Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / u-boot / board / sacsng / sacsng.c
diff --git a/qemu/roms/u-boot/board/sacsng/sacsng.c b/qemu/roms/u-boot/board/sacsng/sacsng.c
new file mode 100644 (file)
index 0000000..91c4987
--- /dev/null
@@ -0,0 +1,848 @@
+/*
+ * (C) Copyright 2002
+ * Custom IDEAS, Inc. <www.cideas.com>
+ * Gerald Van Baren <vanbaren@cideas.com>
+ *
+ * SPDX-License-Identifier:    GPL-2.0+
+ */
+
+#include <common.h>
+#include <asm/u-boot.h>
+#include <ioports.h>
+#include <mpc8260.h>
+#include <i2c.h>
+#include <spi.h>
+#include <command.h>
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+#include <status_led.h>
+#endif
+
+#ifdef CONFIG_ETHER_LOOPBACK_TEST
+extern void eth_loopback_test(void);
+#endif /* CONFIG_ETHER_LOOPBACK_TEST */
+
+#include "clkinit.h"
+#include "ioconfig.h"          /* I/O configuration table */
+
+/*
+ * PBI Page Based Interleaving
+ *   PSDMR_PBI page based interleaving
+ *   0         bank based interleaving
+ * External Address Multiplexing (EAMUX) adds a clock to address cycles
+ *   (this can help with marginal board layouts)
+ *   PSDMR_EAMUX  adds a clock
+ *   0            no extra clock
+ * Buffer Command (BUFCMD) adds a clock to command cycles.
+ *   PSDMR_BUFCMD adds a clock
+ *   0            no extra clock
+ */
+#define CONFIG_PBI             PSDMR_PBI
+#define PESSIMISTIC_SDRAM      0
+#define EAMUX                  0       /* EST requires EAMUX */
+#define BUFCMD                 0
+
+/*
+ * ADC/DAC Defines:
+ */
+#define INITIAL_SAMPLE_RATE 10016      /* Initial Daq sample rate */
+#define INITIAL_RIGHT_JUST  0  /* Initial DAC right justification */
+#define INITIAL_MCLK_DIVIDE 0  /* Initial MCLK Divide */
+#define INITIAL_SAMPLE_64X  1  /* Initial  64x clocking mode */
+#define INITIAL_SAMPLE_128X 0  /* Initial 128x clocking mode */
+
+/*
+ * ADC Defines:
+ */
+#define I2C_ADC_1_ADDR 0x0E    /* I2C Address of the ADC #1 */
+#define I2C_ADC_2_ADDR 0x0F    /* I2C Address of the ADC #2 */
+
+#define ADC_SDATA1_MASK 0x00020000     /* PA14 - CH12SDATA_PU   */
+#define ADC_SDATA2_MASK 0x00010000     /* PA15 - CH34SDATA_PU   */
+
+#define ADC_VREF_CAP           100     /* VREF capacitor in uF */
+#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP)  /* 10 usec per uF, in usec */
+#define ADC_SDATA_DELAY                100     /* ADC SDATA release delay in usec */
+#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
+                                       /* Wait at least 4100 LRCLK's */
+
+#define ADC_REG1_FRAME_START    0x80   /* Frame start */
+#define ADC_REG1_GROUND_CAL     0x40   /* Ground calibration enable */
+#define ADC_REG1_ANA_MOD_PDOWN  0x20   /* Analog modulator section in power down */
+#define ADC_REG1_DIG_MOD_PDOWN  0x10   /* Digital modulator section in power down */
+
+#define ADC_REG2_128x           0x80   /* Oversample at 128x */
+#define ADC_REG2_CAL            0x40   /* System calibration enable */
+#define ADC_REG2_CHANGE_SIGN    0x20   /* Change sign enable */
+#define ADC_REG2_LR_DISABLE     0x10   /* Left/Right output disable */
+#define ADC_REG2_HIGH_PASS_DIS  0x08   /* High pass filter disable */
+#define ADC_REG2_SLAVE_MODE     0x04   /* Slave mode */
+#define ADC_REG2_DFS            0x02   /* Digital format select */
+#define ADC_REG2_MUTE           0x01   /* Mute */
+
+#define ADC_REG7_ADDR_ENABLE    0x80   /* Address enable */
+#define ADC_REG7_PEAK_ENABLE    0x40   /* Peak enable */
+#define ADC_REG7_PEAK_UPDATE    0x20   /* Peak update */
+#define ADC_REG7_PEAK_FORMAT    0x10   /* Peak display format */
+#define ADC_REG7_DIG_FILT_PDOWN 0x04   /* Digital filter power down enable */
+#define ADC_REG7_FIR2_IN_EN     0x02   /* External FIR2 input enable */
+#define ADC_REG7_PSYCHO_EN      0x01   /* External pyscho filter input enable */
+
+/*
+ * DAC Defines:
+ */
+
+#define I2C_DAC_ADDR 0x11      /* I2C Address of the DAC */
+
+#define DAC_RST_MASK 0x00008000        /* PA16 - DAC_RST*  */
+#define DAC_RESET_DELAY    100 /* DAC reset delay in usec */
+#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */
+
+#define DAC_REG1_AMUTE         0x80    /* Auto-mute */
+
+#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4)     /* Fmt 0: Left justified 24 bit  */
+#define DAC_REG1_I2S_24_BIT       (1 << 4)     /* Fmt 1: I2S up to 24 bit       */
+#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4)     /* Fmt 2: Right justified 16 bit */
+#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4)     /* Fmt 3: Right justified 24 bit */
+#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4)     /* Fmt 4: Right justified 20 bit */
+#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4)     /* Fmt 5: Right justified 18 bit */
+
+#define DAC_REG1_DEM_NO           (0 << 2)     /* No      De-emphasis  */
+#define DAC_REG1_DEM_44KHZ        (1 << 2)     /* 44.1KHz De-emphasis  */
+#define DAC_REG1_DEM_48KHZ        (2 << 2)     /* 48KHz   De-emphasis  */
+#define DAC_REG1_DEM_32KHZ        (3 << 2)     /* 32KHz   De-emphasis  */
+
+#define DAC_REG1_SINGLE 0      /*   4- 50KHz sample rate  */
+#define DAC_REG1_DOUBLE 1      /*  50-100KHz sample rate  */
+#define DAC_REG1_QUAD   2      /* 100-200KHz sample rate  */
+#define DAC_REG1_DSD    3      /* Direct Stream Data, DSD */
+
+#define DAC_REG5_INVERT_A   0x80       /* Invert channel A */
+#define DAC_REG5_INVERT_B   0x40       /* Invert channel B */
+#define DAC_REG5_I2C_MODE   0x20       /* Control port (I2C) mode */
+#define DAC_REG5_POWER_DOWN 0x10       /* Power down mode */
+#define DAC_REG5_MUTEC_A_B  0x08       /* Mutec A=B */
+#define DAC_REG5_FREEZE     0x04       /* Freeze */
+#define DAC_REG5_MCLK_DIV   0x02       /* MCLK divide by 2 */
+#define DAC_REG5_RESERVED   0x01       /* Reserved */
+
+/*
+ * Check Board Identity:
+ */
+
+int checkboard(void)
+{
+       printf("SACSng\n");
+
+       return 0;
+}
+
+phys_size_t initdram(int board_type)
+{
+       volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
+       volatile memctl8260_t *memctl = &immap->im_memctl;
+       volatile uchar c = 0;
+       volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8);
+       uint psdmr = CONFIG_SYS_PSDMR;
+       int i;
+       uint psrt = 14;         /* for no SPD */
+       uint chipselects = 1;   /* for no SPD */
+       uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */
+       uint or = CONFIG_SYS_OR2_PRELIM;        /* for no SPD */
+
+#ifdef SDRAM_SPD_ADDR
+       uint data_width;
+       uint rows;
+       uint banks;
+       uint cols;
+       uint caslatency;
+       uint width;
+       uint rowst;
+       uint sdam;
+       uint bsma;
+       uint sda10;
+       u_char data;
+       u_char cksum;
+       int j;
+#endif
+
+#ifdef SDRAM_SPD_ADDR
+       /* Keep the compiler from complaining about potentially uninitialized vars */
+       data_width = chipselects = rows = banks = cols = caslatency = psrt =
+               0;
+
+       /*
+        * Read the SDRAM SPD EEPROM via I2C.
+        */
+       i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
+       cksum = data;
+       for (j = 1; j < 64; j++) {      /* read only the checksummed bytes */
+               /* note: the I2C address autoincrements when alen == 0 */
+               i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
+               if (j == 5)
+                       chipselects = data & 0x0F;
+               else if (j == 6)
+                       data_width = data;
+               else if (j == 7)
+                       data_width |= data << 8;
+               else if (j == 3)
+                       rows = data & 0x0F;
+               else if (j == 4)
+                       cols = data & 0x0F;
+               else if (j == 12) {
+                       /*
+                        * Refresh rate: this assumes the prescaler is set to
+                        * approximately 1uSec per tick.
+                        */
+                       switch (data & 0x7F) {
+                       default:
+                       case 0:
+                               psrt = 14;      /*  15.625uS */
+                               break;
+                       case 1:
+                               psrt = 2;       /*   3.9uS   */
+                               break;
+                       case 2:
+                               psrt = 6;       /*   7.8uS   */
+                               break;
+                       case 3:
+                               psrt = 29;      /*  31.3uS   */
+                               break;
+                       case 4:
+                               psrt = 60;      /*  62.5uS   */
+                               break;
+                       case 5:
+                               psrt = 120;     /* 125uS     */
+                               break;
+                       }
+               } else if (j == 17)
+                       banks = data;
+               else if (j == 18) {
+                       caslatency = 3; /* default CL */
+#if(PESSIMISTIC_SDRAM)
+                       if ((data & 0x04) != 0)
+                               caslatency = 3;
+                       else if ((data & 0x02) != 0)
+                               caslatency = 2;
+                       else if ((data & 0x01) != 0)
+                               caslatency = 1;
+#else
+                       if ((data & 0x01) != 0)
+                               caslatency = 1;
+                       else if ((data & 0x02) != 0)
+                               caslatency = 2;
+                       else if ((data & 0x04) != 0)
+                               caslatency = 3;
+#endif
+                       else {
+                               printf("WARNING: Unknown CAS latency 0x%02X, using 3\n", data);
+                       }
+               } else if (j == 63) {
+                       if (data != cksum) {
+                               printf("WARNING: Configuration data checksum failure:" " is 0x%02x, calculated 0x%02x\n", data, cksum);
+                       }
+               }
+               cksum += data;
+       }
+
+       /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
+       if (caslatency < 2) {
+               printf("WARNING: CL was %d, forcing to 2\n", caslatency);
+               caslatency = 2;
+       }
+       if (rows > 14) {
+               printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n",
+                       rows);
+               rows = 14;
+       }
+       if (cols > 11) {
+               printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n",
+                       cols);
+               cols = 11;
+       }
+
+       if ((data_width != 64) && (data_width != 72)) {
+               printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
+                       data_width);
+       }
+       width = 3;              /* 2^3 = 8 bytes = 64 bits wide */
+       /*
+        * Convert banks into log2(banks)
+        */
+       if (banks == 2)
+               banks = 1;
+       else if (banks == 4)
+               banks = 2;
+       else if (banks == 8)
+               banks = 3;
+
+       sdram_size = 1 << (rows + cols + banks + width);
+
+#if(CONFIG_PBI == 0)           /* bank-based interleaving */
+       rowst = ((32 - 6) - (rows + cols + width)) * 2;
+#else
+       rowst = 32 - (rows + banks + cols + width);
+#endif
+
+       or = ~(sdram_size - 1) |        /* SDAM address mask    */
+               ((banks - 1) << 13) |   /* banks per device     */
+               (rowst << 9) |          /* rowst                */
+               ((rows - 9) << 6);      /* numr                 */
+
+       memctl->memc_or2 = or;
+
+       /*
+        * SDAM specifies the number of columns that are multiplexed
+        * (reference AN2165/D), defined to be (columns - 6) for page
+        * interleave, (columns - 8) for bank interleave.
+        *
+        * BSMA is 14 - max(rows, cols).  The bank select lines come
+        * into play above the highest "address" line going into the
+        * the SDRAM.
+        */
+#if(CONFIG_PBI == 0)           /* bank-based interleaving */
+       sdam = cols - 8;
+       bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
+       sda10 = sdam + 2;
+#else
+       sdam = cols - 6;
+       bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
+       sda10 = sdam;
+#endif
+#if(PESSIMISTIC_SDRAM)
+       psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_16_CLK |
+               PSDMR_PRETOACT_8W | PSDMR_ACTTORW_8W | PSDMR_WRC_4C |
+               PSDMR_EAMUX | PSDMR_BUFCMD) | caslatency |
+               ((caslatency - 1) << 6) |       /* LDOTOPRE is CL - 1 */
+               (sdam << 24) | (bsma << 21) | (sda10 << 18);
+#else
+       psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_7_CLK |
+               PSDMR_PRETOACT_3W |     /* 1 for 7E parts (fast PC-133) */
+               PSDMR_ACTTORW_2W |      /* 1 for 7E parts (fast PC-133) */
+               PSDMR_WRC_1C |  /* 1 clock + 7nSec */
+               EAMUX | BUFCMD) |
+               caslatency | ((caslatency - 1) << 6) |  /* LDOTOPRE is CL - 1 */
+               (sdam << 24) | (bsma << 21) | (sda10 << 18);
+#endif
+#endif
+
+       /*
+        * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
+        *
+        * "At system reset, initialization software must set up the
+        *  programmable parameters in the memory controller banks registers
+        *  (ORx, BRx, P/LSDMR). After all memory parameters are configured,
+        *  system software should execute the following initialization sequence
+        *  for each SDRAM device.
+        *
+        *  1. Issue a PRECHARGE-ALL-BANKS command
+        *  2. Issue eight CBR REFRESH commands
+        *  3. Issue a MODE-SET command to initialize the mode register
+        *
+        * Quote from Micron MT48LC8M16A2 data sheet:
+        *
+        *  "...the SDRAM requires a 100uS delay prior to issuing any
+        *  command other than a COMMAND INHIBIT or NOP.  Starting at some
+        *  point during this 100uS period and continuing at least through
+        *  the end of this period, COMMAND INHIBIT or NOP commands should
+        *  be applied."
+        *
+        *  "Once the 100uS delay has been satisfied with at least one COMMAND
+        *  INHIBIT or NOP command having been applied, a /PRECHARGE command/
+        *  should be applied.  All banks must then be precharged, thereby
+        *  placing the device in the all banks idle state."
+        *
+        *  "Once in the idle state, /two/ AUTO REFRESH cycles must be
+        *  performed.  After the AUTO REFRESH cycles are complete, the
+        *  SDRAM is ready for mode register programming."
+        *
+        *  (/emphasis/ mine, gvb)
+        *
+        *  The way I interpret this, Micron start up sequence is:
+        *  1. Issue a PRECHARGE-BANK command (initial precharge)
+        *  2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
+        *  3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
+        *  4. Issue a MODE-SET command to initialize the mode register
+        *
+        *  --------
+        *
+        *  The initial commands are executed by setting P/LSDMR[OP] and
+        *  accessing the SDRAM with a single-byte transaction."
+        *
+        * The appropriate BRx/ORx registers have already been set when we
+        * get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE.
+        */
+
+       memctl->memc_mptpr = CONFIG_SYS_MPTPR;
+       memctl->memc_psrt = psrt;
+
+       memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
+       *ramaddr = c;
+
+       memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
+       for (i = 0; i < 8; i++)
+               *ramaddr = c;
+
+       memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
+       *ramaddr = c;
+
+       memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
+       *ramaddr = c;
+
+       /*
+        * Do it a second time for the second set of chips if the DIMM has
+        * two chip selects (double sided).
+        */
+       if (chipselects > 1) {
+               ramaddr += sdram_size;
+
+               memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size;
+               memctl->memc_or3 = or;
+
+               memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
+               *ramaddr = c;
+
+               memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
+               for (i = 0; i < 8; i++)
+                       *ramaddr = c;
+
+               memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
+               *ramaddr = c;
+
+               memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
+               *ramaddr = c;
+       }
+
+       /* return total ram size */
+       return (sdram_size * chipselects);
+}
+
+/*-----------------------------------------------------------------------
+ * Board Control Functions
+ */
+void board_poweroff(void)
+{
+       while (1);              /* hang forever */
+}
+
+
+#ifdef CONFIG_MISC_INIT_R
+/* ------------------------------------------------------------------------- */
+int misc_init_r(void)
+{
+       /*
+        * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
+        */
+       volatile ioport_t *iopa =
+               ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */ );
+       volatile ioport_t *iop =
+               ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);
+
+       int reg;                /* I2C register value */
+       char *ep;               /* Environment pointer */
+       char str_buf[12];       /* sprintf output buffer */
+       int sample_rate;        /* ADC/DAC sample rate */
+       int sample_64x;         /* Use  64/4 clocking for the ADC/DAC */
+       int sample_128x;        /* Use 128/4 clocking for the ADC/DAC */
+       int right_just;         /* Is the data to the DAC right justified? */
+       int mclk_divide;        /* MCLK Divide */
+       int quiet;              /* Quiet or minimal output mode */
+
+       quiet = 0;
+
+       if ((ep = getenv("quiet")) != NULL)
+               quiet = simple_strtol(ep, NULL, 10);
+       else
+               setenv("quiet", "0");
+
+       /*
+        * SACSng custom initialization:
+        *    Start the ADC and DAC clocks, since the Crystal parts do not
+        *    work on the I2C bus until the clocks are running.
+        */
+
+       sample_rate = INITIAL_SAMPLE_RATE;
+       if ((ep = getenv("DaqSampleRate")) != NULL)
+               sample_rate = simple_strtol(ep, NULL, 10);
+
+       sample_64x = INITIAL_SAMPLE_64X;
+       sample_128x = INITIAL_SAMPLE_128X;
+       if ((ep = getenv("Daq64xSampling")) != NULL) {
+               sample_64x = simple_strtol(ep, NULL, 10);
+               if (sample_64x)
+                       sample_128x = 0;
+               else
+                       sample_128x = 1;
+       } else {
+               if ((ep = getenv("Daq128xSampling")) != NULL) {
+                       sample_128x = simple_strtol(ep, NULL, 10);
+                       if (sample_128x)
+                               sample_64x = 0;
+                       else
+                               sample_64x = 1;
+               }
+       }
+
+       /*
+        * Stop the clocks and wait for at least 1 LRCLK period
+        * to make sure the clocking has really stopped.
+        */
+       Daq_Stop_Clocks();
+       udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
+
+       /*
+        * Initialize the clocks with the new rates
+        */
+       Daq_Init_Clocks(sample_rate, sample_64x);
+       sample_rate = Daq_Get_SampleRate();
+
+       /*
+        * Start the clocks and wait for at least 1 LRCLK period
+        * to make sure the clocking has become stable.
+        */
+       Daq_Start_Clocks(sample_rate);
+       udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
+
+       sprintf(str_buf, "%d", sample_rate);
+       setenv("DaqSampleRate", str_buf);
+
+       if (sample_64x) {
+               setenv("Daq64xSampling", "1");
+               setenv("Daq128xSampling", NULL);
+       } else {
+               setenv("Daq64xSampling", NULL);
+               setenv("Daq128xSampling", "1");
+       }
+
+       /*
+        * Display the ADC/DAC clocking information
+        */
+       if (!quiet)
+               Daq_Display_Clocks();
+
+       /*
+        * Determine the DAC data justification
+        */
+
+       right_just = INITIAL_RIGHT_JUST;
+       if ((ep = getenv("DaqDACRightJustified")) != NULL)
+               right_just = simple_strtol(ep, NULL, 10);
+
+       sprintf(str_buf, "%d", right_just);
+       setenv("DaqDACRightJustified", str_buf);
+
+       /*
+        * Determine the DAC MCLK Divide
+        */
+
+       mclk_divide = INITIAL_MCLK_DIVIDE;
+       if ((ep = getenv("DaqDACMClockDivide")) != NULL)
+               mclk_divide = simple_strtol(ep, NULL, 10);
+
+       sprintf(str_buf, "%d", mclk_divide);
+       setenv("DaqDACMClockDivide", str_buf);
+
+       /*
+        * Initializing the I2C address in the Crystal A/Ds:
+        *
+        * 1) Wait for VREF cap to settle (10uSec per uF)
+        * 2) Release pullup on SDATA
+        * 3) Write the I2C address to register 6
+        * 4) Enable address matching by setting the MSB in register 7
+        */
+
+       if (!quiet)
+               printf("Initializing the ADC...\n");
+
+       udelay(ADC_INITIAL_DELAY);      /* 10uSec per uF of VREF cap */
+
+       iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */
+       udelay(ADC_SDATA_DELAY);        /* arbitrary settling time */
+
+       i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR);      /* set address */
+       i2c_reg_write(I2C_ADC_1_ADDR, 0x07,     /* turn on ADDREN */
+                     ADC_REG7_ADDR_ENABLE);
+
+       i2c_reg_write(I2C_ADC_1_ADDR, 0x02,     /* 128x, slave mode, !HPEN */
+                     (sample_64x ? 0 : ADC_REG2_128x) |
+                     ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
+
+       reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
+       if (reg != I2C_ADC_1_ADDR) {
+               printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
+                       reg, I2C_ADC_1_ADDR);
+       }
+
+       iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */
+       udelay(ADC_SDATA_DELAY);        /* arbitrary settling time */
+
+       /* set address (do not set ADDREN yet) */
+       i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);
+
+       i2c_reg_write(I2C_ADC_2_ADDR, 0x02,     /* 64x, slave mode, !HPEN */
+                     (sample_64x ? 0 : ADC_REG2_128x) |
+                     ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
+
+       reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
+       if (reg != I2C_ADC_2_ADDR) {
+               printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
+                       reg, I2C_ADC_2_ADDR);
+       }
+
+       i2c_reg_write(I2C_ADC_1_ADDR, 0x01,     /* set FSTART and GNDCAL */
+                     ADC_REG1_FRAME_START | ADC_REG1_GROUND_CAL);
+
+       i2c_reg_write(I2C_ADC_1_ADDR, 0x02,     /* Start calibration */
+                     (sample_64x ? 0 : ADC_REG2_128x) |
+                     ADC_REG2_CAL |
+                     ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
+
+       udelay(ADC_CAL_DELAY);  /* a minimum of 4100 LRCLKs */
+       i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00);      /* remove GNDCAL */
+
+       /*
+        * Now that we have synchronized the ADC's, enable address
+        * selection on the second ADC as well as the first.
+        */
+       i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
+
+       /*
+        * Initialize the Crystal DAC
+        *
+        * Two of the config lines are used for I2C so we have to set them
+        * to the proper initialization state without inadvertantly
+        * sending an I2C "start" sequence.  When we bring the I2C back to
+        * the normal state, we send an I2C "stop" sequence.
+        */
+       if (!quiet)
+               printf("Initializing the DAC...\n");
+
+       /*
+        * Bring the I2C clock and data lines low for initialization
+        */
+       I2C_SCL(0);
+       I2C_DELAY;
+       I2C_SDA(0);
+       I2C_ACTIVE;
+       I2C_DELAY;
+
+       /* Reset the DAC */
+       iopa->pdat &= ~DAC_RST_MASK;
+       udelay(DAC_RESET_DELAY);
+
+       /* Release the DAC reset */
+       iopa->pdat |= DAC_RST_MASK;
+       udelay(DAC_INITIAL_DELAY);
+
+       /*
+        * Cause the DAC to:
+        *     Enable control port (I2C mode)
+        *     Going into power down
+        */
+       i2c_reg_write(I2C_DAC_ADDR, 0x05,
+                     DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN);
+
+       /*
+        * Cause the DAC to:
+        *     Enable control port (I2C mode)
+        *     Going into power down
+        *         . MCLK divide by 1
+        *         . MCLK divide by 2
+        */
+       i2c_reg_write(I2C_DAC_ADDR, 0x05,
+                     DAC_REG5_I2C_MODE |
+                     DAC_REG5_POWER_DOWN |
+                     (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
+
+       /*
+        * Cause the DAC to:
+        *     Auto-mute disabled
+        *         . Format 0, left  justified 24 bits
+        *         . Format 3, right justified 24 bits
+        *     No de-emphasis
+        *         . Single speed mode
+        *         . Double speed mode
+        */
+       i2c_reg_write(I2C_DAC_ADDR, 0x01,
+                     (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
+                      DAC_REG1_LEFT_JUST_24_BIT) |
+                     DAC_REG1_DEM_NO |
+                     (sample_rate >=
+                      50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
+
+       sprintf(str_buf, "%d",
+               sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
+       setenv("DaqDACFunctionalMode", str_buf);
+
+       /*
+        * Cause the DAC to:
+        *     Enable control port (I2C mode)
+        *     Remove power down
+        *         . MCLK divide by 1
+        *         . MCLK divide by 2
+        */
+       i2c_reg_write(I2C_DAC_ADDR, 0x05,
+                     DAC_REG5_I2C_MODE |
+                     (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
+
+       /*
+        * Create a I2C stop condition:
+        *     low->high on data while clock is high.
+        */
+       I2C_SCL(1);
+       I2C_DELAY;
+       I2C_SDA(1);
+       I2C_DELAY;
+       I2C_TRISTATE;
+
+       if (!quiet)
+               printf("\n");
+#ifdef CONFIG_ETHER_LOOPBACK_TEST
+       /*
+        * Run the Ethernet loopback test
+        */
+       eth_loopback_test();
+#endif /* CONFIG_ETHER_LOOPBACK_TEST */
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+       /*
+        * Turn off the RED fail LED now that we are up and running.
+        */
+       status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
+#endif
+
+       return 0;
+}
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+/*
+ * Show boot status: flash the LED if something goes wrong, indicating
+ * that last thing that worked and thus, by implication, what is broken.
+ *
+ * This stores the last OK value in RAM so this will not work properly
+ * before RAM is initialized.  Since it is being used for indicating
+ * boot status (i.e. after RAM is initialized), that is OK.
+ */
+static void flash_code(uchar number, uchar modulo, uchar digits)
+{
+       int j;
+
+       /*
+        * Recursively do upper digits.
+        */
+       if (digits > 1)
+               flash_code(number / modulo, modulo, digits - 1);
+
+       number = number % modulo;
+
+       /*
+        * Zero is indicated by one long flash (dash).
+        */
+       if (number == 0) {
+               status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
+               udelay(1000000);
+               status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
+               udelay(200000);
+       } else {
+               /*
+                * Non-zero is indicated by short flashes, one per count.
+                */
+               for (j = 0; j < number; j++) {
+                       status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
+                       udelay(100000);
+                       status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
+                       udelay(200000);
+               }
+       }
+       /*
+        * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
+        */
+       udelay(700000);
+}
+
+static int last_boot_progress;
+
+void show_boot_progress(int status)
+{
+       int i, j;
+
+       if (status > 0) {
+               last_boot_progress = status;
+       } else {
+               /*
+                * If a specific failure code is given, flash this code
+                * else just use the last success code we've seen
+                */
+               if (status < -1)
+                       last_boot_progress = -status;
+
+               /*
+                * Flash this code 5 times
+                */
+               for (j = 0; j < 5; j++) {
+                       /*
+                        * Houston, we have a problem.
+                        * Blink the last OK status which indicates where things failed.
+                        */
+                       status_led_set(STATUS_LED_RED, STATUS_LED_ON);
+                       flash_code(last_boot_progress, 5, 3);
+
+                       /*
+                        * Delay 5 seconds between repetitions,
+                        * with the fault LED blinking
+                        */
+                       for (i = 0; i < 5; i++) {
+                               status_led_set(STATUS_LED_RED,
+                                              STATUS_LED_OFF);
+                               udelay(500000);
+                               status_led_set(STATUS_LED_RED, STATUS_LED_ON);
+                               udelay(500000);
+                       }
+               }
+
+               /*
+                * Reset the board to retry initialization.
+                */
+               do_reset(NULL, 0, 0, NULL);
+       }
+}
+#endif /* CONFIG_SHOW_BOOT_PROGRESS */
+
+
+/*
+ * The following are used to control the SPI chip selects for the SPI command.
+ */
+#if defined(CONFIG_CMD_SPI)
+
+#define SPI_ADC_CS_MASK        0x00000800
+#define SPI_DAC_CS_MASK        0x00001000
+
+static const u32 cs_mask[] = {
+       SPI_ADC_CS_MASK,
+       SPI_DAC_CS_MASK,
+};
+
+int spi_cs_is_valid(unsigned int bus, unsigned int cs)
+{
+       return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]);
+}
+
+void spi_cs_activate(struct spi_slave *slave)
+{
+       volatile ioport_t *iopd =
+               ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );
+
+       iopd->pdat &= ~cs_mask[slave->cs];
+}
+
+void spi_cs_deactivate(struct spi_slave *slave)
+{
+       volatile ioport_t *iopd =
+               ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );
+
+       iopd->pdat |= cs_mask[slave->cs];
+}
+
+#endif
+
+#endif /* CONFIG_MISC_INIT_R */