Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / u-boot / arch / powerpc / cpu / ppc4xx / 44x_spd_ddr2.c
diff --git a/qemu/roms/u-boot/arch/powerpc/cpu/ppc4xx/44x_spd_ddr2.c b/qemu/roms/u-boot/arch/powerpc/cpu/ppc4xx/44x_spd_ddr2.c
new file mode 100644 (file)
index 0000000..f8d03cb
--- /dev/null
@@ -0,0 +1,3129 @@
+/*
+ * arch/powerpc/cpu/ppc4xx/44x_spd_ddr2.c
+ * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
+ * DDR2 controller (non Denali Core). Those currently are:
+ *
+ * 405:                405EX(r)
+ * 440/460:    440SP/440SPe/460EX/460GT
+ *
+ * Copyright (c) 2008 Nuovation System Designs, LLC
+ *   Grant Erickson <gerickson@nuovations.com>
+
+ * (C) Copyright 2007-2009
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ *
+ * COPYRIGHT   AMCC   CORPORATION 2004
+ *
+ * SPDX-License-Identifier:    GPL-2.0+
+ */
+
+/* define DEBUG for debugging output (obviously ;-)) */
+#if 0
+#define DEBUG
+#endif
+
+#include <common.h>
+#include <command.h>
+#include <asm/ppc4xx.h>
+#include <i2c.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/mmu.h>
+#include <asm/cache.h>
+
+#include "ecc.h"
+
+#define PPC4xx_IBM_DDR2_DUMP_REGISTER(mnemonic)                                \
+       do {                                                            \
+               u32 data;                                               \
+               mfsdram(SDRAM_##mnemonic, data);                        \
+               printf("%20s[%02x] = 0x%08X\n",                         \
+                      "SDRAM_" #mnemonic, SDRAM_##mnemonic, data);     \
+       } while (0)
+
+#define PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(mnemonic)                     \
+       do {                                                            \
+               u32 data;                                               \
+               data = mfdcr(SDRAM_##mnemonic);                         \
+               printf("%20s[%02x] = 0x%08X\n",                         \
+                      "SDRAM_" #mnemonic, SDRAM_##mnemonic, data);     \
+       } while (0)
+
+static void update_rdcc(void)
+{
+       u32 val;
+
+       /*
+        * Complete RDSS configuration as mentioned on page 7 of the AMCC
+        * PowerPC440SP/SPe DDR2 application note:
+        * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
+        *
+        * Or item #10 "10. Complete RDSS configuration" in chapter
+        * "22.2.9 SDRAM Initialization" of AMCC PPC460EX/EXr/GT users
+        * manual.
+        */
+       mfsdram(SDRAM_RTSR, val);
+       if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
+               mfsdram(SDRAM_RDCC, val);
+               if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
+                       val += 0x40000000;
+                       mtsdram(SDRAM_RDCC, val);
+               }
+       }
+}
+
+#if defined(CONFIG_440)
+/*
+ * This DDR2 setup code can dynamically setup the TLB entries for the DDR2
+ * memory region. Right now the cache should still be disabled in U-Boot
+ * because of the EMAC driver, that need its buffer descriptor to be located
+ * in non cached memory.
+ *
+ * If at some time this restriction doesn't apply anymore, just define
+ * CONFIG_4xx_DCACHE in the board config file and this code should setup
+ * everything correctly.
+ */
+#ifdef CONFIG_4xx_DCACHE
+/* enable caching on SDRAM */
+#define MY_TLB_WORD2_I_ENABLE          0
+#else
+/* disable caching on SDRAM */
+#define MY_TLB_WORD2_I_ENABLE          TLB_WORD2_I_ENABLE
+#endif /* CONFIG_4xx_DCACHE */
+
+void dcbz_area(u32 start_address, u32 num_bytes);
+#endif /* CONFIG_440 */
+
+#define MAXRANKS       4
+#define MAXBXCF                4
+
+#define MULDIV64(m1, m2, d)    (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
+
+/*-----------------------------------------------------------------------------+
+ * sdram_memsize
+ *-----------------------------------------------------------------------------*/
+phys_size_t sdram_memsize(void)
+{
+       phys_size_t mem_size;
+       unsigned long mcopt2;
+       unsigned long mcstat;
+       unsigned long mb0cf;
+       unsigned long sdsz;
+       unsigned long i;
+
+       mem_size = 0;
+
+       mfsdram(SDRAM_MCOPT2, mcopt2);
+       mfsdram(SDRAM_MCSTAT, mcstat);
+
+       /* DDR controller must be enabled and not in self-refresh. */
+       /* Otherwise memsize is zero. */
+       if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
+           && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
+           && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
+               == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
+               for (i = 0; i < MAXBXCF; i++) {
+                       mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
+                       /* Banks enabled */
+                       if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
+#if defined(CONFIG_440)
+                               sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
+#else
+                               sdsz = mb0cf & SDRAM_RXBAS_SDSZ_MASK;
+#endif
+                               switch(sdsz) {
+                               case SDRAM_RXBAS_SDSZ_8:
+                                       mem_size+=8;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_16:
+                                       mem_size+=16;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_32:
+                                       mem_size+=32;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_64:
+                                       mem_size+=64;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_128:
+                                       mem_size+=128;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_256:
+                                       mem_size+=256;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_512:
+                                       mem_size+=512;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_1024:
+                                       mem_size+=1024;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_2048:
+                                       mem_size+=2048;
+                                       break;
+                               case SDRAM_RXBAS_SDSZ_4096:
+                                       mem_size+=4096;
+                                       break;
+                               default:
+                                       printf("WARNING: Unsupported bank size (SDSZ=0x%lx)!\n"
+                                              , sdsz);
+                                       mem_size=0;
+                                       break;
+                               }
+                       }
+               }
+       }
+
+       return mem_size << 20;
+}
+
+/*-----------------------------------------------------------------------------+
+ * is_ecc_enabled
+ *-----------------------------------------------------------------------------*/
+static unsigned long is_ecc_enabled(void)
+{
+       unsigned long val;
+
+       mfsdram(SDRAM_MCOPT1, val);
+
+       return SDRAM_MCOPT1_MCHK_CHK_DECODE(val);
+}
+
+/*-----------------------------------------------------------------------------+
+ * board_add_ram_info
+ *-----------------------------------------------------------------------------*/
+void board_add_ram_info(int use_default)
+{
+       PPC4xx_SYS_INFO board_cfg;
+       u32 val;
+
+       if (is_ecc_enabled())
+               puts(" (ECC");
+       else
+               puts(" (ECC not");
+
+       get_sys_info(&board_cfg);
+
+#if defined(CONFIG_405EX)
+       val = board_cfg.freqPLB;
+#else
+       mfsdr(SDR0_DDR0, val);
+       val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
+#endif
+       printf(" enabled, %d MHz", (val * 2) / 1000000);
+
+       mfsdram(SDRAM_MMODE, val);
+       val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
+       printf(", CL%d)", val);
+}
+
+#if defined(CONFIG_SPD_EEPROM)
+
+/*-----------------------------------------------------------------------------+
+ * Defines
+ *-----------------------------------------------------------------------------*/
+#define SDRAM_DDR1     1
+#define SDRAM_DDR2     2
+#define SDRAM_NONE     0
+
+#define MAXDIMMS       2
+#define MAX_SPD_BYTES  256   /* Max number of bytes on the DIMM's SPD EEPROM */
+
+#define ONE_BILLION    1000000000
+
+#define CMD_NOP                (7 << 19)
+#define CMD_PRECHARGE  (2 << 19)
+#define CMD_REFRESH    (1 << 19)
+#define CMD_EMR                (0 << 19)
+#define CMD_READ       (5 << 19)
+#define CMD_WRITE      (4 << 19)
+
+#define SELECT_MR      (0 << 16)
+#define SELECT_EMR     (1 << 16)
+#define SELECT_EMR2    (2 << 16)
+#define SELECT_EMR3    (3 << 16)
+
+/* MR */
+#define DLL_RESET      0x00000100
+
+#define WRITE_RECOV_2  (1 << 9)
+#define WRITE_RECOV_3  (2 << 9)
+#define WRITE_RECOV_4  (3 << 9)
+#define WRITE_RECOV_5  (4 << 9)
+#define WRITE_RECOV_6  (5 << 9)
+
+#define BURST_LEN_4    0x00000002
+
+/* EMR */
+#define ODT_0_OHM      0x00000000
+#define ODT_50_OHM     0x00000044
+#define ODT_75_OHM     0x00000004
+#define ODT_150_OHM    0x00000040
+
+#define ODS_FULL       0x00000000
+#define ODS_REDUCED    0x00000002
+#define OCD_CALIB_DEF  0x00000380
+
+/* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
+#define ODT_EB0R       (0x80000000 >> 8)
+#define ODT_EB0W       (0x80000000 >> 7)
+#define CALC_ODT_R(n)  (ODT_EB0R << (n << 1))
+#define CALC_ODT_W(n)  (ODT_EB0W << (n << 1))
+#define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
+
+/* Defines for the Read Cycle Delay test */
+#define NUMMEMTESTS    8
+#define NUMMEMWORDS    8
+#define NUMLOOPS       64              /* memory test loops */
+
+/*
+ * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM.
+ * To support such configurations, we "only" map the first 2GB via the TLB's. We
+ * need some free virtual address space for the remaining peripherals like, SoC
+ * devices, FLASH etc.
+ *
+ * Note that ECC is currently not supported on configurations with more than 2GB
+ * SDRAM. This is because we only map the first 2GB on such systems, and therefore
+ * the ECC parity byte of the remaining area can't be written.
+ */
+
+/*
+ * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
+ */
+void __spd_ddr_init_hang (void)
+{
+       hang ();
+}
+void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
+
+/*
+ * To provide an interface for board specific config values in this common
+ * DDR setup code, we implement he "weak" default functions here. They return
+ * the default value back to the caller.
+ *
+ * Please see include/configs/yucca.h for an example fora board specific
+ * implementation.
+ */
+u32 __ddr_wrdtr(u32 default_val)
+{
+       return default_val;
+}
+u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
+
+u32 __ddr_clktr(u32 default_val)
+{
+       return default_val;
+}
+u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
+
+
+/* Private Structure Definitions */
+
+/* enum only to ease code for cas latency setting */
+typedef enum ddr_cas_id {
+       DDR_CAS_2      = 20,
+       DDR_CAS_2_5    = 25,
+       DDR_CAS_3      = 30,
+       DDR_CAS_4      = 40,
+       DDR_CAS_5      = 50
+} ddr_cas_id_t;
+
+/*-----------------------------------------------------------------------------+
+ * Prototypes
+ *-----------------------------------------------------------------------------*/
+static void get_spd_info(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks);
+static void check_mem_type(unsigned long *dimm_populated,
+                          unsigned char *iic0_dimm_addr,
+                          unsigned long num_dimm_banks);
+static void check_frequency(unsigned long *dimm_populated,
+                           unsigned char *iic0_dimm_addr,
+                           unsigned long num_dimm_banks);
+static void check_rank_number(unsigned long *dimm_populated,
+                             unsigned char *iic0_dimm_addr,
+                             unsigned long num_dimm_banks);
+static void check_voltage_type(unsigned long *dimm_populated,
+                              unsigned char *iic0_dimm_addr,
+                              unsigned long num_dimm_banks);
+static void program_memory_queue(unsigned long *dimm_populated,
+                                unsigned char *iic0_dimm_addr,
+                                unsigned long num_dimm_banks);
+static void program_codt(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks);
+static void program_mode(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks,
+                        ddr_cas_id_t *selected_cas,
+                        int *write_recovery);
+static void program_tr(unsigned long *dimm_populated,
+                      unsigned char *iic0_dimm_addr,
+                      unsigned long num_dimm_banks);
+static void program_rtr(unsigned long *dimm_populated,
+                       unsigned char *iic0_dimm_addr,
+                       unsigned long num_dimm_banks);
+static void program_bxcf(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks);
+static void program_copt1(unsigned long *dimm_populated,
+                         unsigned char *iic0_dimm_addr,
+                         unsigned long num_dimm_banks);
+static void program_initplr(unsigned long *dimm_populated,
+                           unsigned char *iic0_dimm_addr,
+                           unsigned long num_dimm_banks,
+                           ddr_cas_id_t selected_cas,
+                           int write_recovery);
+#ifdef CONFIG_DDR_ECC
+static void program_ecc(unsigned long *dimm_populated,
+                       unsigned char *iic0_dimm_addr,
+                       unsigned long num_dimm_banks,
+                       unsigned long tlb_word2_i_value);
+#endif
+#if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
+static void program_DQS_calibration(unsigned long *dimm_populated,
+                               unsigned char *iic0_dimm_addr,
+                               unsigned long num_dimm_banks);
+#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
+static void    test(void);
+#else
+static void    DQS_calibration_process(void);
+#endif
+#endif
+
+static unsigned char spd_read(uchar chip, uint addr)
+{
+       unsigned char data[2];
+
+       if (i2c_probe(chip) == 0)
+               if (i2c_read(chip, addr, 1, data, 1) == 0)
+                       return data[0];
+
+       return 0;
+}
+
+/*-----------------------------------------------------------------------------+
+ * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
+ * Note: This routine runs from flash with a stack set up in the chip's
+ * sram space.  It is important that the routine does not require .sbss, .bss or
+ * .data sections.  It also cannot call routines that require these sections.
+ *-----------------------------------------------------------------------------*/
+/*-----------------------------------------------------------------------------
+ * Function:    initdram
+ * Description:  Configures SDRAM memory banks for DDR operation.
+ *              Auto Memory Configuration option reads the DDR SDRAM EEPROMs
+ *              via the IIC bus and then configures the DDR SDRAM memory
+ *              banks appropriately. If Auto Memory Configuration is
+ *              not used, it is assumed that no DIMM is plugged
+ *-----------------------------------------------------------------------------*/
+phys_size_t initdram(int board_type)
+{
+       unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
+       unsigned long dimm_populated[MAXDIMMS] = {SDRAM_NONE, SDRAM_NONE};
+       unsigned long num_dimm_banks;           /* on board dimm banks */
+       unsigned long val;
+       ddr_cas_id_t selected_cas = DDR_CAS_5;  /* preset to silence compiler */
+       int write_recovery;
+       phys_size_t dram_size = 0;
+
+       num_dimm_banks = sizeof(iic0_dimm_addr);
+
+       /*------------------------------------------------------------------
+        * Reset the DDR-SDRAM controller.
+        *-----------------------------------------------------------------*/
+       mtsdr(SDR0_SRST, SDR0_SRST0_DMC);
+       mtsdr(SDR0_SRST, 0x00000000);
+
+       /*
+        * Make sure I2C controller is initialized
+        * before continuing.
+        */
+
+       /* switch to correct I2C bus */
+       i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
+
+       /*------------------------------------------------------------------
+        * Clear out the serial presence detect buffers.
+        * Perform IIC reads from the dimm.  Fill in the spds.
+        * Check to see if the dimm slots are populated
+        *-----------------------------------------------------------------*/
+       get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Check the memory type for the dimms plugged.
+        *-----------------------------------------------------------------*/
+       check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Check the frequency supported for the dimms plugged.
+        *-----------------------------------------------------------------*/
+       check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Check the total rank number.
+        *-----------------------------------------------------------------*/
+       check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Check the voltage type for the dimms plugged.
+        *-----------------------------------------------------------------*/
+       check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Program SDRAM controller options 2 register
+        * Except Enabling of the memory controller.
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_MCOPT2, val);
+       mtsdram(SDRAM_MCOPT2,
+               (val &
+                ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
+                  SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
+                  SDRAM_MCOPT2_ISIE_MASK))
+               | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
+                  SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
+                  SDRAM_MCOPT2_ISIE_ENABLE));
+
+       /*------------------------------------------------------------------
+        * Program SDRAM controller options 1 register
+        * Note: Does not enable the memory controller.
+        *-----------------------------------------------------------------*/
+       program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Controller On Die Termination Register
+        *-----------------------------------------------------------------*/
+       program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Program SDRAM refresh register.
+        *-----------------------------------------------------------------*/
+       program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Program SDRAM mode register.
+        *-----------------------------------------------------------------*/
+       program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
+                    &selected_cas, &write_recovery);
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_WRDTR, val);
+       mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
+               ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Clock Timing Register
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_CLKTR, val);
+       mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
+               ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
+
+       /*------------------------------------------------------------------
+        * Program the BxCF registers.
+        *-----------------------------------------------------------------*/
+       program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Program SDRAM timing registers.
+        *-----------------------------------------------------------------*/
+       program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Set the Extended Mode register
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_MEMODE, val);
+       mtsdram(SDRAM_MEMODE,
+               (val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
+                        SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
+               (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
+                | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
+
+       /*------------------------------------------------------------------
+        * Program Initialization preload registers.
+        *-----------------------------------------------------------------*/
+       program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
+                       selected_cas, write_recovery);
+
+       /*------------------------------------------------------------------
+        * Delay to ensure 200usec have elapsed since reset.
+        *-----------------------------------------------------------------*/
+       udelay(400);
+
+       /*------------------------------------------------------------------
+        * Set the memory queue core base addr.
+        *-----------------------------------------------------------------*/
+       program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Program SDRAM controller options 2 register
+        * Enable the memory controller.
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_MCOPT2, val);
+       mtsdram(SDRAM_MCOPT2,
+               (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
+                        SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
+                        SDRAM_MCOPT2_IPTR_EXECUTE);
+
+       /*------------------------------------------------------------------
+        * Wait for IPTR_EXECUTE init sequence to complete.
+        *-----------------------------------------------------------------*/
+       do {
+               mfsdram(SDRAM_MCSTAT, val);
+       } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
+
+       /* enable the controller only after init sequence completes */
+       mfsdram(SDRAM_MCOPT2, val);
+       mtsdram(SDRAM_MCOPT2, (val | SDRAM_MCOPT2_DCEN_ENABLE));
+
+       /* Make sure delay-line calibration is done before proceeding */
+       do {
+               mfsdram(SDRAM_DLCR, val);
+       } while (!(val & SDRAM_DLCR_DLCS_COMPLETE));
+
+       /* get installed memory size */
+       dram_size = sdram_memsize();
+
+       /*
+        * Limit size to 2GB
+        */
+       if (dram_size > CONFIG_MAX_MEM_MAPPED)
+               dram_size = CONFIG_MAX_MEM_MAPPED;
+
+       /* and program tlb entries for this size (dynamic) */
+
+       /*
+        * Program TLB entries with caches enabled, for best performace
+        * while auto-calibrating and ECC generation
+        */
+       program_tlb(0, 0, dram_size, 0);
+
+       /*------------------------------------------------------------------
+        * DQS calibration.
+        *-----------------------------------------------------------------*/
+#if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
+       DQS_autocalibration();
+#else
+       program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+#endif
+       /*
+        * Now complete RDSS configuration as mentioned on page 7 of the AMCC
+        * PowerPC440SP/SPe DDR2 application note:
+        * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
+        */
+       update_rdcc();
+
+#ifdef CONFIG_DDR_ECC
+       /*------------------------------------------------------------------
+        * If ecc is enabled, initialize the parity bits.
+        *-----------------------------------------------------------------*/
+       program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
+#endif
+
+       /*
+        * Flush the dcache before removing the TLB with caches
+        * enabled. Otherwise this might lead to problems later on,
+        * e.g. while booting Linux (as seen on ICON-440SPe).
+        */
+       flush_dcache();
+
+       /*
+        * Now after initialization (auto-calibration and ECC generation)
+        * remove the TLB entries with caches enabled and program again with
+        * desired cache functionality
+        */
+       remove_tlb(0, dram_size);
+       program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
+
+       ppc4xx_ibm_ddr2_register_dump();
+
+       /*
+        * Clear potential errors resulting from auto-calibration.
+        * If not done, then we could get an interrupt later on when
+        * exceptions are enabled.
+        */
+       set_mcsr(get_mcsr());
+
+       return sdram_memsize();
+}
+
+static void get_spd_info(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long dimm_found;
+       unsigned char num_of_bytes;
+       unsigned char total_size;
+
+       dimm_found = false;
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               num_of_bytes = 0;
+               total_size = 0;
+
+               num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
+               debug("\nspd_read(0x%x) returned %d\n",
+                     iic0_dimm_addr[dimm_num], num_of_bytes);
+               total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
+               debug("spd_read(0x%x) returned %d\n",
+                     iic0_dimm_addr[dimm_num], total_size);
+
+               if ((num_of_bytes != 0) && (total_size != 0)) {
+                       dimm_populated[dimm_num] = true;
+                       dimm_found = true;
+                       debug("DIMM slot %lu: populated\n", dimm_num);
+               } else {
+                       dimm_populated[dimm_num] = false;
+                       debug("DIMM slot %lu: Not populated\n", dimm_num);
+               }
+       }
+
+       if (dimm_found == false) {
+               printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
+               spd_ddr_init_hang ();
+       }
+}
+
+
+/*------------------------------------------------------------------
+ * For the memory DIMMs installed, this routine verifies that they
+ * really are DDR specific DIMMs.
+ *-----------------------------------------------------------------*/
+static void check_mem_type(unsigned long *dimm_populated,
+                          unsigned char *iic0_dimm_addr,
+                          unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long dimm_type;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] == true) {
+                       dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
+                       switch (dimm_type) {
+                       case 1:
+                               printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
+                                      "slot %d.\n", (unsigned int)dimm_num);
+                               printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       case 2:
+                               printf("ERROR: EDO DIMM detected in slot %d.\n",
+                                      (unsigned int)dimm_num);
+                               printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       case 3:
+                               printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
+                                      (unsigned int)dimm_num);
+                               printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       case 4:
+                               printf("ERROR: SDRAM DIMM detected in slot %d.\n",
+                                      (unsigned int)dimm_num);
+                               printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       case 5:
+                               printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
+                                      (unsigned int)dimm_num);
+                               printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       case 6:
+                               printf("ERROR: SGRAM DIMM detected in slot %d.\n",
+                                      (unsigned int)dimm_num);
+                               printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       case 7:
+                               debug("DIMM slot %lu: DDR1 SDRAM detected\n", dimm_num);
+                               dimm_populated[dimm_num] = SDRAM_DDR1;
+                               break;
+                       case 8:
+                               debug("DIMM slot %lu: DDR2 SDRAM detected\n", dimm_num);
+                               dimm_populated[dimm_num] = SDRAM_DDR2;
+                               break;
+                       default:
+                               printf("ERROR: Unknown DIMM detected in slot %d.\n",
+                                      (unsigned int)dimm_num);
+                               printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       }
+               }
+       }
+       for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
+               if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
+                   && (dimm_populated[dimm_num]   != SDRAM_NONE)
+                   && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
+                       printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
+                       spd_ddr_init_hang ();
+               }
+       }
+}
+
+/*------------------------------------------------------------------
+ * For the memory DIMMs installed, this routine verifies that
+ * frequency previously calculated is supported.
+ *-----------------------------------------------------------------*/
+static void check_frequency(unsigned long *dimm_populated,
+                           unsigned char *iic0_dimm_addr,
+                           unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long tcyc_reg;
+       unsigned long cycle_time;
+       unsigned long calc_cycle_time;
+       unsigned long sdram_freq;
+       unsigned long sdr_ddrpll;
+       PPC4xx_SYS_INFO board_cfg;
+
+       /*------------------------------------------------------------------
+        * Get the board configuration info.
+        *-----------------------------------------------------------------*/
+       get_sys_info(&board_cfg);
+
+       mfsdr(SDR0_DDR0, sdr_ddrpll);
+       sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
+
+       /*
+        * calc_cycle_time is calculated from DDR frequency set by board/chip
+        * and is expressed in multiple of 10 picoseconds
+        * to match the way DIMM cycle time is calculated below.
+        */
+       calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
+                       /*
+                        * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
+                        * the higher order nibble (bits 4-7) designates the cycle time
+                        * to a granularity of 1ns;
+                        * the value presented by the lower order nibble (bits 0-3)
+                        * has a granularity of .1ns and is added to the value designated
+                        * by the higher nibble. In addition, four lines of the lower order
+                        * nibble are assigned to support +.25,+.33, +.66 and +.75.
+                        */
+                        /* Convert from hex to decimal */
+                       if ((tcyc_reg & 0x0F) == 0x0D)
+                               cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
+                       else if ((tcyc_reg & 0x0F) == 0x0C)
+                               cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
+                       else if ((tcyc_reg & 0x0F) == 0x0B)
+                               cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
+                       else if ((tcyc_reg & 0x0F) == 0x0A)
+                               cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
+                       else
+                               cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
+                                       ((tcyc_reg & 0x0F)*10);
+                       debug("cycle_time=%lu [10 picoseconds]\n", cycle_time);
+
+                       if  (cycle_time > (calc_cycle_time + 10)) {
+                               /*
+                                * the provided sdram cycle_time is too small
+                                * for the available DIMM cycle_time.
+                                * The additionnal 100ps is here to accept a small incertainty.
+                                */
+                               printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
+                                      "slot %d \n while calculated cycle time is %d ps.\n",
+                                      (unsigned int)(cycle_time*10),
+                                      (unsigned int)dimm_num,
+                                      (unsigned int)(calc_cycle_time*10));
+                               printf("Replace the DIMM, or change DDR frequency via "
+                                      "strapping bits.\n\n");
+                               spd_ddr_init_hang ();
+                       }
+               }
+       }
+}
+
+/*------------------------------------------------------------------
+ * For the memory DIMMs installed, this routine verifies two
+ * ranks/banks maximum are availables.
+ *-----------------------------------------------------------------*/
+static void check_rank_number(unsigned long *dimm_populated,
+                             unsigned char *iic0_dimm_addr,
+                             unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long dimm_rank;
+       unsigned long total_rank = 0;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
+                       if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
+                               dimm_rank = (dimm_rank & 0x0F) +1;
+                       else
+                               dimm_rank = dimm_rank & 0x0F;
+
+
+                       if (dimm_rank > MAXRANKS) {
+                               printf("ERROR: DRAM DIMM detected with %lu ranks in "
+                                      "slot %lu is not supported.\n", dimm_rank, dimm_num);
+                               printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                       } else
+                               total_rank += dimm_rank;
+               }
+               if (total_rank > MAXRANKS) {
+                       printf("ERROR: DRAM DIMM detected with a total of %d ranks "
+                              "for all slots.\n", (unsigned int)total_rank);
+                       printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
+                       printf("Remove one of the DIMM modules.\n\n");
+                       spd_ddr_init_hang ();
+               }
+       }
+}
+
+/*------------------------------------------------------------------
+ * only support 2.5V modules.
+ * This routine verifies this.
+ *-----------------------------------------------------------------*/
+static void check_voltage_type(unsigned long *dimm_populated,
+                              unsigned char *iic0_dimm_addr,
+                              unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long voltage_type;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
+                       switch (voltage_type) {
+                       case 0x00:
+                               printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+                               printf("This DIMM is 5.0 Volt/TTL.\n");
+                               printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+                                      (unsigned int)dimm_num);
+                               spd_ddr_init_hang ();
+                               break;
+                       case 0x01:
+                               printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+                               printf("This DIMM is LVTTL.\n");
+                               printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+                                      (unsigned int)dimm_num);
+                               spd_ddr_init_hang ();
+                               break;
+                       case 0x02:
+                               printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+                               printf("This DIMM is 1.5 Volt.\n");
+                               printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+                                      (unsigned int)dimm_num);
+                               spd_ddr_init_hang ();
+                               break;
+                       case 0x03:
+                               printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+                               printf("This DIMM is 3.3 Volt/TTL.\n");
+                               printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+                                      (unsigned int)dimm_num);
+                               spd_ddr_init_hang ();
+                               break;
+                       case 0x04:
+                               /* 2.5 Voltage only for DDR1 */
+                               break;
+                       case 0x05:
+                               /* 1.8 Voltage only for DDR2 */
+                               break;
+                       default:
+                               printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+                               printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+                                      (unsigned int)dimm_num);
+                               spd_ddr_init_hang ();
+                               break;
+                       }
+               }
+       }
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_copt1.
+ *-----------------------------------------------------------------------------*/
+static void program_copt1(unsigned long *dimm_populated,
+                         unsigned char *iic0_dimm_addr,
+                         unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long mcopt1;
+       unsigned long ecc_enabled;
+       unsigned long ecc = 0;
+       unsigned long data_width = 0;
+       unsigned long dimm_32bit;
+       unsigned long dimm_64bit;
+       unsigned long registered = 0;
+       unsigned long attribute = 0;
+       unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
+       unsigned long bankcount;
+       unsigned long val;
+
+#ifdef CONFIG_DDR_ECC
+       ecc_enabled = true;
+#else
+       ecc_enabled = false;
+#endif
+       dimm_32bit = false;
+       dimm_64bit = false;
+       buf0 = false;
+       buf1 = false;
+
+       /*------------------------------------------------------------------
+        * Set memory controller options reg 1, SDRAM_MCOPT1.
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_MCOPT1, val);
+       mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
+                        SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
+                        SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
+                        SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
+                        SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
+                        SDRAM_MCOPT1_DREF_MASK);
+
+       mcopt1 |= SDRAM_MCOPT1_QDEP;
+       mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
+       mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
+       mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
+       mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
+       mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       /* test ecc support */
+                       ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
+                       if (ecc != 0x02) /* ecc not supported */
+                               ecc_enabled = false;
+
+                       /* test bank count */
+                       bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
+                       if (bankcount == 0x04) /* bank count = 4 */
+                               mcopt1 |= SDRAM_MCOPT1_4_BANKS;
+                       else /* bank count = 8 */
+                               mcopt1 |= SDRAM_MCOPT1_8_BANKS;
+
+                       /* test for buffered/unbuffered, registered, differential clocks */
+                       registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
+                       attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
+
+                       /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
+                       if (dimm_num == 0) {
+                               if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
+                                       mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
+                               if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
+                                       mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
+                               if (registered == 1) { /* DDR2 always buffered */
+                                       /* TODO: what about above  comments ? */
+                                       mcopt1 |= SDRAM_MCOPT1_RDEN;
+                                       buf0 = true;
+                               } else {
+                                       /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
+                                       if ((attribute & 0x02) == 0x00) {
+                                               /* buffered not supported */
+                                               buf0 = false;
+                                       } else {
+                                               mcopt1 |= SDRAM_MCOPT1_RDEN;
+                                               buf0 = true;
+                                       }
+                               }
+                       }
+                       else if (dimm_num == 1) {
+                               if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
+                                       mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
+                               if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
+                                       mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
+                               if (registered == 1) {
+                                       /* DDR2 always buffered */
+                                       mcopt1 |= SDRAM_MCOPT1_RDEN;
+                                       buf1 = true;
+                               } else {
+                                       if ((attribute & 0x02) == 0x00) {
+                                               /* buffered not supported */
+                                               buf1 = false;
+                                       } else {
+                                               mcopt1 |= SDRAM_MCOPT1_RDEN;
+                                               buf1 = true;
+                                       }
+                               }
+                       }
+
+                       /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
+                       data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
+                               (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
+
+                       switch (data_width) {
+                       case 72:
+                       case 64:
+                               dimm_64bit = true;
+                               break;
+                       case 40:
+                       case 32:
+                               dimm_32bit = true;
+                               break;
+                       default:
+                               printf("WARNING: Detected a DIMM with a data width of %lu bits.\n",
+                                      data_width);
+                               printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
+                               break;
+                       }
+               }
+       }
+
+       /* verify matching properties */
+       if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
+               if (buf0 != buf1) {
+                       printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
+                       spd_ddr_init_hang ();
+               }
+       }
+
+       if ((dimm_64bit == true) && (dimm_32bit == true)) {
+               printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
+               spd_ddr_init_hang ();
+       } else if ((dimm_64bit == true) && (dimm_32bit == false)) {
+               mcopt1 |= SDRAM_MCOPT1_DMWD_64;
+       } else if ((dimm_64bit == false) && (dimm_32bit == true)) {
+               mcopt1 |= SDRAM_MCOPT1_DMWD_32;
+       } else {
+               printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
+               spd_ddr_init_hang ();
+       }
+
+       if (ecc_enabled == true)
+               mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
+       else
+               mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
+
+       mtsdram(SDRAM_MCOPT1, mcopt1);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_codt.
+ *-----------------------------------------------------------------------------*/
+static void program_codt(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks)
+{
+       unsigned long codt;
+       unsigned long modt0 = 0;
+       unsigned long modt1 = 0;
+       unsigned long modt2 = 0;
+       unsigned long modt3 = 0;
+       unsigned char dimm_num;
+       unsigned char dimm_rank;
+       unsigned char total_rank = 0;
+       unsigned char total_dimm = 0;
+       unsigned char dimm_type = 0;
+       unsigned char firstSlot = 0;
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Controller On Die Termination Register
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_CODT, codt);
+       codt &= ~(SDRAM_CODT_DQS_SINGLE_END | SDRAM_CODT_CKSE_SINGLE_END);
+       codt |= SDRAM_CODT_IO_NMODE;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
+                       if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
+                               dimm_rank = (dimm_rank & 0x0F) + 1;
+                               dimm_type = SDRAM_DDR2;
+                       } else {
+                               dimm_rank = dimm_rank & 0x0F;
+                               dimm_type = SDRAM_DDR1;
+                       }
+
+                       total_rank += dimm_rank;
+                       total_dimm++;
+                       if ((dimm_num == 0) && (total_dimm == 1))
+                               firstSlot = true;
+                       else
+                               firstSlot = false;
+               }
+       }
+       if (dimm_type == SDRAM_DDR2) {
+               codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
+               if ((total_dimm == 1) && (firstSlot == true)) {
+                       if (total_rank == 1) {  /* PUUU */
+                               codt |= CALC_ODT_R(0);
+                               modt0 = CALC_ODT_W(0);
+                               modt1 = 0x00000000;
+                               modt2 = 0x00000000;
+                               modt3 = 0x00000000;
+                       }
+                       if (total_rank == 2) {  /* PPUU */
+                               codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
+                               modt0 = CALC_ODT_W(0) | CALC_ODT_W(1);
+                               modt1 = 0x00000000;
+                               modt2 = 0x00000000;
+                               modt3 = 0x00000000;
+                       }
+               } else if ((total_dimm == 1) && (firstSlot != true)) {
+                       if (total_rank == 1) {  /* UUPU */
+                               codt |= CALC_ODT_R(2);
+                               modt0 = 0x00000000;
+                               modt1 = 0x00000000;
+                               modt2 = CALC_ODT_W(2);
+                               modt3 = 0x00000000;
+                       }
+                       if (total_rank == 2) {  /* UUPP */
+                               codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
+                               modt0 = 0x00000000;
+                               modt1 = 0x00000000;
+                               modt2 = CALC_ODT_W(2) | CALC_ODT_W(3);
+                               modt3 = 0x00000000;
+                       }
+               }
+               if (total_dimm == 2) {
+                       if (total_rank == 2) {  /* PUPU */
+                               codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
+                               modt0 = CALC_ODT_RW(2);
+                               modt1 = 0x00000000;
+                               modt2 = CALC_ODT_RW(0);
+                               modt3 = 0x00000000;
+                       }
+                       if (total_rank == 4) {  /* PPPP */
+                               codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
+                                       CALC_ODT_R(2) | CALC_ODT_R(3);
+                               modt0 = CALC_ODT_RW(2) | CALC_ODT_RW(3);
+                               modt1 = 0x00000000;
+                               modt2 = CALC_ODT_RW(0) | CALC_ODT_RW(1);
+                               modt3 = 0x00000000;
+                       }
+               }
+       } else {
+               codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
+               modt0 = 0x00000000;
+               modt1 = 0x00000000;
+               modt2 = 0x00000000;
+               modt3 = 0x00000000;
+
+               if (total_dimm == 1) {
+                       if (total_rank == 1)
+                               codt |= 0x00800000;
+                       if (total_rank == 2)
+                               codt |= 0x02800000;
+               }
+               if (total_dimm == 2) {
+                       if (total_rank == 2)
+                               codt |= 0x08800000;
+                       if (total_rank == 4)
+                               codt |= 0x2a800000;
+               }
+       }
+
+       debug("nb of dimm %d\n", total_dimm);
+       debug("nb of rank %d\n", total_rank);
+       if (total_dimm == 1)
+               debug("dimm in slot %d\n", firstSlot);
+
+       mtsdram(SDRAM_CODT, codt);
+       mtsdram(SDRAM_MODT0, modt0);
+       mtsdram(SDRAM_MODT1, modt1);
+       mtsdram(SDRAM_MODT2, modt2);
+       mtsdram(SDRAM_MODT3, modt3);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_initplr.
+ *-----------------------------------------------------------------------------*/
+static void program_initplr(unsigned long *dimm_populated,
+                           unsigned char *iic0_dimm_addr,
+                           unsigned long num_dimm_banks,
+                           ddr_cas_id_t selected_cas,
+                           int write_recovery)
+{
+       u32 cas = 0;
+       u32 odt = 0;
+       u32 ods = 0;
+       u32 mr;
+       u32 wr;
+       u32 emr;
+       u32 emr2;
+       u32 emr3;
+       int dimm_num;
+       int total_dimm = 0;
+
+       /******************************************************
+        ** Assumption: if more than one DIMM, all DIMMs are the same
+        **             as already checked in check_memory_type
+        ******************************************************/
+
+       if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
+               mtsdram(SDRAM_INITPLR0, 0x81B80000);
+               mtsdram(SDRAM_INITPLR1, 0x81900400);
+               mtsdram(SDRAM_INITPLR2, 0x81810000);
+               mtsdram(SDRAM_INITPLR3, 0xff800162);
+               mtsdram(SDRAM_INITPLR4, 0x81900400);
+               mtsdram(SDRAM_INITPLR5, 0x86080000);
+               mtsdram(SDRAM_INITPLR6, 0x86080000);
+               mtsdram(SDRAM_INITPLR7, 0x81000062);
+       } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
+               switch (selected_cas) {
+               case DDR_CAS_3:
+                       cas = 3 << 4;
+                       break;
+               case DDR_CAS_4:
+                       cas = 4 << 4;
+                       break;
+               case DDR_CAS_5:
+                       cas = 5 << 4;
+                       break;
+               default:
+                       printf("ERROR: ucode error on selected_cas value %d", selected_cas);
+                       spd_ddr_init_hang ();
+                       break;
+               }
+
+#if 0
+               /*
+                * ToDo - Still a problem with the write recovery:
+                * On the Corsair CM2X512-5400C4 module, setting write recovery
+                * in the INITPLR reg to the value calculated in program_mode()
+                * results in not correctly working DDR2 memory (crash after
+                * relocation).
+                *
+                * So for now, set the write recovery to 3. This seems to work
+                * on the Corair module too.
+                *
+                * 2007-03-01, sr
+                */
+               switch (write_recovery) {
+               case 3:
+                       wr = WRITE_RECOV_3;
+                       break;
+               case 4:
+                       wr = WRITE_RECOV_4;
+                       break;
+               case 5:
+                       wr = WRITE_RECOV_5;
+                       break;
+               case 6:
+                       wr = WRITE_RECOV_6;
+                       break;
+               default:
+                       printf("ERROR: write recovery not support (%d)", write_recovery);
+                       spd_ddr_init_hang ();
+                       break;
+               }
+#else
+               wr = WRITE_RECOV_3; /* test-only, see description above */
+#endif
+
+               for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
+                       if (dimm_populated[dimm_num] != SDRAM_NONE)
+                               total_dimm++;
+               if (total_dimm == 1) {
+                       odt = ODT_150_OHM;
+                       ods = ODS_FULL;
+               } else if (total_dimm == 2) {
+                       odt = ODT_75_OHM;
+                       ods = ODS_REDUCED;
+               } else {
+                       printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
+                       spd_ddr_init_hang ();
+               }
+
+               mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
+               emr = CMD_EMR | SELECT_EMR | odt | ods;
+               emr2 = CMD_EMR | SELECT_EMR2;
+               emr3 = CMD_EMR | SELECT_EMR3;
+               /* NOP - Wait 106 MemClk cycles */
+               mtsdram(SDRAM_INITPLR0, SDRAM_INITPLR_ENABLE | CMD_NOP |
+                                       SDRAM_INITPLR_IMWT_ENCODE(106));
+               udelay(1000);
+               /* precharge 4 MemClk cycles */
+               mtsdram(SDRAM_INITPLR1, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE |
+                                       SDRAM_INITPLR_IMWT_ENCODE(4));
+               /* EMR2 - Wait tMRD (2 MemClk cycles) */
+               mtsdram(SDRAM_INITPLR2, SDRAM_INITPLR_ENABLE | emr2 |
+                                       SDRAM_INITPLR_IMWT_ENCODE(2));
+               /* EMR3 - Wait tMRD (2 MemClk cycles) */
+               mtsdram(SDRAM_INITPLR3, SDRAM_INITPLR_ENABLE | emr3 |
+                                       SDRAM_INITPLR_IMWT_ENCODE(2));
+               /* EMR DLL ENABLE - Wait tMRD (2 MemClk cycles) */
+               mtsdram(SDRAM_INITPLR4, SDRAM_INITPLR_ENABLE | emr |
+                                       SDRAM_INITPLR_IMWT_ENCODE(2));
+               /* MR w/ DLL reset - 200 cycle wait for DLL reset */
+               mtsdram(SDRAM_INITPLR5, SDRAM_INITPLR_ENABLE | mr | DLL_RESET |
+                                       SDRAM_INITPLR_IMWT_ENCODE(200));
+               udelay(1000);
+               /* precharge 4 MemClk cycles */
+               mtsdram(SDRAM_INITPLR6, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE |
+                                       SDRAM_INITPLR_IMWT_ENCODE(4));
+               /* Refresh 25 MemClk cycles */
+               mtsdram(SDRAM_INITPLR7, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
+                                       SDRAM_INITPLR_IMWT_ENCODE(25));
+               /* Refresh 25 MemClk cycles */
+               mtsdram(SDRAM_INITPLR8, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
+                                       SDRAM_INITPLR_IMWT_ENCODE(25));
+               /* Refresh 25 MemClk cycles */
+               mtsdram(SDRAM_INITPLR9, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
+                                       SDRAM_INITPLR_IMWT_ENCODE(25));
+               /* Refresh 25 MemClk cycles */
+               mtsdram(SDRAM_INITPLR10, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
+                                        SDRAM_INITPLR_IMWT_ENCODE(25));
+               /* MR w/o DLL reset - Wait tMRD (2 MemClk cycles) */
+               mtsdram(SDRAM_INITPLR11, SDRAM_INITPLR_ENABLE | mr |
+                                        SDRAM_INITPLR_IMWT_ENCODE(2));
+               /* EMR OCD Default - Wait tMRD (2 MemClk cycles) */
+               mtsdram(SDRAM_INITPLR12, SDRAM_INITPLR_ENABLE | OCD_CALIB_DEF |
+                                        SDRAM_INITPLR_IMWT_ENCODE(2) | emr);
+               /* EMR OCD Exit */
+               mtsdram(SDRAM_INITPLR13, SDRAM_INITPLR_ENABLE | emr |
+                                        SDRAM_INITPLR_IMWT_ENCODE(2));
+       } else {
+               printf("ERROR: ucode error as unknown DDR type in program_initplr");
+               spd_ddr_init_hang ();
+       }
+}
+
+/*------------------------------------------------------------------
+ * This routine programs the SDRAM_MMODE register.
+ * the selected_cas is an output parameter, that will be passed
+ * by caller to call the above program_initplr( )
+ *-----------------------------------------------------------------*/
+static void program_mode(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks,
+                        ddr_cas_id_t *selected_cas,
+                        int *write_recovery)
+{
+       unsigned long dimm_num;
+       unsigned long sdram_ddr1;
+       unsigned long t_wr_ns;
+       unsigned long t_wr_clk;
+       unsigned long cas_bit;
+       unsigned long cas_index;
+       unsigned long sdram_freq;
+       unsigned long ddr_check;
+       unsigned long mmode;
+       unsigned long tcyc_reg;
+       unsigned long cycle_2_0_clk;
+       unsigned long cycle_2_5_clk;
+       unsigned long cycle_3_0_clk;
+       unsigned long cycle_4_0_clk;
+       unsigned long cycle_5_0_clk;
+       unsigned long max_2_0_tcyc_ns_x_100;
+       unsigned long max_2_5_tcyc_ns_x_100;
+       unsigned long max_3_0_tcyc_ns_x_100;
+       unsigned long max_4_0_tcyc_ns_x_100;
+       unsigned long max_5_0_tcyc_ns_x_100;
+       unsigned long cycle_time_ns_x_100[3];
+       PPC4xx_SYS_INFO board_cfg;
+       unsigned char cas_2_0_available;
+       unsigned char cas_2_5_available;
+       unsigned char cas_3_0_available;
+       unsigned char cas_4_0_available;
+       unsigned char cas_5_0_available;
+       unsigned long sdr_ddrpll;
+
+       /*------------------------------------------------------------------
+        * Get the board configuration info.
+        *-----------------------------------------------------------------*/
+       get_sys_info(&board_cfg);
+
+       mfsdr(SDR0_DDR0, sdr_ddrpll);
+       sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
+       debug("sdram_freq=%lu\n", sdram_freq);
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       t_wr_ns = 0;
+       cas_2_0_available = true;
+       cas_2_5_available = true;
+       cas_3_0_available = true;
+       cas_4_0_available = true;
+       cas_5_0_available = true;
+       max_2_0_tcyc_ns_x_100 = 10;
+       max_2_5_tcyc_ns_x_100 = 10;
+       max_3_0_tcyc_ns_x_100 = 10;
+       max_4_0_tcyc_ns_x_100 = 10;
+       max_5_0_tcyc_ns_x_100 = 10;
+       sdram_ddr1 = true;
+
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       if (dimm_populated[dimm_num] == SDRAM_DDR1)
+                               sdram_ddr1 = true;
+                       else
+                               sdram_ddr1 = false;
+
+                       cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
+                       debug("cas_bit[SPD byte 18]=%02lx\n", cas_bit);
+
+                       /* For a particular DIMM, grab the three CAS values it supports */
+                       for (cas_index = 0; cas_index < 3; cas_index++) {
+                               switch (cas_index) {
+                               case 0:
+                                       tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
+                                       break;
+                               case 1:
+                                       tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
+                                       break;
+                               default:
+                                       tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
+                                       break;
+                               }
+
+                               if ((tcyc_reg & 0x0F) >= 10) {
+                                       if ((tcyc_reg & 0x0F) == 0x0D) {
+                                               /* Convert from hex to decimal */
+                                               cycle_time_ns_x_100[cas_index] =
+                                                       (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
+                                       } else {
+                                               printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
+                                                      "in slot %d\n", (unsigned int)dimm_num);
+                                               spd_ddr_init_hang ();
+                                       }
+                               } else {
+                                       /* Convert from hex to decimal */
+                                       cycle_time_ns_x_100[cas_index] =
+                                               (((tcyc_reg & 0xF0) >> 4) * 100) +
+                                               ((tcyc_reg & 0x0F)*10);
+                               }
+                               debug("cas_index=%lu: cycle_time_ns_x_100=%lu\n", cas_index,
+                                     cycle_time_ns_x_100[cas_index]);
+                       }
+
+                       /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
+                       /* supported for a particular DIMM. */
+                       cas_index = 0;
+
+                       if (sdram_ddr1) {
+                               /*
+                                * DDR devices use the following bitmask for CAS latency:
+                                *  Bit   7    6    5    4    3    2    1    0
+                                *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
+                                */
+                               if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
+                                   (cycle_time_ns_x_100[cas_index] != 0)) {
+                                       max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
+                                                                   cycle_time_ns_x_100[cas_index]);
+                                       cas_index++;
+                               } else {
+                                       if (cas_index != 0)
+                                               cas_index++;
+                                       cas_4_0_available = false;
+                               }
+
+                               if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
+                                   (cycle_time_ns_x_100[cas_index] != 0)) {
+                                       max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
+                                                                   cycle_time_ns_x_100[cas_index]);
+                                       cas_index++;
+                               } else {
+                                       if (cas_index != 0)
+                                               cas_index++;
+                                       cas_3_0_available = false;
+                               }
+
+                               if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
+                                   (cycle_time_ns_x_100[cas_index] != 0)) {
+                                       max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
+                                                                   cycle_time_ns_x_100[cas_index]);
+                                       cas_index++;
+                               } else {
+                                       if (cas_index != 0)
+                                               cas_index++;
+                                       cas_2_5_available = false;
+                               }
+
+                               if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
+                                   (cycle_time_ns_x_100[cas_index] != 0)) {
+                                       max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
+                                                                   cycle_time_ns_x_100[cas_index]);
+                                       cas_index++;
+                               } else {
+                                       if (cas_index != 0)
+                                               cas_index++;
+                                       cas_2_0_available = false;
+                               }
+                       } else {
+                               /*
+                                * DDR2 devices use the following bitmask for CAS latency:
+                                *  Bit   7    6    5    4    3    2    1    0
+                                *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
+                                */
+                               if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
+                                   (cycle_time_ns_x_100[cas_index] != 0)) {
+                                       max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
+                                                                   cycle_time_ns_x_100[cas_index]);
+                                       cas_index++;
+                               } else {
+                                       if (cas_index != 0)
+                                               cas_index++;
+                                       cas_5_0_available = false;
+                               }
+
+                               if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
+                                   (cycle_time_ns_x_100[cas_index] != 0)) {
+                                       max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
+                                                                   cycle_time_ns_x_100[cas_index]);
+                                       cas_index++;
+                               } else {
+                                       if (cas_index != 0)
+                                               cas_index++;
+                                       cas_4_0_available = false;
+                               }
+
+                               if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
+                                   (cycle_time_ns_x_100[cas_index] != 0)) {
+                                       max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
+                                                                   cycle_time_ns_x_100[cas_index]);
+                                       cas_index++;
+                               } else {
+                                       if (cas_index != 0)
+                                               cas_index++;
+                                       cas_3_0_available = false;
+                               }
+                       }
+               }
+       }
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM mode, SDRAM_MMODE
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_MMODE, mmode);
+       mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
+
+       /* add 10 here because of rounding problems */
+       cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
+       cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
+       cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
+       cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
+       cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
+       debug("cycle_3_0_clk=%lu\n", cycle_3_0_clk);
+       debug("cycle_4_0_clk=%lu\n", cycle_4_0_clk);
+       debug("cycle_5_0_clk=%lu\n", cycle_5_0_clk);
+
+       if (sdram_ddr1 == true) { /* DDR1 */
+               if ((cas_2_0_available == true) &&
+                       (sdram_freq <= cycle_2_0_clk)) {
+                       mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
+                       *selected_cas = DDR_CAS_2;
+               } else if ((cas_2_5_available == true) &&
+                       (sdram_freq <= cycle_2_5_clk)) {
+                       mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
+                       *selected_cas = DDR_CAS_2_5;
+               } else if ((cas_3_0_available == true) &&
+                       (sdram_freq <= cycle_3_0_clk)) {
+                       mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
+                       *selected_cas = DDR_CAS_3;
+               } else {
+                       printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
+                       printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
+                       printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
+                       spd_ddr_init_hang ();
+               }
+       } else { /* DDR2 */
+               debug("cas_3_0_available=%d\n", cas_3_0_available);
+               debug("cas_4_0_available=%d\n", cas_4_0_available);
+               debug("cas_5_0_available=%d\n", cas_5_0_available);
+               if ((cas_3_0_available == true) &&
+                       (sdram_freq <= cycle_3_0_clk)) {
+                       mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
+                       *selected_cas = DDR_CAS_3;
+               } else if ((cas_4_0_available == true) &&
+                       (sdram_freq <= cycle_4_0_clk)) {
+                       mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
+                       *selected_cas = DDR_CAS_4;
+               } else if ((cas_5_0_available == true) &&
+                       (sdram_freq <= cycle_5_0_clk)) {
+                       mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
+                       *selected_cas = DDR_CAS_5;
+               } else {
+                       printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
+                       printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
+                       printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
+                       printf("cas3=%d cas4=%d cas5=%d\n",
+                              cas_3_0_available, cas_4_0_available, cas_5_0_available);
+                       printf("sdram_freq=%lu cycle3=%lu cycle4=%lu cycle5=%lu\n\n",
+                              sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
+                       spd_ddr_init_hang ();
+               }
+       }
+
+       if (sdram_ddr1 == true)
+               mmode |= SDRAM_MMODE_WR_DDR1;
+       else {
+
+               /* loop through all the DIMM slots on the board */
+               for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+                       /* If a dimm is installed in a particular slot ... */
+                       if (dimm_populated[dimm_num] != SDRAM_NONE)
+                               t_wr_ns = max(t_wr_ns,
+                                             spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
+               }
+
+               /*
+                * convert from nanoseconds to ddr clocks
+                * round up if necessary
+                */
+               t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
+               ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
+               if (sdram_freq != ddr_check)
+                       t_wr_clk++;
+
+               switch (t_wr_clk) {
+               case 0:
+               case 1:
+               case 2:
+               case 3:
+                       mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
+                       break;
+               case 4:
+                       mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
+                       break;
+               case 5:
+                       mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
+                       break;
+               default:
+                       mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
+                       break;
+               }
+               *write_recovery = t_wr_clk;
+       }
+
+       debug("CAS latency = %d\n", *selected_cas);
+       debug("Write recovery = %d\n", *write_recovery);
+
+       mtsdram(SDRAM_MMODE, mmode);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_rtr.
+ *-----------------------------------------------------------------------------*/
+static void program_rtr(unsigned long *dimm_populated,
+                       unsigned char *iic0_dimm_addr,
+                       unsigned long num_dimm_banks)
+{
+       PPC4xx_SYS_INFO board_cfg;
+       unsigned long max_refresh_rate;
+       unsigned long dimm_num;
+       unsigned long refresh_rate_type;
+       unsigned long refresh_rate;
+       unsigned long rint;
+       unsigned long sdram_freq;
+       unsigned long sdr_ddrpll;
+       unsigned long val;
+
+       /*------------------------------------------------------------------
+        * Get the board configuration info.
+        *-----------------------------------------------------------------*/
+       get_sys_info(&board_cfg);
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Refresh Timing Register, SDRAM_RTR
+        *-----------------------------------------------------------------*/
+       mfsdr(SDR0_DDR0, sdr_ddrpll);
+       sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
+
+       max_refresh_rate = 0;
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+
+                       refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
+                       refresh_rate_type &= 0x7F;
+                       switch (refresh_rate_type) {
+                       case 0:
+                               refresh_rate =  15625;
+                               break;
+                       case 1:
+                               refresh_rate =   3906;
+                               break;
+                       case 2:
+                               refresh_rate =   7812;
+                               break;
+                       case 3:
+                               refresh_rate =  31250;
+                               break;
+                       case 4:
+                               refresh_rate =  62500;
+                               break;
+                       case 5:
+                               refresh_rate = 125000;
+                               break;
+                       default:
+                               refresh_rate = 0;
+                               printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
+                                      (unsigned int)dimm_num);
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                               break;
+                       }
+
+                       max_refresh_rate = max(max_refresh_rate, refresh_rate);
+               }
+       }
+
+       rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
+       mfsdram(SDRAM_RTR, val);
+       mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
+               (SDRAM_RTR_RINT_ENCODE(rint)));
+}
+
+/*------------------------------------------------------------------
+ * This routine programs the SDRAM_TRx registers.
+ *-----------------------------------------------------------------*/
+static void program_tr(unsigned long *dimm_populated,
+                      unsigned char *iic0_dimm_addr,
+                      unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long sdram_ddr1;
+       unsigned long t_rp_ns;
+       unsigned long t_rcd_ns;
+       unsigned long t_rrd_ns;
+       unsigned long t_ras_ns;
+       unsigned long t_rc_ns;
+       unsigned long t_rfc_ns;
+       unsigned long t_wpc_ns;
+       unsigned long t_wtr_ns;
+       unsigned long t_rpc_ns;
+       unsigned long t_rp_clk;
+       unsigned long t_rcd_clk;
+       unsigned long t_rrd_clk;
+       unsigned long t_ras_clk;
+       unsigned long t_rc_clk;
+       unsigned long t_rfc_clk;
+       unsigned long t_wpc_clk;
+       unsigned long t_wtr_clk;
+       unsigned long t_rpc_clk;
+       unsigned long sdtr1, sdtr2, sdtr3;
+       unsigned long ddr_check;
+       unsigned long sdram_freq;
+       unsigned long sdr_ddrpll;
+
+       PPC4xx_SYS_INFO board_cfg;
+
+       /*------------------------------------------------------------------
+        * Get the board configuration info.
+        *-----------------------------------------------------------------*/
+       get_sys_info(&board_cfg);
+
+       mfsdr(SDR0_DDR0, sdr_ddrpll);
+       sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       t_rp_ns = 0;
+       t_rrd_ns = 0;
+       t_rcd_ns = 0;
+       t_ras_ns = 0;
+       t_rc_ns = 0;
+       t_rfc_ns = 0;
+       t_wpc_ns = 0;
+       t_wtr_ns = 0;
+       t_rpc_ns = 0;
+       sdram_ddr1 = true;
+
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       if (dimm_populated[dimm_num] == SDRAM_DDR2)
+                               sdram_ddr1 = true;
+                       else
+                               sdram_ddr1 = false;
+
+                       t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
+                       t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
+                       t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
+                       t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
+                       t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
+                       t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
+               }
+       }
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Timing Reg 1, SDRAM_TR1
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_SDTR1, sdtr1);
+       sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
+                  SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
+
+       /* default values */
+       sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
+       sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
+
+       /* normal operations */
+       sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
+       sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
+
+       mtsdram(SDRAM_SDTR1, sdtr1);
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Timing Reg 2, SDRAM_TR2
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_SDTR2, sdtr2);
+       sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
+                  SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
+                  SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
+                  SDRAM_SDTR2_RRD_MASK);
+
+       /*
+        * convert t_rcd from nanoseconds to ddr clocks
+        * round up if necessary
+        */
+       t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
+       ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
+       if (sdram_freq != ddr_check)
+               t_rcd_clk++;
+
+       switch (t_rcd_clk) {
+       case 0:
+       case 1:
+               sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
+               break;
+       case 2:
+               sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
+               break;
+       case 3:
+               sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
+               break;
+       case 4:
+               sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
+               break;
+       default:
+               sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
+               break;
+       }
+
+       if (sdram_ddr1 == true) { /* DDR1 */
+               if (sdram_freq < 200000000) {
+                       sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
+                       sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
+                       sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
+               } else {
+                       sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
+                       sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
+                       sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
+               }
+       } else { /* DDR2 */
+               /* loop through all the DIMM slots on the board */
+               for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+                       /* If a dimm is installed in a particular slot ... */
+                       if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                               t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
+                               t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
+                               t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
+                       }
+               }
+
+               /*
+                * convert from nanoseconds to ddr clocks
+                * round up if necessary
+                */
+               t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
+               ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
+               if (sdram_freq != ddr_check)
+                       t_wpc_clk++;
+
+               switch (t_wpc_clk) {
+               case 0:
+               case 1:
+               case 2:
+                       sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
+                       break;
+               case 3:
+                       sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
+                       break;
+               case 4:
+                       sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
+                       break;
+               case 5:
+                       sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
+                       break;
+               default:
+                       sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
+                       break;
+               }
+
+               /*
+                * convert from nanoseconds to ddr clocks
+                * round up if necessary
+                */
+               t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
+               ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
+               if (sdram_freq != ddr_check)
+                       t_wtr_clk++;
+
+               switch (t_wtr_clk) {
+               case 0:
+               case 1:
+                       sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
+                       break;
+               case 2:
+                       sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
+                       break;
+               case 3:
+                       sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
+                       break;
+               default:
+                       sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
+                       break;
+               }
+
+               /*
+                * convert from nanoseconds to ddr clocks
+                * round up if necessary
+                */
+               t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
+               ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
+               if (sdram_freq != ddr_check)
+                       t_rpc_clk++;
+
+               switch (t_rpc_clk) {
+               case 0:
+               case 1:
+               case 2:
+                       sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
+                       break;
+               case 3:
+                       sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
+                       break;
+               default:
+                       sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
+                       break;
+               }
+       }
+
+       /* default value */
+       sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
+
+       /*
+        * convert t_rrd from nanoseconds to ddr clocks
+        * round up if necessary
+        */
+       t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
+       ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
+       if (sdram_freq != ddr_check)
+               t_rrd_clk++;
+
+       if (t_rrd_clk == 3)
+               sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
+       else
+               sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
+
+       /*
+        * convert t_rp from nanoseconds to ddr clocks
+        * round up if necessary
+        */
+       t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
+       ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
+       if (sdram_freq != ddr_check)
+               t_rp_clk++;
+
+       switch (t_rp_clk) {
+       case 0:
+       case 1:
+       case 2:
+       case 3:
+               sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
+               break;
+       case 4:
+               sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
+               break;
+       case 5:
+               sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
+               break;
+       case 6:
+               sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
+               break;
+       default:
+               sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
+               break;
+       }
+
+       mtsdram(SDRAM_SDTR2, sdtr2);
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM Timing Reg 3, SDRAM_TR3
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_SDTR3, sdtr3);
+       sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
+                  SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
+
+       /*
+        * convert t_ras from nanoseconds to ddr clocks
+        * round up if necessary
+        */
+       t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
+       ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
+       if (sdram_freq != ddr_check)
+               t_ras_clk++;
+
+       sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
+
+       /*
+        * convert t_rc from nanoseconds to ddr clocks
+        * round up if necessary
+        */
+       t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
+       ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
+       if (sdram_freq != ddr_check)
+               t_rc_clk++;
+
+       sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
+
+       /* default xcs value */
+       sdtr3 |= SDRAM_SDTR3_XCS;
+
+       /*
+        * convert t_rfc from nanoseconds to ddr clocks
+        * round up if necessary
+        */
+       t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
+       ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
+       if (sdram_freq != ddr_check)
+               t_rfc_clk++;
+
+       sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
+
+       mtsdram(SDRAM_SDTR3, sdtr3);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_bxcf.
+ *-----------------------------------------------------------------------------*/
+static void program_bxcf(unsigned long *dimm_populated,
+                        unsigned char *iic0_dimm_addr,
+                        unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long num_col_addr;
+       unsigned long num_ranks;
+       unsigned long num_banks;
+       unsigned long mode;
+       unsigned long ind_rank;
+       unsigned long ind;
+       unsigned long ind_bank;
+       unsigned long bank_0_populated;
+
+       /*------------------------------------------------------------------
+        * Set the BxCF regs.  First, wipe out the bank config registers.
+        *-----------------------------------------------------------------*/
+       mtsdram(SDRAM_MB0CF, 0x00000000);
+       mtsdram(SDRAM_MB1CF, 0x00000000);
+       mtsdram(SDRAM_MB2CF, 0x00000000);
+       mtsdram(SDRAM_MB3CF, 0x00000000);
+
+       mode = SDRAM_BXCF_M_BE_ENABLE;
+
+       bank_0_populated = 0;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
+                       num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
+                       if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
+                               num_ranks = (num_ranks & 0x0F) +1;
+                       else
+                               num_ranks = num_ranks & 0x0F;
+
+                       num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
+
+                       for (ind_bank = 0; ind_bank < 2; ind_bank++) {
+                               if (num_banks == 4)
+                                       ind = 0;
+                               else
+                                       ind = 5 << 8;
+                               switch (num_col_addr) {
+                               case 0x08:
+                                       mode |= (SDRAM_BXCF_M_AM_0 + ind);
+                                       break;
+                               case 0x09:
+                                       mode |= (SDRAM_BXCF_M_AM_1 + ind);
+                                       break;
+                               case 0x0A:
+                                       mode |= (SDRAM_BXCF_M_AM_2 + ind);
+                                       break;
+                               case 0x0B:
+                                       mode |= (SDRAM_BXCF_M_AM_3 + ind);
+                                       break;
+                               case 0x0C:
+                                       mode |= (SDRAM_BXCF_M_AM_4 + ind);
+                                       break;
+                               default:
+                                       printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
+                                              (unsigned int)dimm_num);
+                                       printf("ERROR: Unsupported value for number of "
+                                              "column addresses: %d.\n", (unsigned int)num_col_addr);
+                                       printf("Replace the DIMM module with a supported DIMM.\n\n");
+                                       spd_ddr_init_hang ();
+                               }
+                       }
+
+                       if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
+                               bank_0_populated = 1;
+
+                       for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
+                               mtsdram(SDRAM_MB0CF +
+                                       ((dimm_num + bank_0_populated + ind_rank) << 2),
+                                       mode);
+                       }
+               }
+       }
+}
+
+/*------------------------------------------------------------------
+ * program memory queue.
+ *-----------------------------------------------------------------*/
+static void program_memory_queue(unsigned long *dimm_populated,
+                                unsigned char *iic0_dimm_addr,
+                                unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       phys_size_t rank_base_addr;
+       unsigned long rank_reg;
+       phys_size_t rank_size_bytes;
+       unsigned long rank_size_id;
+       unsigned long num_ranks;
+       unsigned long baseadd_size;
+       unsigned long i;
+       unsigned long bank_0_populated = 0;
+       phys_size_t total_size = 0;
+
+       /*------------------------------------------------------------------
+        * Reset the rank_base_address.
+        *-----------------------------------------------------------------*/
+       rank_reg   = SDRAM_R0BAS;
+
+       rank_base_addr = 0x00000000;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_populated[dimm_num] != SDRAM_NONE) {
+                       num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
+                       if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
+                               num_ranks = (num_ranks & 0x0F) + 1;
+                       else
+                               num_ranks = num_ranks & 0x0F;
+
+                       rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
+
+                       /*------------------------------------------------------------------
+                        * Set the sizes
+                        *-----------------------------------------------------------------*/
+                       baseadd_size = 0;
+                       switch (rank_size_id) {
+                       case 0x01:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
+                               total_size = 1024;
+                               break;
+                       case 0x02:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
+                               total_size = 2048;
+                               break;
+                       case 0x04:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
+                               total_size = 4096;
+                               break;
+                       case 0x08:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_32;
+                               total_size = 32;
+                               break;
+                       case 0x10:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_64;
+                               total_size = 64;
+                               break;
+                       case 0x20:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_128;
+                               total_size = 128;
+                               break;
+                       case 0x40:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_256;
+                               total_size = 256;
+                               break;
+                       case 0x80:
+                               baseadd_size |= SDRAM_RXBAS_SDSZ_512;
+                               total_size = 512;
+                               break;
+                       default:
+                               printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
+                                      (unsigned int)dimm_num);
+                               printf("ERROR: Unsupported value for the banksize: %d.\n",
+                                      (unsigned int)rank_size_id);
+                               printf("Replace the DIMM module with a supported DIMM.\n\n");
+                               spd_ddr_init_hang ();
+                       }
+                       rank_size_bytes = total_size << 20;
+
+                       if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
+                               bank_0_populated = 1;
+
+                       for (i = 0; i < num_ranks; i++) {
+                               mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
+                                         (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
+                                          baseadd_size));
+                               rank_base_addr += rank_size_bytes;
+                       }
+               }
+       }
+
+#if defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
+    defined(CONFIG_460EX) || defined(CONFIG_460GT) || \
+    defined(CONFIG_460SX)
+       /*
+        * Enable high bandwidth access
+        * This is currently not used, but with this setup
+        * it is possible to use it later on in e.g. the Linux
+        * EMAC driver for performance gain.
+        */
+       mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
+       mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
+
+       /*
+        * Set optimal value for Memory Queue HB/LL Configuration registers
+        */
+       mtdcr(SDRAM_CONF1HB, (mfdcr(SDRAM_CONF1HB) & ~SDRAM_CONF1HB_MASK) |
+             SDRAM_CONF1HB_AAFR | SDRAM_CONF1HB_RPEN | SDRAM_CONF1HB_RFTE |
+             SDRAM_CONF1HB_RPLM | SDRAM_CONF1HB_WRCL);
+       mtdcr(SDRAM_CONF1LL, (mfdcr(SDRAM_CONF1LL) & ~SDRAM_CONF1LL_MASK) |
+             SDRAM_CONF1LL_AAFR | SDRAM_CONF1LL_RPEN | SDRAM_CONF1LL_RFTE |
+             SDRAM_CONF1LL_RPLM);
+       mtdcr(SDRAM_CONFPATHB, mfdcr(SDRAM_CONFPATHB) | SDRAM_CONFPATHB_TPEN);
+#endif
+}
+
+#ifdef CONFIG_DDR_ECC
+/*-----------------------------------------------------------------------------+
+ * program_ecc.
+ *-----------------------------------------------------------------------------*/
+static void program_ecc(unsigned long *dimm_populated,
+                       unsigned char *iic0_dimm_addr,
+                       unsigned long num_dimm_banks,
+                       unsigned long tlb_word2_i_value)
+{
+       unsigned long dimm_num;
+       unsigned long ecc;
+
+       ecc = 0;
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_populated[dimm_num] != SDRAM_NONE)
+                       ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
+       }
+       if (ecc == 0)
+               return;
+
+       do_program_ecc(tlb_word2_i_value);
+}
+#endif
+
+#if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
+/*-----------------------------------------------------------------------------+
+ * program_DQS_calibration.
+ *-----------------------------------------------------------------------------*/
+static void program_DQS_calibration(unsigned long *dimm_populated,
+                                   unsigned char *iic0_dimm_addr,
+                                   unsigned long num_dimm_banks)
+{
+       unsigned long val;
+
+#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
+       mtsdram(SDRAM_RQDC, 0x80000037);
+       mtsdram(SDRAM_RDCC, 0x40000000);
+       mtsdram(SDRAM_RFDC, 0x000001DF);
+
+       test();
+#else
+       /*------------------------------------------------------------------
+        * Program RDCC register
+        * Read sample cycle auto-update enable
+        *-----------------------------------------------------------------*/
+
+       mfsdram(SDRAM_RDCC, val);
+       mtsdram(SDRAM_RDCC,
+               (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
+               | SDRAM_RDCC_RSAE_ENABLE);
+
+       /*------------------------------------------------------------------
+        * Program RQDC register
+        * Internal DQS delay mechanism enable
+        *-----------------------------------------------------------------*/
+       mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
+
+       /*------------------------------------------------------------------
+        * Program RFDC register
+        * Set Feedback Fractional Oversample
+        * Auto-detect read sample cycle enable
+        * Set RFOS to 1/4 of memclk cycle (0x3f)
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_RFDC, val);
+       mtsdram(SDRAM_RFDC,
+               (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
+                        SDRAM_RFDC_RFFD_MASK))
+               | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0x3f) |
+                  SDRAM_RFDC_RFFD_ENCODE(0)));
+
+       DQS_calibration_process();
+#endif
+}
+
+static int short_mem_test(void)
+{
+       u32 *membase;
+       u32 bxcr_num;
+       u32 bxcf;
+       int i;
+       int j;
+       phys_size_t base_addr;
+       u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
+               {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
+                0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
+               {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
+                0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
+               {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
+                0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
+               {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
+                0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
+               {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
+                0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
+               {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
+                0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
+               {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
+                0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
+               {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
+                0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
+       int l;
+
+       for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
+               mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
+
+               /* Banks enabled */
+               if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
+                       /* Bank is enabled */
+
+                       /*
+                        * Only run test on accessable memory (below 2GB)
+                        */
+                       base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num));
+                       if (base_addr >= CONFIG_MAX_MEM_MAPPED)
+                               continue;
+
+                       /*------------------------------------------------------------------
+                        * Run the short memory test.
+                        *-----------------------------------------------------------------*/
+                       membase = (u32 *)(u32)base_addr;
+
+                       for (i = 0; i < NUMMEMTESTS; i++) {
+                               for (j = 0; j < NUMMEMWORDS; j++) {
+                                       membase[j] = test[i][j];
+                                       ppcDcbf((u32)&(membase[j]));
+                               }
+                               sync();
+                               for (l=0; l<NUMLOOPS; l++) {
+                                       for (j = 0; j < NUMMEMWORDS; j++) {
+                                               if (membase[j] != test[i][j]) {
+                                                       ppcDcbf((u32)&(membase[j]));
+                                                       return 0;
+                                               }
+                                               ppcDcbf((u32)&(membase[j]));
+                                       }
+                                       sync();
+                               }
+                       }
+               }       /* if bank enabled */
+       }               /* for bxcf_num */
+
+       return 1;
+}
+
+#ifndef HARD_CODED_DQS
+/*-----------------------------------------------------------------------------+
+ * DQS_calibration_process.
+ *-----------------------------------------------------------------------------*/
+static void DQS_calibration_process(void)
+{
+       unsigned long rfdc_reg;
+       unsigned long rffd;
+       unsigned long val;
+       long rffd_average;
+       long max_start;
+       unsigned long dlycal;
+       unsigned long dly_val;
+       unsigned long max_pass_length;
+       unsigned long current_pass_length;
+       unsigned long current_fail_length;
+       unsigned long current_start;
+       long max_end;
+       unsigned char fail_found;
+       unsigned char pass_found;
+#if !defined(CONFIG_DDR_RQDC_FIXED)
+       int window_found;
+       u32 rqdc_reg;
+       u32 rqfd;
+       u32 rqfd_start;
+       u32 rqfd_average;
+       int loopi = 0;
+       char str[] = "Auto calibration -";
+       char slash[] = "\\|/-\\|/-";
+
+       /*------------------------------------------------------------------
+        * Test to determine the best read clock delay tuning bits.
+        *
+        * Before the DDR controller can be used, the read clock delay needs to be
+        * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
+        * This value cannot be hardcoded into the program because it changes
+        * depending on the board's setup and environment.
+        * To do this, all delay values are tested to see if they
+        * work or not.  By doing this, you get groups of fails with groups of
+        * passing values.  The idea is to find the start and end of a passing
+        * window and take the center of it to use as the read clock delay.
+        *
+        * A failure has to be seen first so that when we hit a pass, we know
+        * that it is truely the start of the window.  If we get passing values
+        * to start off with, we don't know if we are at the start of the window.
+        *
+        * The code assumes that a failure will always be found.
+        * If a failure is not found, there is no easy way to get the middle
+        * of the passing window.  I guess we can pretty much pick any value
+        * but some values will be better than others.  Since the lowest speed
+        * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
+        * from experimentation it is safe to say you will always have a failure.
+        *-----------------------------------------------------------------*/
+
+       /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
+       rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
+
+       puts(str);
+
+calibration_loop:
+       mfsdram(SDRAM_RQDC, rqdc_reg);
+       mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
+               SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
+#else /* CONFIG_DDR_RQDC_FIXED */
+       /*
+        * On Katmai the complete auto-calibration somehow doesn't seem to
+        * produce the best results, meaning optimal values for RQFD/RFFD.
+        * This was discovered by GDA using a high bandwidth scope,
+        * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
+        * so now on Katmai "only" RFFD is auto-calibrated.
+        */
+       mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
+#endif /* CONFIG_DDR_RQDC_FIXED */
+
+       max_start = 0;
+
+       max_pass_length = 0;
+       max_start = 0;
+       max_end = 0;
+       current_pass_length = 0;
+       current_fail_length = 0;
+       current_start = 0;
+       fail_found = false;
+       pass_found = false;
+
+       /*
+        * get the delay line calibration register value
+        */
+       mfsdram(SDRAM_DLCR, dlycal);
+       dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
+
+       for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
+               mfsdram(SDRAM_RFDC, rfdc_reg);
+               rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
+
+               /*------------------------------------------------------------------
+                * Set the timing reg for the test.
+                *-----------------------------------------------------------------*/
+               mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
+
+               /*------------------------------------------------------------------
+                * See if the rffd value passed.
+                *-----------------------------------------------------------------*/
+               if (short_mem_test()) {
+                       if (fail_found == true) {
+                               pass_found = true;
+                               if (current_pass_length == 0)
+                                       current_start = rffd;
+
+                               current_fail_length = 0;
+                               current_pass_length++;
+
+                               if (current_pass_length > max_pass_length) {
+                                       max_pass_length = current_pass_length;
+                                       max_start = current_start;
+                                       max_end = rffd;
+                               }
+                       }
+               } else {
+                       current_pass_length = 0;
+                       current_fail_length++;
+
+                       if (current_fail_length >= (dly_val >> 2)) {
+                               if (fail_found == false)
+                                       fail_found = true;
+                               else if (pass_found == true)
+                                       break;
+                       }
+               }
+       }               /* for rffd */
+
+       /*------------------------------------------------------------------
+        * Set the average RFFD value
+        *-----------------------------------------------------------------*/
+       rffd_average = ((max_start + max_end) >> 1);
+
+       if (rffd_average < 0)
+               rffd_average = 0;
+
+       if (rffd_average > SDRAM_RFDC_RFFD_MAX)
+               rffd_average = SDRAM_RFDC_RFFD_MAX;
+       /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
+       mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
+
+#if !defined(CONFIG_DDR_RQDC_FIXED)
+       max_pass_length = 0;
+       max_start = 0;
+       max_end = 0;
+       current_pass_length = 0;
+       current_fail_length = 0;
+       current_start = 0;
+       window_found = false;
+       fail_found = false;
+       pass_found = false;
+
+       for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
+               mfsdram(SDRAM_RQDC, rqdc_reg);
+               rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
+
+               /*------------------------------------------------------------------
+                * Set the timing reg for the test.
+                *-----------------------------------------------------------------*/
+               mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
+
+               /*------------------------------------------------------------------
+                * See if the rffd value passed.
+                *-----------------------------------------------------------------*/
+               if (short_mem_test()) {
+                       if (fail_found == true) {
+                               pass_found = true;
+                               if (current_pass_length == 0)
+                                       current_start = rqfd;
+
+                               current_fail_length = 0;
+                               current_pass_length++;
+
+                               if (current_pass_length > max_pass_length) {
+                                       max_pass_length = current_pass_length;
+                                       max_start = current_start;
+                                       max_end = rqfd;
+                               }
+                       }
+               } else {
+                       current_pass_length = 0;
+                       current_fail_length++;
+
+                       if (fail_found == false) {
+                               fail_found = true;
+                       } else if (pass_found == true) {
+                               window_found = true;
+                               break;
+                       }
+               }
+       }
+
+       rqfd_average = ((max_start + max_end) >> 1);
+
+       /*------------------------------------------------------------------
+        * Make sure we found the valid read passing window.  Halt if not
+        *-----------------------------------------------------------------*/
+       if (window_found == false) {
+               if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
+                       putc('\b');
+                       putc(slash[loopi++ % 8]);
+
+                       /* try again from with a different RQFD start value */
+                       rqfd_start++;
+                       goto calibration_loop;
+               }
+
+               printf("\nERROR: Cannot determine a common read delay for the "
+                      "DIMM(s) installed.\n");
+               debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
+               ppc4xx_ibm_ddr2_register_dump();
+               spd_ddr_init_hang ();
+       }
+
+       if (rqfd_average < 0)
+               rqfd_average = 0;
+
+       if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
+               rqfd_average = SDRAM_RQDC_RQFD_MAX;
+
+       mtsdram(SDRAM_RQDC,
+               (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
+               SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
+
+       blank_string(strlen(str));
+#endif /* CONFIG_DDR_RQDC_FIXED */
+
+       mfsdram(SDRAM_DLCR, val);
+       debug("%s[%d] DLCR: 0x%08lX\n", __FUNCTION__, __LINE__, val);
+       mfsdram(SDRAM_RQDC, val);
+       debug("%s[%d] RQDC: 0x%08lX\n", __FUNCTION__, __LINE__, val);
+       mfsdram(SDRAM_RFDC, val);
+       debug("%s[%d] RFDC: 0x%08lX\n", __FUNCTION__, __LINE__, val);
+       mfsdram(SDRAM_RDCC, val);
+       debug("%s[%d] RDCC: 0x%08lX\n", __FUNCTION__, __LINE__, val);
+}
+#else /* calibration test with hardvalues */
+/*-----------------------------------------------------------------------------+
+ * DQS_calibration_process.
+ *-----------------------------------------------------------------------------*/
+static void test(void)
+{
+       unsigned long dimm_num;
+       unsigned long ecc_temp;
+       unsigned long i, j;
+       unsigned long *membase;
+       unsigned long bxcf[MAXRANKS];
+       unsigned long val;
+       char window_found;
+       char begin_found[MAXDIMMS];
+       char end_found[MAXDIMMS];
+       char search_end[MAXDIMMS];
+       unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
+               {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
+                0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
+               {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
+                0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
+               {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
+                0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
+               {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
+                0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
+               {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
+                0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
+               {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
+                0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
+               {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
+                0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
+               {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
+                0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
+
+       /*------------------------------------------------------------------
+        * Test to determine the best read clock delay tuning bits.
+        *
+        * Before the DDR controller can be used, the read clock delay needs to be
+        * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
+        * This value cannot be hardcoded into the program because it changes
+        * depending on the board's setup and environment.
+        * To do this, all delay values are tested to see if they
+        * work or not.  By doing this, you get groups of fails with groups of
+        * passing values.  The idea is to find the start and end of a passing
+        * window and take the center of it to use as the read clock delay.
+        *
+        * A failure has to be seen first so that when we hit a pass, we know
+        * that it is truely the start of the window.  If we get passing values
+        * to start off with, we don't know if we are at the start of the window.
+        *
+        * The code assumes that a failure will always be found.
+        * If a failure is not found, there is no easy way to get the middle
+        * of the passing window.  I guess we can pretty much pick any value
+        * but some values will be better than others.  Since the lowest speed
+        * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
+        * from experimentation it is safe to say you will always have a failure.
+        *-----------------------------------------------------------------*/
+       mfsdram(SDRAM_MCOPT1, ecc_temp);
+       ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
+       mfsdram(SDRAM_MCOPT1, val);
+       mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
+               SDRAM_MCOPT1_MCHK_NON);
+
+       window_found = false;
+       begin_found[0] = false;
+       end_found[0] = false;
+       search_end[0] = false;
+       begin_found[1] = false;
+       end_found[1] = false;
+       search_end[1] = false;
+
+       for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
+               mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
+
+               /* Banks enabled */
+               if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
+
+                       /* Bank is enabled */
+                       membase =
+                               (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
+
+                       /*------------------------------------------------------------------
+                        * Run the short memory test.
+                        *-----------------------------------------------------------------*/
+                       for (i = 0; i < NUMMEMTESTS; i++) {
+                               for (j = 0; j < NUMMEMWORDS; j++) {
+                                       membase[j] = test[i][j];
+                                       ppcDcbf((u32)&(membase[j]));
+                               }
+                               sync();
+                               for (j = 0; j < NUMMEMWORDS; j++) {
+                                       if (membase[j] != test[i][j]) {
+                                               ppcDcbf((u32)&(membase[j]));
+                                               break;
+                                       }
+                                       ppcDcbf((u32)&(membase[j]));
+                               }
+                               sync();
+                               if (j < NUMMEMWORDS)
+                                       break;
+                       }
+
+                       /*------------------------------------------------------------------
+                        * See if the rffd value passed.
+                        *-----------------------------------------------------------------*/
+                       if (i < NUMMEMTESTS) {
+                               if ((end_found[dimm_num] == false) &&
+                                   (search_end[dimm_num] == true)) {
+                                       end_found[dimm_num] = true;
+                               }
+                               if ((end_found[0] == true) &&
+                                   (end_found[1] == true))
+                                       break;
+                       } else {
+                               if (begin_found[dimm_num] == false) {
+                                       begin_found[dimm_num] = true;
+                                       search_end[dimm_num] = true;
+                               }
+                       }
+               } else {
+                       begin_found[dimm_num] = true;
+                       end_found[dimm_num] = true;
+               }
+       }
+
+       if ((begin_found[0] == true) && (begin_found[1] == true))
+               window_found = true;
+
+       /*------------------------------------------------------------------
+        * Make sure we found the valid read passing window.  Halt if not
+        *-----------------------------------------------------------------*/
+       if (window_found == false) {
+               printf("ERROR: Cannot determine a common read delay for the "
+                      "DIMM(s) installed.\n");
+               spd_ddr_init_hang ();
+       }
+
+       /*------------------------------------------------------------------
+        * Restore the ECC variable to what it originally was
+        *-----------------------------------------------------------------*/
+       mtsdram(SDRAM_MCOPT1,
+               (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
+               | ecc_temp);
+}
+#endif /* !HARD_CODED_DQS */
+#endif /* !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) */
+
+#else /* CONFIG_SPD_EEPROM */
+
+/*-----------------------------------------------------------------------------
+ * Function:   initdram
+ * Description: Configures the PPC4xx IBM DDR1/DDR2 SDRAM memory controller.
+ *             The configuration is performed using static, compile-
+ *             time parameters.
+ *             Configures the PPC405EX(r) and PPC460EX/GT
+ *---------------------------------------------------------------------------*/
+phys_size_t initdram(int board_type)
+{
+       unsigned long val;
+
+#if defined(CONFIG_440)
+       mtdcr(SDRAM_R0BAS,      CONFIG_SYS_SDRAM_R0BAS);
+       mtdcr(SDRAM_R1BAS,      CONFIG_SYS_SDRAM_R1BAS);
+       mtdcr(SDRAM_R2BAS,      CONFIG_SYS_SDRAM_R2BAS);
+       mtdcr(SDRAM_R3BAS,      CONFIG_SYS_SDRAM_R3BAS);
+       mtdcr(SDRAM_PLBADDULL,  CONFIG_SYS_SDRAM_PLBADDULL);    /* MQ0_BAUL */
+       mtdcr(SDRAM_PLBADDUHB,  CONFIG_SYS_SDRAM_PLBADDUHB);    /* MQ0_BAUH */
+       mtdcr(SDRAM_CONF1LL,    CONFIG_SYS_SDRAM_CONF1LL);
+       mtdcr(SDRAM_CONF1HB,    CONFIG_SYS_SDRAM_CONF1HB);
+       mtdcr(SDRAM_CONFPATHB,  CONFIG_SYS_SDRAM_CONFPATHB);
+#endif
+
+       /* Set Memory Bank Configuration Registers */
+
+       mtsdram(SDRAM_MB0CF, CONFIG_SYS_SDRAM0_MB0CF);
+       mtsdram(SDRAM_MB1CF, CONFIG_SYS_SDRAM0_MB1CF);
+       mtsdram(SDRAM_MB2CF, CONFIG_SYS_SDRAM0_MB2CF);
+       mtsdram(SDRAM_MB3CF, CONFIG_SYS_SDRAM0_MB3CF);
+
+       /* Set Memory Clock Timing Register */
+
+       mtsdram(SDRAM_CLKTR, CONFIG_SYS_SDRAM0_CLKTR);
+
+       /* Set Refresh Time Register */
+
+       mtsdram(SDRAM_RTR, CONFIG_SYS_SDRAM0_RTR);
+
+       /* Set SDRAM Timing Registers */
+
+       mtsdram(SDRAM_SDTR1, CONFIG_SYS_SDRAM0_SDTR1);
+       mtsdram(SDRAM_SDTR2, CONFIG_SYS_SDRAM0_SDTR2);
+       mtsdram(SDRAM_SDTR3, CONFIG_SYS_SDRAM0_SDTR3);
+
+       /* Set Mode and Extended Mode Registers */
+
+       mtsdram(SDRAM_MMODE, CONFIG_SYS_SDRAM0_MMODE);
+       mtsdram(SDRAM_MEMODE, CONFIG_SYS_SDRAM0_MEMODE);
+
+       /* Set Memory Controller Options 1 Register */
+
+       mtsdram(SDRAM_MCOPT1, CONFIG_SYS_SDRAM0_MCOPT1);
+
+       /* Set Manual Initialization Control Registers */
+
+       mtsdram(SDRAM_INITPLR0, CONFIG_SYS_SDRAM0_INITPLR0);
+       mtsdram(SDRAM_INITPLR1, CONFIG_SYS_SDRAM0_INITPLR1);
+       mtsdram(SDRAM_INITPLR2, CONFIG_SYS_SDRAM0_INITPLR2);
+       mtsdram(SDRAM_INITPLR3, CONFIG_SYS_SDRAM0_INITPLR3);
+       mtsdram(SDRAM_INITPLR4, CONFIG_SYS_SDRAM0_INITPLR4);
+       mtsdram(SDRAM_INITPLR5, CONFIG_SYS_SDRAM0_INITPLR5);
+       mtsdram(SDRAM_INITPLR6, CONFIG_SYS_SDRAM0_INITPLR6);
+       mtsdram(SDRAM_INITPLR7, CONFIG_SYS_SDRAM0_INITPLR7);
+       mtsdram(SDRAM_INITPLR8, CONFIG_SYS_SDRAM0_INITPLR8);
+       mtsdram(SDRAM_INITPLR9, CONFIG_SYS_SDRAM0_INITPLR9);
+       mtsdram(SDRAM_INITPLR10, CONFIG_SYS_SDRAM0_INITPLR10);
+       mtsdram(SDRAM_INITPLR11, CONFIG_SYS_SDRAM0_INITPLR11);
+       mtsdram(SDRAM_INITPLR12, CONFIG_SYS_SDRAM0_INITPLR12);
+       mtsdram(SDRAM_INITPLR13, CONFIG_SYS_SDRAM0_INITPLR13);
+       mtsdram(SDRAM_INITPLR14, CONFIG_SYS_SDRAM0_INITPLR14);
+       mtsdram(SDRAM_INITPLR15, CONFIG_SYS_SDRAM0_INITPLR15);
+
+       /* Set On-Die Termination Registers */
+
+       mtsdram(SDRAM_CODT, CONFIG_SYS_SDRAM0_CODT);
+       mtsdram(SDRAM_MODT0, CONFIG_SYS_SDRAM0_MODT0);
+       mtsdram(SDRAM_MODT1, CONFIG_SYS_SDRAM0_MODT1);
+
+       /* Set Write Timing Register */
+
+       mtsdram(SDRAM_WRDTR, CONFIG_SYS_SDRAM0_WRDTR);
+
+       /*
+        * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
+        * SDRAM0_MCOPT2[IPTR] = 1
+        */
+
+       mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
+                              SDRAM_MCOPT2_IPTR_EXECUTE));
+
+       /*
+        * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
+        * completion of initialization.
+        */
+
+       do {
+               mfsdram(SDRAM_MCSTAT, val);
+       } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
+
+       /* Set Delay Control Registers */
+
+       mtsdram(SDRAM_DLCR, CONFIG_SYS_SDRAM0_DLCR);
+
+#if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
+       mtsdram(SDRAM_RDCC, CONFIG_SYS_SDRAM0_RDCC);
+       mtsdram(SDRAM_RQDC, CONFIG_SYS_SDRAM0_RQDC);
+       mtsdram(SDRAM_RFDC, CONFIG_SYS_SDRAM0_RFDC);
+#endif /* !CONFIG_PPC4xx_DDR_AUTOCALIBRATION */
+
+       /*
+        * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
+        */
+
+       mfsdram(SDRAM_MCOPT2, val);
+       mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
+
+#if defined(CONFIG_440)
+       /*
+        * Program TLB entries with caches enabled, for best performace
+        * while auto-calibrating and ECC generation
+        */
+       program_tlb(0, 0, (CONFIG_SYS_MBYTES_SDRAM << 20), 0);
+#endif
+
+#if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
+       /*------------------------------------------------------------------
+        | DQS calibration.
+        +-----------------------------------------------------------------*/
+       DQS_autocalibration();
+#endif /* CONFIG_PPC4xx_DDR_AUTOCALIBRATION */
+
+       /*
+        * Now complete RDSS configuration as mentioned on page 7 of the AMCC
+        * PowerPC440SP/SPe DDR2 application note:
+        * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
+        */
+       update_rdcc();
+
+#if defined(CONFIG_DDR_ECC)
+       do_program_ecc(0);
+#endif /* defined(CONFIG_DDR_ECC) */
+
+#if defined(CONFIG_440)
+       /*
+        * Now after initialization (auto-calibration and ECC generation)
+        * remove the TLB entries with caches enabled and program again with
+        * desired cache functionality
+        */
+       remove_tlb(0, (CONFIG_SYS_MBYTES_SDRAM << 20));
+       program_tlb(0, 0, (CONFIG_SYS_MBYTES_SDRAM << 20), MY_TLB_WORD2_I_ENABLE);
+#endif
+
+       ppc4xx_ibm_ddr2_register_dump();
+
+#if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
+       /*
+        * Clear potential errors resulting from auto-calibration.
+        * If not done, then we could get an interrupt later on when
+        * exceptions are enabled.
+        */
+       set_mcsr(get_mcsr());
+#endif /* CONFIG_PPC4xx_DDR_AUTOCALIBRATION */
+
+       return (CONFIG_SYS_MBYTES_SDRAM << 20);
+}
+#endif /* CONFIG_SPD_EEPROM */
+
+#if defined(CONFIG_440)
+u32 mfdcr_any(u32 dcr)
+{
+       u32 val;
+
+       switch (dcr) {
+       case SDRAM_R0BAS + 0:
+               val = mfdcr(SDRAM_R0BAS + 0);
+               break;
+       case SDRAM_R0BAS + 1:
+               val = mfdcr(SDRAM_R0BAS + 1);
+               break;
+       case SDRAM_R0BAS + 2:
+               val = mfdcr(SDRAM_R0BAS + 2);
+               break;
+       case SDRAM_R0BAS + 3:
+               val = mfdcr(SDRAM_R0BAS + 3);
+               break;
+       default:
+               printf("DCR %d not defined in case statement!!!\n", dcr);
+               val = 0; /* just to satisfy the compiler */
+       }
+
+       return val;
+}
+
+void mtdcr_any(u32 dcr, u32 val)
+{
+       switch (dcr) {
+       case SDRAM_R0BAS + 0:
+               mtdcr(SDRAM_R0BAS + 0, val);
+               break;
+       case SDRAM_R0BAS + 1:
+               mtdcr(SDRAM_R0BAS + 1, val);
+               break;
+       case SDRAM_R0BAS + 2:
+               mtdcr(SDRAM_R0BAS + 2, val);
+               break;
+       case SDRAM_R0BAS + 3:
+               mtdcr(SDRAM_R0BAS + 3, val);
+               break;
+       default:
+               printf("DCR %d not defined in case statement!!!\n", dcr);
+       }
+}
+#endif /* defined(CONFIG_440) */
+
+inline void ppc4xx_ibm_ddr2_register_dump(void)
+{
+#if defined(DEBUG)
+       printf("\nPPC4xx IBM DDR2 Register Dump:\n");
+
+#if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
+     defined(CONFIG_460EX) || defined(CONFIG_460GT))
+       PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R0BAS);
+       PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R1BAS);
+       PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R2BAS);
+       PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R3BAS);
+#endif /* (defined(CONFIG_440SP) || ... */
+#if defined(CONFIG_405EX)
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(BESR);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARL);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARH);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(WMIRQ);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(PLBOPT);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(PUABA);
+#endif /* defined(CONFIG_405EX) */
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MB0CF);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MB1CF);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MB2CF);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MB3CF);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MCSTAT);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT1);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT2);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT0);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT1);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT2);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT3);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(CODT);
+#if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) ||        \
+     defined(CONFIG_460EX) || defined(CONFIG_460GT))
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(VVPR);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(OPARS);
+       /*
+        * OPART is only used as a trigger register.
+        *
+        * No data is contained in this register, and reading or writing
+        * to is can cause bad things to happen (hangs). Just skip it and
+        * report "N/A".
+        */
+       printf("%20s = N/A\n", "SDRAM_OPART");
+#endif /* defined(CONFIG_440SP) || ... */
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(RTR);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR0);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR1);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR2);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR3);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR4);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR5);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR6);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR7);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR8);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR9);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR10);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR11);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR12);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR13);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR14);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR15);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(RQDC);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(RFDC);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(RDCC);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(DLCR);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(CLKTR);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(WRDTR);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR1);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR2);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR3);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MMODE);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(MEMODE);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(ECCES);
+#if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
+     defined(CONFIG_460EX) || defined(CONFIG_460GT))
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(CID);
+#endif /* defined(CONFIG_440SP) || ... */
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(RID);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(FCSR);
+       PPC4xx_IBM_DDR2_DUMP_REGISTER(RTSR);
+#endif /* defined(DEBUG) */
+}