       temp1++;
+                       continue;
+               }
+               if (dimm_params[i].n_ranks == 4 && i != 0) {
+                       printf("Found Quad-rank DIMM in wrong bank, ignored."
+                               " Software may not run as expected.\n");
+                       temp1++;
+                       continue;
+               }
+
+               /*
+                * check if quad-rank DIMM is plugged if
+                * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
+                * Only the board with proper design is capable
+                */
+#ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+               if (dimm_params[i].n_ranks == 4 && \
+                 CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
+                       printf("Found Quad-rank DIMM, not able to support.");
+                       temp1++;
+                       continue;
+               }
+#endif
+               /*
+                * Find minimum tckmax_ps to find fastest slow speed,
+                * i.e., this is the slowest the whole system can go.
+                */
+               tckmax_ps = min(tckmax_ps, dimm_params[i].tckmax_ps);
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
+               taamin_ps = max(taamin_ps, dimm_params[i].taa_ps);
+#endif
+               tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
+               trcd_ps = max(trcd_ps, dimm_params[i].trcd_ps);
+               trp_ps = max(trp_ps, dimm_params[i].trp_ps);
+               tras_ps = max(tras_ps, dimm_params[i].tras_ps);
+#ifdef CONFIG_SYS_FSL_DDR4
+               trfc1_ps = max(trfc1_ps, dimm_params[i].trfc1_ps);
+               trfc2_ps = max(trfc2_ps, dimm_params[i].trfc2_ps);
+               trfc4_ps = max(trfc4_ps, dimm_params[i].trfc4_ps);
+               trrds_ps = max(trrds_ps, dimm_params[i].trrds_ps);
+               trrdl_ps = max(trrdl_ps, dimm_params[i].trrdl_ps);
+               tccdl_ps = max(tccdl_ps, dimm_params[i].tccdl_ps);
+#else
+               twr_ps = max(twr_ps, dimm_params[i].twr_ps);
+               twtr_ps = max(twtr_ps, dimm_params[i].twtr_ps);
+               trfc_ps = max(trfc_ps, dimm_params[i].trfc_ps);
+               trrd_ps = max(trrd_ps, dimm_params[i].trrd_ps);
+               trtp_ps = max(trtp_ps, dimm_params[i].trtp_ps);
+#endif
+               trc_ps = max(trc_ps, dimm_params[i].trc_ps);
+#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
+               tis_ps = max(tis_ps, dimm_params[i].tis_ps);
+               tih_ps = max(tih_ps, dimm_params[i].tih_ps);
+               tds_ps = max(tds_ps, dimm_params[i].tds_ps);
+               tdh_ps = max(tdh_ps, dimm_params[i].tdh_ps);
+               tqhs_ps = max(tqhs_ps, dimm_params[i].tqhs_ps);
+               /*
+                * Find maximum tdqsq_max_ps to find slowest.
+                *
+                * FIXME: is finding the slowest value the correct
+                * strategy for this parameter?
+                */
+               tdqsq_max_ps = max(tdqsq_max_ps, dimm_params[i].tdqsq_max_ps);
+#endif
+               refresh_rate_ps = max(refresh_rate_ps,
+                                     dimm_params[i].refresh_rate_ps);
+               /* extended_op_srt is either 0 or 1, 0 having priority */
+               extended_op_srt = min(extended_op_srt,
+                                     dimm_params[i].extended_op_srt);
+       }
+
+       outpdimm->ndimms_present = number_of_dimms - temp1;
+
+       if (temp1 == number_of_dimms) {
+               debug("no dimms this memory controller\n");
+               return 0;
+       }
+
+       outpdimm->tckmin_x_ps = tckmin_x_ps;
+       outpdimm->tckmax_ps = tckmax_ps;
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
+       outpdimm->taamin_ps = taamin_ps;
+#endif
+       outpdimm->trcd_ps = trcd_ps;
+       outpdimm->trp_ps = trp_ps;
+       outpdimm->tras_ps = tras_ps;
+#ifdef CONFIG_SYS_FSL_DDR4
+       outpdimm->trfc1_ps = trfc1_ps;
+       outpdimm->trfc2_ps = trfc2_ps;
+       outpdimm->trfc4_ps = trfc4_ps;
+       outpdimm->trrds_ps = trrds_ps;
+       outpdimm->trrdl_ps = trrdl_ps;
+       outpdimm->tccdl_ps = tccdl_ps;
+#else
+       outpdimm->twtr_ps = twtr_ps;
+       outpdimm->trfc_ps = trfc_ps;
+       outpdimm->trrd_ps = trrd_ps;
+       outpdimm->trtp_ps = trtp_ps;
+#endif
+       outpdimm->twr_ps = twr_ps;
+       outpdimm->trc_ps = trc_ps;
+       outpdimm->refresh_rate_ps = refresh_rate_ps;
+       outpdimm->extended_op_srt = extended_op_srt;
+#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
+       outpdimm->tis_ps = tis_ps;
+       outpdimm->tih_ps = tih_ps;
+       outpdimm->tds_ps = tds_ps;
+       outpdimm->tdh_ps = tdh_ps;
+       outpdimm->tdqsq_max_ps = tdqsq_max_ps;
+       outpdimm->tqhs_ps = tqhs_ps;
+#endif
+
+       /* Determine common burst length for all DIMMs. */
+       temp1 = 0xff;
+       for (i = 0; i < number_of_dimms; i++) {
+               if (dimm_params[i].n_ranks) {
+                       temp1 &= dimm_params[i].burst_lengths_bitmask;
+               }
+       }
+       outpdimm->all_dimms_burst_lengths_bitmask = temp1;
+
+       /* Determine if all DIMMs registered buffered. */
+       temp1 = temp2 = 0;
+       for (i = 0; i < number_of_dimms; i++) {
+               if (dimm_params[i].n_ranks) {
+                       if (dimm_params[i].registered_dimm) {
+                               temp1 = 1;
+#ifndef CONFIG_SPL_BUILD
+                               printf("Detected RDIMM %s\n",
+                                       dimm_params[i].mpart);
+#endif
+                       } else {
+                               temp2 = 1;
+#ifndef CONFIG_SPL_BUILD
+                               printf("Detected UDIMM %s\n",
+                                       dimm_params[i].mpart);
+#endif
+                       }
+               }
+       }
+
+       outpdimm->all_dimms_registered = 0;
+       outpdimm->all_dimms_unbuffered = 0;
+       if (temp1 && !temp2) {
+               outpdimm->all_dimms_registered = 1;
+       } else if (!temp1 && temp2) {
+               outpdimm->all_dimms_unbuffered = 1;
+       } else {
+               printf("ERROR:  Mix of registered buffered and unbuffered "
+                               "DIMMs detected!\n");
+       }
+
+       temp1 = 0;
+       if (outpdimm->all_dimms_registered)
+               for (j = 0; j < 16; j++) {
+                       outpdimm->rcw[j] = dimm_params[0].rcw[j];
+                       for (i = 1; i < number_of_dimms; i++) {
+                               if (!dimm_params[i].n_ranks)
+                                       continue;
+                               if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
+                                       temp1 = 1;
+                                       break;
+                               }
+                       }
+               }
+
+       if (temp1 != 0)
+               printf("ERROR: Mix different RDIMM detected!\n");
+
+       /* calculate cas latency for all DDR types */
+       if (compute_cas_latency(dimm_params, outpdimm, number_of_dimms))
+               return 1;
+
+       /* Determine if all DIMMs ECC capable. */
+       temp1 = 1;
+       for (i = 0; i < number_of_dimms; i++) {
+               if (dimm_params[i].n_ranks &&
+                       !(dimm_params[i].edc_config & EDC_ECC)) {
+                       temp1 = 0;
+                       break;
+               }
+       }
+       if (temp1) {
+               debug("all DIMMs ECC capable\n");
+       } else {
+               debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
+       }
+       outpdimm->all_dimms_ecc_capable = temp1;
+
+       /*
+        * Compute additive latency.
+        *
+        * For DDR1, additive latency should be 0.
+        *
+        * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
+        *      which comes from Trcd, and also note that:
+        *          add_lat + caslat must be >= 4
+        *
+        * For DDR3, we use the AL=0
+        *
+        * When to use additive latency for DDR2:
+        *
+        * I. Because you are using CL=3 and need to do ODT on writes and
+        *    want functionality.
+        *    1. Are you going to use ODT? (Does your board not have
+        *      additional termination circuitry for DQ, DQS, DQS_,
+        *      DM, RDQS, RDQS_ for x4/x8 configs?)
+        *    2. If so, is your lowest supported CL going to be 3?
+        *    3. If so, then you must set AL=1 because
+        *
+        *       WL >= 3 for ODT on writes
+        *       RL = AL + CL
+        *       WL = RL - 1
+        *       ->
+        *       WL = AL + CL - 1
+        *       AL + CL - 1 >= 3
+        *       AL + CL >= 4
+        *  QED
+        *
+        *  RL >= 3 for ODT on reads
+        *  RL = AL + CL
+        *
+        *  Since CL aren't usually less than 2, AL=0 is a minimum,
+        *  so the WL-derived AL should be the  -- FIXME?
+        *
+        * II. Because you are using auto-precharge globally and want to
+        *     use additive latency (posted CAS) to get more bandwidth.
+        *     1. Are you going to use auto-precharge mode globally?
+        *
+        *        Use addtivie latency and compute AL to be 1 cycle less than
+        *        tRCD, i.e. the READ or WRITE command is in the cycle
+        *        immediately following the ACTIVATE command..
+        *
+        * III. Because you feel like it or want to do some sort of
+        *      degraded-performance experiment.
+        *     1.  Do you just want to use additive latency because you feel
+        *         like it?
+        *
+        * Validation:  AL is less than tRCD, and within the other
+        * read-to-precharge constraints.
+        */
+
+       additive_latency = 0;
+
+#if defined(CONFIG_SYS_FSL_DDR2)
+       if ((outpdimm->lowest_common_spd_caslat < 4) &&
+           (picos_to_mclk(trcd_ps) > outpdimm->lowest_common_spd_caslat)) {
+               additive_latency = picos_to_mclk(trcd_ps) -
+                                  outpdimm->lowest_common_spd_caslat;
+               if (mclk_to_picos(additive_latency) > trcd_ps) {
+                       additive_latency = picos_to_mclk(trcd_ps);
+                       debug("setting additive_latency to %u because it was "
+                               " greater than tRCD_ps\n", additive_latency);
+               }
+       }
+#endif
+
+       /*
+        * Validate additive latency
+        *
+        * AL <= tRCD(min)
+        */
+       if (mclk_to_picos(additive_latency) > trcd_ps) {
+               printf("Error: invalid additive latency exceeds tRCD(min).\n");
+               return 1;
+       }
+
+       /*
+        * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
+        * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
+        * ADD_LAT (the register) must be set to a value less
+        * than ACTTORW if WL = 1, then AL must be set to 1
+        * RD_TO_PRE (the register) must be set to a minimum
+        * tRTP + AL if AL is nonzero
+        */
+
+       /*
+        * Additive latency will be applied only if the memctl option to
+        * use it.
+        */
+       outpdimm->additive_latency = additive_latency;
+
+       debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
+       debug("trcd_ps   = %u\n", outpdimm->trcd_ps);
+       debug("trp_ps    = %u\n", outpdimm->trp_ps);
+       debug("tras_ps   = %u\n", outpdimm->tras_ps);
+#ifdef CONFIG_SYS_FSL_DDR4
+       debug("trfc1_ps = %u\n", trfc1_ps);
+       debug("trfc2_ps = %u\n", trfc2_ps);
+       debug("trfc4_ps = %u\n", trfc4_ps);
+       debug("trrds_ps = %u\n", trrds_ps);
+       debug("trrdl_ps = %u\n", trrdl_ps);
+       debug("tccdl_ps = %u\n", tccdl_ps);
+#else
+       debug("twtr_ps   = %u\n", outpdimm->twtr_ps);
+       debug("trfc_ps   = %u\n", outpdimm->trfc_ps);
+       debug("trrd_ps   = %u\n", outpdimm->trrd_ps);
+#endif
+       debug("twr_ps    = %u\n", outpdimm->twr_ps);
+       debug("trc_ps    = %u\n", outpdimm->trc_ps);
+
+       return 0;
+}