Add qemu 2.4.0
[kvmfornfv.git] / qemu / roms / ipxe / src / drivers / net / ath / ath5k / ath5k_phy.c
diff --git a/qemu/roms/ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c b/qemu/roms/ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c
new file mode 100644 (file)
index 0000000..7891d39
--- /dev/null
@@ -0,0 +1,2581 @@
+/*
+ * PHY functions
+ *
+ * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
+ * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
+ * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
+ * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
+ *
+ * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+FILE_LICENCE ( MIT );
+
+#define _ATH5K_PHY
+
+#include <unistd.h>
+#include <stdlib.h>
+
+#include "ath5k.h"
+#include "reg.h"
+#include "base.h"
+#include "rfbuffer.h"
+#include "rfgain.h"
+
+static inline int min(int x, int y)
+{
+       return (x < y) ? x : y;
+}
+
+static inline int max(int x, int y)
+{
+       return (x > y) ? x : y;
+}
+
+/*
+ * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
+ */
+static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
+                                       const struct ath5k_rf_reg *rf_regs,
+                                       u32 val, u8 reg_id, int set)
+{
+       const struct ath5k_rf_reg *rfreg = NULL;
+       u8 offset, bank, num_bits, col, position;
+       u16 entry;
+       u32 mask, data, last_bit, bits_shifted, first_bit;
+       u32 *rfb;
+       s32 bits_left;
+       unsigned i;
+
+       data = 0;
+       rfb = ah->ah_rf_banks;
+
+       for (i = 0; i < ah->ah_rf_regs_count; i++) {
+               if (rf_regs[i].index == reg_id) {
+                       rfreg = &rf_regs[i];
+                       break;
+               }
+       }
+
+       if (rfb == NULL || rfreg == NULL) {
+               DBG("ath5k: RF register not found!\n");
+               /* should not happen */
+               return 0;
+       }
+
+       bank = rfreg->bank;
+       num_bits = rfreg->field.len;
+       first_bit = rfreg->field.pos;
+       col = rfreg->field.col;
+
+       /* first_bit is an offset from bank's
+        * start. Since we have all banks on
+        * the same array, we use this offset
+        * to mark each bank's start */
+       offset = ah->ah_offset[bank];
+
+       /* Boundary check */
+       if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
+               DBG("ath5k: RF invalid values at offset %d\n", offset);
+               return 0;
+       }
+
+       entry = ((first_bit - 1) / 8) + offset;
+       position = (first_bit - 1) % 8;
+
+       if (set)
+               data = ath5k_hw_bitswap(val, num_bits);
+
+       for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
+       position = 0, entry++) {
+
+               last_bit = (position + bits_left > 8) ? 8 :
+                                       position + bits_left;
+
+               mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
+                                                               (col * 8);
+
+               if (set) {
+                       rfb[entry] &= ~mask;
+                       rfb[entry] |= ((data << position) << (col * 8)) & mask;
+                       data >>= (8 - position);
+               } else {
+                       data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
+                               << bits_shifted;
+                       bits_shifted += last_bit - position;
+               }
+
+               bits_left -= 8 - position;
+       }
+
+       data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
+
+       return data;
+}
+
+/**********************\
+* RF Gain optimization *
+\**********************/
+
+/*
+ * This code is used to optimize rf gain on different environments
+ * (temprature mostly) based on feedback from a power detector.
+ *
+ * It's only used on RF5111 and RF5112, later RF chips seem to have
+ * auto adjustment on hw -notice they have a much smaller BANK 7 and
+ * no gain optimization ladder-.
+ *
+ * For more infos check out this patent doc
+ * http://www.freepatentsonline.com/7400691.html
+ *
+ * This paper describes power drops as seen on the receiver due to
+ * probe packets
+ * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
+ * %20of%20Power%20Control.pdf
+ *
+ * And this is the MadWiFi bug entry related to the above
+ * http://madwifi-project.org/ticket/1659
+ * with various measurements and diagrams
+ *
+ * TODO: Deal with power drops due to probes by setting an apropriate
+ * tx power on the probe packets ! Make this part of the calibration process.
+ */
+
+/* Initialize ah_gain durring attach */
+int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
+{
+       /* Initialize the gain optimization values */
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
+               ah->ah_gain.g_low = 20;
+               ah->ah_gain.g_high = 35;
+               ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               break;
+       case AR5K_RF5112:
+               ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
+               ah->ah_gain.g_low = 20;
+               ah->ah_gain.g_high = 85;
+               ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+/* Schedule a gain probe check on the next transmited packet.
+ * That means our next packet is going to be sent with lower
+ * tx power and a Peak to Average Power Detector (PAPD) will try
+ * to measure the gain.
+ *
+ * TODO: Use propper tx power setting for the probe packet so
+ * that we don't observe a serious power drop on the receiver
+ *
+ * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
+ * just after we enable the probe so that we don't mess with
+ * standard traffic ? Maybe it's time to use sw interrupts and
+ * a probe tasklet !!!
+ */
+static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
+{
+
+       /* Skip if gain calibration is inactive or
+        * we already handle a probe request */
+       if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
+               return;
+
+       /* Send the packet with 2dB below max power as
+        * patent doc suggest */
+       ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
+                       AR5K_PHY_PAPD_PROBE_TXPOWER) |
+                       AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
+
+       ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
+
+}
+
+/* Calculate gain_F measurement correction
+ * based on the current step for RF5112 rev. 2 */
+static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
+{
+       u32 mix, step;
+       const struct ath5k_gain_opt *go;
+       const struct ath5k_gain_opt_step *g_step;
+       const struct ath5k_rf_reg *rf_regs;
+
+       /* Only RF5112 Rev. 2 supports it */
+       if ((ah->ah_radio != AR5K_RF5112) ||
+       (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
+               return 0;
+
+       go = &rfgain_opt_5112;
+       rf_regs = rf_regs_5112a;
+       ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
+
+       g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+       if (ah->ah_rf_banks == NULL)
+               return 0;
+
+       ah->ah_gain.g_f_corr = 0;
+
+       /* No VGA (Variable Gain Amplifier) override, skip */
+       if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1)
+               return 0;
+
+       /* Mix gain stepping */
+       step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0);
+
+       /* Mix gain override */
+       mix = g_step->gos_param[0];
+
+       switch (mix) {
+       case 3:
+               ah->ah_gain.g_f_corr = step * 2;
+               break;
+       case 2:
+               ah->ah_gain.g_f_corr = (step - 5) * 2;
+               break;
+       case 1:
+               ah->ah_gain.g_f_corr = step;
+               break;
+       default:
+               ah->ah_gain.g_f_corr = 0;
+               break;
+       }
+
+       return ah->ah_gain.g_f_corr;
+}
+
+/* Check if current gain_F measurement is in the range of our
+ * power detector windows. If we get a measurement outside range
+ * we know it's not accurate (detectors can't measure anything outside
+ * their detection window) so we must ignore it */
+static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
+{
+       const struct ath5k_rf_reg *rf_regs;
+       u32 step, mix_ovr, level[4];
+
+       if (ah->ah_rf_banks == NULL)
+               return 0;
+
+       if (ah->ah_radio == AR5K_RF5111) {
+
+               rf_regs = rf_regs_5111;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
+
+               step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
+                       0);
+
+               level[0] = 0;
+               level[1] = (step == 63) ? 50 : step + 4;
+               level[2] = (step != 63) ? 64 : level[0];
+               level[3] = level[2] + 50 ;
+
+               ah->ah_gain.g_high = level[3] -
+                       (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
+               ah->ah_gain.g_low = level[0] +
+                       (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
+       } else {
+
+               rf_regs = rf_regs_5112;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
+
+               mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
+                       0);
+
+               level[0] = level[2] = 0;
+
+               if (mix_ovr == 1) {
+                       level[1] = level[3] = 83;
+               } else {
+                       level[1] = level[3] = 107;
+                       ah->ah_gain.g_high = 55;
+               }
+       }
+
+       return (ah->ah_gain.g_current >= level[0] &&
+                       ah->ah_gain.g_current <= level[1]) ||
+               (ah->ah_gain.g_current >= level[2] &&
+                       ah->ah_gain.g_current <= level[3]);
+}
+
+/* Perform gain_F adjustment by choosing the right set
+ * of parameters from rf gain optimization ladder */
+static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
+{
+       const struct ath5k_gain_opt *go;
+       const struct ath5k_gain_opt_step *g_step;
+       int ret = 0;
+
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               go = &rfgain_opt_5111;
+               break;
+       case AR5K_RF5112:
+               go = &rfgain_opt_5112;
+               break;
+       default:
+               return 0;
+       }
+
+       g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+       if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
+
+               /* Reached maximum */
+               if (ah->ah_gain.g_step_idx == 0)
+                       return -1;
+
+               for (ah->ah_gain.g_target = ah->ah_gain.g_current;
+                               ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
+                               ah->ah_gain.g_step_idx > 0;
+                               g_step = &go->go_step[ah->ah_gain.g_step_idx])
+                       ah->ah_gain.g_target -= 2 *
+                           (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
+                           g_step->gos_gain);
+
+               ret = 1;
+               goto done;
+       }
+
+       if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
+
+               /* Reached minimum */
+               if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
+                       return -2;
+
+               for (ah->ah_gain.g_target = ah->ah_gain.g_current;
+                               ah->ah_gain.g_target <= ah->ah_gain.g_low &&
+                               ah->ah_gain.g_step_idx < go->go_steps_count-1;
+                               g_step = &go->go_step[ah->ah_gain.g_step_idx])
+                       ah->ah_gain.g_target -= 2 *
+                           (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
+                           g_step->gos_gain);
+
+               ret = 2;
+               goto done;
+       }
+
+done:
+       DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, "
+            "target gain %d\n", ret, ah->ah_gain.g_step_idx,
+            ah->ah_gain.g_current, ah->ah_gain.g_target);
+
+       return ret;
+}
+
+/* Main callback for thermal rf gain calibration engine
+ * Check for a new gain reading and schedule an adjustment
+ * if needed.
+ *
+ * TODO: Use sw interrupt to schedule reset if gain_F needs
+ * adjustment */
+enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
+{
+       u32 data, type;
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+
+       if (ah->ah_rf_banks == NULL ||
+       ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
+               return AR5K_RFGAIN_INACTIVE;
+
+       /* No check requested, either engine is inactive
+        * or an adjustment is already requested */
+       if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
+               goto done;
+
+       /* Read the PAPD (Peak to Average Power Detector)
+        * register */
+       data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
+
+       /* No probe is scheduled, read gain_F measurement */
+       if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
+               ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
+               type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
+
+               /* If tx packet is CCK correct the gain_F measurement
+                * by cck ofdm gain delta */
+               if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
+                       if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
+                               ah->ah_gain.g_current +=
+                                       ee->ee_cck_ofdm_gain_delta;
+                       else
+                               ah->ah_gain.g_current +=
+                                       AR5K_GAIN_CCK_PROBE_CORR;
+               }
+
+               /* Further correct gain_F measurement for
+                * RF5112A radios */
+               if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
+                       ath5k_hw_rf_gainf_corr(ah);
+                       ah->ah_gain.g_current =
+                               ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
+                               (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
+                               0;
+               }
+
+               /* Check if measurement is ok and if we need
+                * to adjust gain, schedule a gain adjustment,
+                * else switch back to the acive state */
+               if (ath5k_hw_rf_check_gainf_readback(ah) &&
+               AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
+               ath5k_hw_rf_gainf_adjust(ah)) {
+                       ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
+               } else {
+                       ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               }
+       }
+
+done:
+       return ah->ah_gain.g_state;
+}
+
+/* Write initial rf gain table to set the RF sensitivity
+ * this one works on all RF chips and has nothing to do
+ * with gain_F calibration */
+int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
+{
+       const struct ath5k_ini_rfgain *ath5k_rfg;
+       unsigned int i, size;
+
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               ath5k_rfg = rfgain_5111;
+               size = ARRAY_SIZE(rfgain_5111);
+               break;
+       case AR5K_RF5112:
+               ath5k_rfg = rfgain_5112;
+               size = ARRAY_SIZE(rfgain_5112);
+               break;
+       case AR5K_RF2413:
+               ath5k_rfg = rfgain_2413;
+               size = ARRAY_SIZE(rfgain_2413);
+               break;
+       case AR5K_RF2316:
+               ath5k_rfg = rfgain_2316;
+               size = ARRAY_SIZE(rfgain_2316);
+               break;
+       case AR5K_RF5413:
+               ath5k_rfg = rfgain_5413;
+               size = ARRAY_SIZE(rfgain_5413);
+               break;
+       case AR5K_RF2317:
+       case AR5K_RF2425:
+               ath5k_rfg = rfgain_2425;
+               size = ARRAY_SIZE(rfgain_2425);
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       switch (freq) {
+       case AR5K_INI_RFGAIN_2GHZ:
+       case AR5K_INI_RFGAIN_5GHZ:
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       for (i = 0; i < size; i++) {
+               AR5K_REG_WAIT(i);
+               ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
+                       (u32)ath5k_rfg[i].rfg_register);
+       }
+
+       return 0;
+}
+
+
+
+/********************\
+* RF Registers setup *
+\********************/
+
+
+/*
+ * Setup RF registers by writing rf buffer on hw
+ */
+int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel,
+               unsigned int mode)
+{
+       const struct ath5k_rf_reg *rf_regs;
+       const struct ath5k_ini_rfbuffer *ini_rfb;
+       const struct ath5k_gain_opt *go = NULL;
+       const struct ath5k_gain_opt_step *g_step;
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       u8 ee_mode = 0;
+       u32 *rfb;
+       int obdb = -1, bank = -1;
+       unsigned i;
+
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               rf_regs = rf_regs_5111;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
+               ini_rfb = rfb_5111;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
+               go = &rfgain_opt_5111;
+               break;
+       case AR5K_RF5112:
+               if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
+                       rf_regs = rf_regs_5112a;
+                       ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
+                       ini_rfb = rfb_5112a;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
+               } else {
+                       rf_regs = rf_regs_5112;
+                       ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
+                       ini_rfb = rfb_5112;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
+               }
+               go = &rfgain_opt_5112;
+               break;
+       case AR5K_RF2413:
+               rf_regs = rf_regs_2413;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
+               ini_rfb = rfb_2413;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
+               break;
+       case AR5K_RF2316:
+               rf_regs = rf_regs_2316;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
+               ini_rfb = rfb_2316;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
+               break;
+       case AR5K_RF5413:
+               rf_regs = rf_regs_5413;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
+               ini_rfb = rfb_5413;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
+               break;
+       case AR5K_RF2317:
+               rf_regs = rf_regs_2425;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
+               ini_rfb = rfb_2317;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
+               break;
+       case AR5K_RF2425:
+               rf_regs = rf_regs_2425;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
+               if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
+                       ini_rfb = rfb_2425;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
+               } else {
+                       ini_rfb = rfb_2417;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
+               }
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       /* If it's the first time we set rf buffer, allocate
+        * ah->ah_rf_banks based on ah->ah_rf_banks_size
+        * we set above */
+       if (ah->ah_rf_banks == NULL) {
+               ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size);
+               if (ah->ah_rf_banks == NULL) {
+                       return -ENOMEM;
+               }
+       }
+
+       /* Copy values to modify them */
+       rfb = ah->ah_rf_banks;
+
+       for (i = 0; i < ah->ah_rf_banks_size; i++) {
+               if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
+                       DBG("ath5k: invalid RF register bank\n");
+                       return -EINVAL;
+               }
+
+               /* Bank changed, write down the offset */
+               if (bank != ini_rfb[i].rfb_bank) {
+                       bank = ini_rfb[i].rfb_bank;
+                       ah->ah_offset[bank] = i;
+               }
+
+               rfb[i] = ini_rfb[i].rfb_mode_data[mode];
+       }
+
+       /* Set Output and Driver bias current (OB/DB) */
+       if (channel->hw_value & CHANNEL_2GHZ) {
+
+               if (channel->hw_value & CHANNEL_CCK)
+                       ee_mode = AR5K_EEPROM_MODE_11B;
+               else
+                       ee_mode = AR5K_EEPROM_MODE_11G;
+
+               /* For RF511X/RF211X combination we
+                * use b_OB and b_DB parameters stored
+                * in eeprom on ee->ee_ob[ee_mode][0]
+                *
+                * For all other chips we use OB/DB for 2Ghz
+                * stored in the b/g modal section just like
+                * 802.11a on ee->ee_ob[ee_mode][1] */
+               if ((ah->ah_radio == AR5K_RF5111) ||
+               (ah->ah_radio == AR5K_RF5112))
+                       obdb = 0;
+               else
+                       obdb = 1;
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
+                                               AR5K_RF_OB_2GHZ, 1);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
+                                               AR5K_RF_DB_2GHZ, 1);
+
+       /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
+       } else if ((channel->hw_value & CHANNEL_5GHZ) ||
+                       (ah->ah_radio == AR5K_RF5111)) {
+
+               /* For 11a, Turbo and XR we need to choose
+                * OB/DB based on frequency range */
+               ee_mode = AR5K_EEPROM_MODE_11A;
+               obdb =   channel->center_freq >= 5725 ? 3 :
+                       (channel->center_freq >= 5500 ? 2 :
+                       (channel->center_freq >= 5260 ? 1 :
+                        (channel->center_freq > 4000 ? 0 : -1)));
+
+               if (obdb < 0)
+                       return -EINVAL;
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
+                                               AR5K_RF_OB_5GHZ, 1);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
+                                               AR5K_RF_DB_5GHZ, 1);
+       }
+
+       g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+       /* Bank Modifications (chip-specific) */
+       if (ah->ah_radio == AR5K_RF5111) {
+
+               /* Set gain_F settings according to current step */
+               if (channel->hw_value & CHANNEL_OFDM) {
+
+                       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
+                                       AR5K_PHY_FRAME_CTL_TX_CLIP,
+                                       g_step->gos_param[0]);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
+                                                       AR5K_RF_PWD_90, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
+                                                       AR5K_RF_PWD_84, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
+                                               AR5K_RF_RFGAIN_SEL, 1);
+
+                       /* We programmed gain_F parameters, switch back
+                        * to active state */
+                       ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+
+               }
+
+               /* Bank 6/7 setup */
+
+               ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
+                                               AR5K_RF_PWD_XPD, 1);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
+                                               AR5K_RF_XPD_GAIN, 1);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
+                                               AR5K_RF_GAIN_I, 1);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
+                                               AR5K_RF_PLO_SEL, 1);
+
+               /* TODO: Half/quarter channel support */
+       }
+
+       if (ah->ah_radio == AR5K_RF5112) {
+
+               /* Set gain_F settings according to current step */
+               if (channel->hw_value & CHANNEL_OFDM) {
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
+                                               AR5K_RF_MIXGAIN_OVR, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
+                                               AR5K_RF_PWD_138, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
+                                               AR5K_RF_PWD_137, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
+                                               AR5K_RF_PWD_136, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
+                                               AR5K_RF_PWD_132, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
+                                               AR5K_RF_PWD_131, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
+                                               AR5K_RF_PWD_130, 1);
+
+                       /* We programmed gain_F parameters, switch back
+                        * to active state */
+                       ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               }
+
+               /* Bank 6/7 setup */
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
+                                               AR5K_RF_XPD_SEL, 1);
+
+               if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
+                       /* Rev. 1 supports only one xpd */
+                       ath5k_hw_rfb_op(ah, rf_regs,
+                                               ee->ee_x_gain[ee_mode],
+                                               AR5K_RF_XPD_GAIN, 1);
+
+               } else {
+                       /* TODO: Set high and low gain bits */
+                       ath5k_hw_rfb_op(ah, rf_regs,
+                                               ee->ee_x_gain[ee_mode],
+                                               AR5K_RF_PD_GAIN_LO, 1);
+                       ath5k_hw_rfb_op(ah, rf_regs,
+                                               ee->ee_x_gain[ee_mode],
+                                               AR5K_RF_PD_GAIN_HI, 1);
+
+                       /* Lower synth voltage on Rev 2 */
+                       ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                       AR5K_RF_HIGH_VC_CP, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                       AR5K_RF_MID_VC_CP, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                       AR5K_RF_LOW_VC_CP, 1);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                       AR5K_RF_PUSH_UP, 1);
+
+                       /* Decrease power consumption on 5213+ BaseBand */
+                       if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_PAD2GND, 1);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_XB2_LVL, 1);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_XB5_LVL, 1);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_PWD_167, 1);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_PWD_166, 1);
+                       }
+               }
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
+                                               AR5K_RF_GAIN_I, 1);
+
+               /* TODO: Half/quarter channel support */
+
+       }
+
+       if (ah->ah_radio == AR5K_RF5413 &&
+       channel->hw_value & CHANNEL_2GHZ) {
+
+               ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
+                                                                       1);
+
+               /* Set optimum value for early revisions (on pci-e chips) */
+               if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
+               ah->ah_mac_srev < AR5K_SREV_AR5413)
+                       ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
+                                               AR5K_RF_PWD_ICLOBUF_2G, 1);
+
+       }
+
+       /* Write RF banks on hw */
+       for (i = 0; i < ah->ah_rf_banks_size; i++) {
+               AR5K_REG_WAIT(i);
+               ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
+       }
+
+       return 0;
+}
+
+
+/**************************\
+  PHY/RF channel functions
+\**************************/
+
+/*
+ * Check if a channel is supported
+ */
+int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
+{
+       /* Check if the channel is in our supported range */
+       if (flags & CHANNEL_2GHZ) {
+               if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
+                   (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
+                       return 1;
+       } else if (flags & CHANNEL_5GHZ)
+               if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
+                   (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
+                       return 1;
+
+       return 0;
+}
+
+/*
+ * Convertion needed for RF5110
+ */
+static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel)
+{
+       u32 athchan;
+
+       /*
+        * Convert IEEE channel/MHz to an internal channel value used
+        * by the AR5210 chipset. This has not been verified with
+        * newer chipsets like the AR5212A who have a completely
+        * different RF/PHY part.
+        */
+       athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq)
+                                    - 24) / 2, 5) << 1)
+               | (1 << 6) | 0x1;
+       return athchan;
+}
+
+/*
+ * Set channel on RF5110
+ */
+static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
+               struct net80211_channel *channel)
+{
+       u32 data;
+
+       /*
+        * Set the channel and wait
+        */
+       data = ath5k_hw_rf5110_chan2athchan(channel);
+       ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
+       mdelay(1);
+
+       return 0;
+}
+
+/*
+ * Convertion needed for 5111
+ */
+static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
+               struct ath5k_athchan_2ghz *athchan)
+{
+       int channel;
+
+       /* Cast this value to catch negative channel numbers (>= -19) */
+       channel = (int)ieee;
+
+       /*
+        * Map 2GHz IEEE channel to 5GHz Atheros channel
+        */
+       if (channel <= 13) {
+               athchan->a2_athchan = 115 + channel;
+               athchan->a2_flags = 0x46;
+       } else if (channel == 14) {
+               athchan->a2_athchan = 124;
+               athchan->a2_flags = 0x44;
+       } else if (channel >= 15 && channel <= 26) {
+               athchan->a2_athchan = ((channel - 14) * 4) + 132;
+               athchan->a2_flags = 0x46;
+       } else
+               return -EINVAL;
+
+       return 0;
+}
+
+/*
+ * Set channel on 5111
+ */
+static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
+               struct net80211_channel *channel)
+{
+       struct ath5k_athchan_2ghz ath5k_channel_2ghz;
+       unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq);
+       u32 data0, data1, clock;
+       int ret;
+
+       /*
+        * Set the channel on the RF5111 radio
+        */
+       data0 = data1 = 0;
+
+       if (channel->hw_value & CHANNEL_2GHZ) {
+               /* Map 2GHz channel to 5GHz Atheros channel ID */
+               ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel,
+                                                  &ath5k_channel_2ghz);
+               if (ret)
+                       return ret;
+
+               ath5k_channel = ath5k_channel_2ghz.a2_athchan;
+               data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
+                   << 5) | (1 << 4);
+       }
+
+       if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
+               clock = 1;
+               data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
+                       (clock << 1) | (1 << 10) | 1;
+       } else {
+               clock = 0;
+               data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
+                       << 2) | (clock << 1) | (1 << 10) | 1;
+       }
+
+       ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
+                       AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
+                       AR5K_RF_BUFFER_CONTROL_3);
+
+       return 0;
+}
+
+/*
+ * Set channel on 5112 and newer
+ */
+static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
+               struct net80211_channel *channel)
+{
+       u32 data, data0, data1, data2;
+       u16 c;
+
+       data = data0 = data1 = data2 = 0;
+       c = channel->center_freq;
+
+       if (c < 4800) {
+               if (!((c - 2224) % 5)) {
+                       data0 = ((2 * (c - 704)) - 3040) / 10;
+                       data1 = 1;
+               } else if (!((c - 2192) % 5)) {
+                       data0 = ((2 * (c - 672)) - 3040) / 10;
+                       data1 = 0;
+               } else
+                       return -EINVAL;
+
+               data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
+       } else if ((c - (c % 5)) != 2 || c > 5435) {
+               if (!(c % 20) && c >= 5120) {
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
+                       data2 = ath5k_hw_bitswap(3, 2);
+               } else if (!(c % 10)) {
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
+                       data2 = ath5k_hw_bitswap(2, 2);
+               } else if (!(c % 5)) {
+                       data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
+                       data2 = ath5k_hw_bitswap(1, 2);
+               } else
+                       return -EINVAL;
+       } else {
+               data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
+               data2 = ath5k_hw_bitswap(0, 2);
+       }
+
+       data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
+
+       ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
+
+       return 0;
+}
+
+/*
+ * Set the channel on the RF2425
+ */
+static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
+               struct net80211_channel *channel)
+{
+       u32 data, data0, data2;
+       u16 c;
+
+       data = data0 = data2 = 0;
+       c = channel->center_freq;
+
+       if (c < 4800) {
+               data0 = ath5k_hw_bitswap((c - 2272), 8);
+               data2 = 0;
+       /* ? 5GHz ? */
+       } else if ((c - (c % 5)) != 2 || c > 5435) {
+               if (!(c % 20) && c < 5120)
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
+               else if (!(c % 10))
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
+               else if (!(c % 5))
+                       data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
+               else
+                       return -EINVAL;
+               data2 = ath5k_hw_bitswap(1, 2);
+       } else {
+               data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
+               data2 = ath5k_hw_bitswap(0, 2);
+       }
+
+       data = (data0 << 4) | data2 << 2 | 0x1001;
+
+       ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
+
+       return 0;
+}
+
+/*
+ * Set a channel on the radio chip
+ */
+int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
+{
+       int ret;
+       /*
+        * Check bounds supported by the PHY (we don't care about regultory
+        * restrictions at this point). Note: hw_value already has the band
+        * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
+        * of the band by that */
+       if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
+               DBG("ath5k: channel frequency (%d MHz) out of supported "
+                   "range\n", channel->center_freq);
+               return -EINVAL;
+       }
+
+       /*
+        * Set the channel and wait
+        */
+       switch (ah->ah_radio) {
+       case AR5K_RF5110:
+               ret = ath5k_hw_rf5110_channel(ah, channel);
+               break;
+       case AR5K_RF5111:
+               ret = ath5k_hw_rf5111_channel(ah, channel);
+               break;
+       case AR5K_RF2425:
+               ret = ath5k_hw_rf2425_channel(ah, channel);
+               break;
+       default:
+               ret = ath5k_hw_rf5112_channel(ah, channel);
+               break;
+       }
+
+       if (ret) {
+               DBG("ath5k: setting channel failed: %s\n", strerror(ret));
+               return ret;
+       }
+
+       /* Set JAPAN setting for channel 14 */
+       if (channel->center_freq == 2484) {
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
+                               AR5K_PHY_CCKTXCTL_JAPAN);
+       } else {
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
+                               AR5K_PHY_CCKTXCTL_WORLD);
+       }
+
+       ah->ah_current_channel = channel;
+       ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0);
+
+       return 0;
+}
+
+/*****************\
+  PHY calibration
+\*****************/
+
+/**
+ * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
+ *
+ * @ah: struct ath5k_hw pointer we are operating on
+ * @freq: the channel frequency, just used for error logging
+ *
+ * This function performs a noise floor calibration of the PHY and waits for
+ * it to complete. Then the noise floor value is compared to some maximum
+ * noise floor we consider valid.
+ *
+ * Note that this is different from what the madwifi HAL does: it reads the
+ * noise floor and afterwards initiates the calibration. Since the noise floor
+ * calibration can take some time to finish, depending on the current channel
+ * use, that avoids the occasional timeout warnings we are seeing now.
+ *
+ * See the following link for an Atheros patent on noise floor calibration:
+ * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
+ * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
+ *
+ * XXX: Since during noise floor calibration antennas are detached according to
+ * the patent, we should stop tx queues here.
+ */
+int
+ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
+{
+       int ret;
+       unsigned int i;
+       s32 noise_floor;
+
+       /*
+        * Enable noise floor calibration
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+                               AR5K_PHY_AGCCTL_NF);
+
+       ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
+                       AR5K_PHY_AGCCTL_NF, 0, 0);
+
+       if (ret) {
+               DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq);
+               return -EAGAIN;
+       }
+
+       /* Wait until the noise floor is calibrated and read the value */
+       for (i = 20; i > 0; i--) {
+               mdelay(1);
+               noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
+               noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
+               if (noise_floor & AR5K_PHY_NF_ACTIVE) {
+                       noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
+
+                       if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
+                               break;
+               }
+       }
+
+       DBG2("ath5k: noise floor %d\n", noise_floor);
+
+       if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
+               DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq);
+               return -EAGAIN;
+       }
+
+       ah->ah_noise_floor = noise_floor;
+
+       return 0;
+}
+
+/*
+ * Perform a PHY calibration on RF5110
+ * -Fix BPSK/QAM Constellation (I/Q correction)
+ * -Calculate Noise Floor
+ */
+static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
+               struct net80211_channel *channel)
+{
+       u32 phy_sig, phy_agc, phy_sat, beacon;
+       int ret;
+
+       /*
+        * Disable beacons and RX/TX queues, wait
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
+               AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
+       beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
+       ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
+
+       mdelay(2);
+
+       /*
+        * Set the channel (with AGC turned off)
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+       udelay(10);
+       ret = ath5k_hw_channel(ah, channel);
+
+       /*
+        * Activate PHY and wait
+        */
+       ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
+       mdelay(1);
+
+       AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+
+       if (ret)
+               return ret;
+
+       /*
+        * Calibrate the radio chip
+        */
+
+       /* Remember normal state */
+       phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
+       phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
+       phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
+
+       /* Update radio registers */
+       ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
+               AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
+
+       ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
+                       AR5K_PHY_AGCCOARSE_LO)) |
+               AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
+               AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
+
+       ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
+                       AR5K_PHY_ADCSAT_THR)) |
+               AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
+               AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
+
+       udelay(20);
+
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+       udelay(10);
+       ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
+       AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+
+       mdelay(1);
+
+       /*
+        * Enable calibration and wait until completion
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
+
+       ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
+                       AR5K_PHY_AGCCTL_CAL, 0, 0);
+
+       /* Reset to normal state */
+       ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
+       ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
+       ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
+
+       if (ret) {
+               DBG("ath5k: calibration timeout (%d MHz)\n",
+                   channel->center_freq);
+               return ret;
+       }
+
+       ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
+
+       /*
+        * Re-enable RX/TX and beacons
+        */
+       AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
+               AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
+       ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
+
+       return 0;
+}
+
+/*
+ * Perform a PHY calibration on RF5111/5112 and newer chips
+ */
+static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
+               struct net80211_channel *channel)
+{
+       u32 i_pwr, q_pwr;
+       s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
+       int i;
+
+       if (!ah->ah_calibration ||
+               ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
+               goto done;
+
+       /* Calibration has finished, get the results and re-run */
+       for (i = 0; i <= 10; i++) {
+               iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
+               i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
+               q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
+       }
+
+       i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
+       q_coffd = q_pwr >> 7;
+
+       /* No correction */
+       if (i_coffd == 0 || q_coffd == 0)
+               goto done;
+
+       i_coff = ((-iq_corr) / i_coffd) & 0x3f;
+
+       /* Boundary check */
+       if (i_coff > 31)
+               i_coff = 31;
+       if (i_coff < -32)
+               i_coff = -32;
+
+       q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
+
+       /* Boundary check */
+       if (q_coff > 15)
+               q_coff = 15;
+       if (q_coff < -16)
+               q_coff = -16;
+
+       /* Commit new I/Q value */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
+               ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
+
+       /* Re-enable calibration -if we don't we'll commit
+        * the same values again and again */
+       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
+                       AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
+
+done:
+
+       /* TODO: Separate noise floor calibration from I/Q calibration
+        * since noise floor calibration interrupts rx path while I/Q
+        * calibration doesn't. We don't need to run noise floor calibration
+        * as often as I/Q calibration.*/
+       ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
+
+       /* Initiate a gain_F calibration */
+       ath5k_hw_request_rfgain_probe(ah);
+
+       return 0;
+}
+
+/*
+ * Perform a PHY calibration
+ */
+int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
+               struct net80211_channel *channel)
+{
+       int ret;
+
+       if (ah->ah_radio == AR5K_RF5110)
+               ret = ath5k_hw_rf5110_calibrate(ah, channel);
+       else
+               ret = ath5k_hw_rf511x_calibrate(ah, channel);
+
+       return ret;
+}
+
+int ath5k_hw_phy_disable(struct ath5k_hw *ah)
+{
+       ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
+
+       return 0;
+}
+
+/********************\
+  Misc PHY functions
+\********************/
+
+/*
+ * Get the PHY Chip revision
+ */
+u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
+{
+       unsigned int i;
+       u32 srev;
+       u16 ret;
+
+       /*
+        * Set the radio chip access register
+        */
+       switch (chan) {
+       case CHANNEL_2GHZ:
+               ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
+               break;
+       case CHANNEL_5GHZ:
+               ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
+               break;
+       default:
+               return 0;
+       }
+
+       mdelay(2);
+
+       /* ...wait until PHY is ready and read the selected radio revision */
+       ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
+
+       for (i = 0; i < 8; i++)
+               ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
+
+       if (ah->ah_version == AR5K_AR5210) {
+               srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
+               ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
+       } else {
+               srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
+               ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
+                               ((srev & 0x0f) << 4), 8);
+       }
+
+       /* Reset to the 5GHz mode */
+       ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
+
+       return ret;
+}
+
+void /*TODO:Boundary check*/
+ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
+{
+       if (ah->ah_version != AR5K_AR5210)
+               ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
+}
+
+unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
+{
+       if (ah->ah_version != AR5K_AR5210)
+               return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
+
+       return 0; /*XXX: What do we return for 5210 ?*/
+}
+
+
+/****************\
+* TX power setup *
+\****************/
+
+/*
+ * Helper functions
+ */
+
+/*
+ * Do linear interpolation between two given (x, y) points
+ */
+static s16
+ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
+                                       s16 y_left, s16 y_right)
+{
+       s16 ratio, result;
+
+       /* Avoid divide by zero and skip interpolation
+        * if we have the same point */
+       if ((x_left == x_right) || (y_left == y_right))
+               return y_left;
+
+       /*
+        * Since we use ints and not fps, we need to scale up in
+        * order to get a sane ratio value (or else we 'll eg. get
+        * always 1 instead of 1.25, 1.75 etc). We scale up by 100
+        * to have some accuracy both for 0.5 and 0.25 steps.
+        */
+       ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
+
+       /* Now scale down to be in range */
+       result = y_left + (ratio * (target - x_left) / 100);
+
+       return result;
+}
+
+/*
+ * Find vertical boundary (min pwr) for the linear PCDAC curve.
+ *
+ * Since we have the top of the curve and we draw the line below
+ * until we reach 1 (1 pcdac step) we need to know which point
+ * (x value) that is so that we don't go below y axis and have negative
+ * pcdac values when creating the curve, or fill the table with zeroes.
+ */
+static s16
+ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
+                               const s16 *pwrL, const s16 *pwrR)
+{
+       s8 tmp;
+       s16 min_pwrL, min_pwrR;
+       s16 pwr_i;
+
+       if (pwrL[0] == pwrL[1])
+               min_pwrL = pwrL[0];
+       else {
+               pwr_i = pwrL[0];
+               do {
+                       pwr_i--;
+                       tmp = (s8) ath5k_get_interpolated_value(pwr_i,
+                                                       pwrL[0], pwrL[1],
+                                                       stepL[0], stepL[1]);
+               } while (tmp > 1);
+
+               min_pwrL = pwr_i;
+       }
+
+       if (pwrR[0] == pwrR[1])
+               min_pwrR = pwrR[0];
+       else {
+               pwr_i = pwrR[0];
+               do {
+                       pwr_i--;
+                       tmp = (s8) ath5k_get_interpolated_value(pwr_i,
+                                                       pwrR[0], pwrR[1],
+                                                       stepR[0], stepR[1]);
+               } while (tmp > 1);
+
+               min_pwrR = pwr_i;
+       }
+
+       /* Keep the right boundary so that it works for both curves */
+       return max(min_pwrL, min_pwrR);
+}
+
+/*
+ * Interpolate (pwr,vpd) points to create a Power to PDADC or a
+ * Power to PCDAC curve.
+ *
+ * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
+ * steps (offsets) on y axis. Power can go up to 31.5dB and max
+ * PCDAC/PDADC step for each curve is 64 but we can write more than
+ * one curves on hw so we can go up to 128 (which is the max step we
+ * can write on the final table).
+ *
+ * We write y values (PCDAC/PDADC steps) on hw.
+ */
+static void
+ath5k_create_power_curve(s16 pmin, s16 pmax,
+                       const s16 *pwr, const u8 *vpd,
+                       u8 num_points,
+                       u8 *vpd_table, u8 type)
+{
+       u8 idx[2] = { 0, 1 };
+       s16 pwr_i = 2*pmin;
+       int i;
+
+       if (num_points < 2)
+               return;
+
+       /* We want the whole line, so adjust boundaries
+        * to cover the entire power range. Note that
+        * power values are already 0.25dB so no need
+        * to multiply pwr_i by 2 */
+       if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
+               pwr_i = pmin;
+               pmin = 0;
+               pmax = 63;
+       }
+
+       /* Find surrounding turning points (TPs)
+        * and interpolate between them */
+       for (i = 0; (i <= (u16) (pmax - pmin)) &&
+       (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
+
+               /* We passed the right TP, move to the next set of TPs
+                * if we pass the last TP, extrapolate above using the last
+                * two TPs for ratio */
+               if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
+                       idx[0]++;
+                       idx[1]++;
+               }
+
+               vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
+                                               pwr[idx[0]], pwr[idx[1]],
+                                               vpd[idx[0]], vpd[idx[1]]);
+
+               /* Increase by 0.5dB
+                * (0.25 dB units) */
+               pwr_i += 2;
+       }
+}
+
+/*
+ * Get the surrounding per-channel power calibration piers
+ * for a given frequency so that we can interpolate between
+ * them and come up with an apropriate dataset for our current
+ * channel.
+ */
+static void
+ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
+                       struct net80211_channel *channel,
+                       struct ath5k_chan_pcal_info **pcinfo_l,
+                       struct ath5k_chan_pcal_info **pcinfo_r)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       struct ath5k_chan_pcal_info *pcinfo;
+       u8 idx_l, idx_r;
+       u8 mode, max, i;
+       u32 target = channel->center_freq;
+
+       idx_l = 0;
+       idx_r = 0;
+
+       if (!(channel->hw_value & CHANNEL_OFDM)) {
+               pcinfo = ee->ee_pwr_cal_b;
+               mode = AR5K_EEPROM_MODE_11B;
+       } else if (channel->hw_value & CHANNEL_2GHZ) {
+               pcinfo = ee->ee_pwr_cal_g;
+               mode = AR5K_EEPROM_MODE_11G;
+       } else {
+               pcinfo = ee->ee_pwr_cal_a;
+               mode = AR5K_EEPROM_MODE_11A;
+       }
+       max = ee->ee_n_piers[mode] - 1;
+
+       /* Frequency is below our calibrated
+        * range. Use the lowest power curve
+        * we have */
+       if (target < pcinfo[0].freq) {
+               idx_l = idx_r = 0;
+               goto done;
+       }
+
+       /* Frequency is above our calibrated
+        * range. Use the highest power curve
+        * we have */
+       if (target > pcinfo[max].freq) {
+               idx_l = idx_r = max;
+               goto done;
+       }
+
+       /* Frequency is inside our calibrated
+        * channel range. Pick the surrounding
+        * calibration piers so that we can
+        * interpolate */
+       for (i = 0; i <= max; i++) {
+
+               /* Frequency matches one of our calibration
+                * piers, no need to interpolate, just use
+                * that calibration pier */
+               if (pcinfo[i].freq == target) {
+                       idx_l = idx_r = i;
+                       goto done;
+               }
+
+               /* We found a calibration pier that's above
+                * frequency, use this pier and the previous
+                * one to interpolate */
+               if (target < pcinfo[i].freq) {
+                       idx_r = i;
+                       idx_l = idx_r - 1;
+                       goto done;
+               }
+       }
+
+done:
+       *pcinfo_l = &pcinfo[idx_l];
+       *pcinfo_r = &pcinfo[idx_r];
+
+       return;
+}
+
+/*
+ * Get the surrounding per-rate power calibration data
+ * for a given frequency and interpolate between power
+ * values to set max target power supported by hw for
+ * each rate.
+ */
+static void
+ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
+                       struct net80211_channel *channel,
+                       struct ath5k_rate_pcal_info *rates)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       struct ath5k_rate_pcal_info *rpinfo;
+       u8 idx_l, idx_r;
+       u8 mode, max, i;
+       u32 target = channel->center_freq;
+
+       idx_l = 0;
+       idx_r = 0;
+
+       if (!(channel->hw_value & CHANNEL_OFDM)) {
+               rpinfo = ee->ee_rate_tpwr_b;
+               mode = AR5K_EEPROM_MODE_11B;
+       } else if (channel->hw_value & CHANNEL_2GHZ) {
+               rpinfo = ee->ee_rate_tpwr_g;
+               mode = AR5K_EEPROM_MODE_11G;
+       } else {
+               rpinfo = ee->ee_rate_tpwr_a;
+               mode = AR5K_EEPROM_MODE_11A;
+       }
+       max = ee->ee_rate_target_pwr_num[mode] - 1;
+
+       /* Get the surrounding calibration
+        * piers - same as above */
+       if (target < rpinfo[0].freq) {
+               idx_l = idx_r = 0;
+               goto done;
+       }
+
+       if (target > rpinfo[max].freq) {
+               idx_l = idx_r = max;
+               goto done;
+       }
+
+       for (i = 0; i <= max; i++) {
+
+               if (rpinfo[i].freq == target) {
+                       idx_l = idx_r = i;
+                       goto done;
+               }
+
+               if (target < rpinfo[i].freq) {
+                       idx_r = i;
+                       idx_l = idx_r - 1;
+                       goto done;
+               }
+       }
+
+done:
+       /* Now interpolate power value, based on the frequency */
+       rates->freq = target;
+
+       rates->target_power_6to24 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_6to24,
+                                       rpinfo[idx_r].target_power_6to24);
+
+       rates->target_power_36 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_36,
+                                       rpinfo[idx_r].target_power_36);
+
+       rates->target_power_48 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_48,
+                                       rpinfo[idx_r].target_power_48);
+
+       rates->target_power_54 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_54,
+                                       rpinfo[idx_r].target_power_54);
+}
+
+/*
+ * Get the max edge power for this channel if
+ * we have such data from EEPROM's Conformance Test
+ * Limits (CTL), and limit max power if needed.
+ *
+ * FIXME: Only works for world regulatory domains
+ */
+static void
+ath5k_get_max_ctl_power(struct ath5k_hw *ah,
+                       struct net80211_channel *channel)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
+       u8 *ctl_val = ee->ee_ctl;
+       s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
+       s16 edge_pwr = 0;
+       u8 rep_idx;
+       u8 i, ctl_mode;
+       u8 ctl_idx = 0xFF;
+       u32 target = channel->center_freq;
+
+       /* Find out a CTL for our mode that's not mapped
+        * on a specific reg domain.
+        *
+        * TODO: Map our current reg domain to one of the 3 available
+        * reg domain ids so that we can support more CTLs. */
+       switch (channel->hw_value & CHANNEL_MODES) {
+       case CHANNEL_A:
+               ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
+               break;
+       case CHANNEL_G:
+               ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
+               break;
+       case CHANNEL_B:
+               ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
+               break;
+       case CHANNEL_T:
+               ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
+               break;
+       case CHANNEL_TG:
+               ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
+               break;
+       case CHANNEL_XR:
+               /* Fall through */
+       default:
+               return;
+       }
+
+       for (i = 0; i < ee->ee_ctls; i++) {
+               if (ctl_val[i] == ctl_mode) {
+                       ctl_idx = i;
+                       break;
+               }
+       }
+
+       /* If we have a CTL dataset available grab it and find the
+        * edge power for our frequency */
+       if (ctl_idx == 0xFF)
+               return;
+
+       /* Edge powers are sorted by frequency from lower
+        * to higher. Each CTL corresponds to 8 edge power
+        * measurements. */
+       rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
+
+       /* Don't do boundaries check because we
+        * might have more that one bands defined
+        * for this mode */
+
+       /* Get the edge power that's closer to our
+        * frequency */
+       for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
+               rep_idx += i;
+               if (target <= rep[rep_idx].freq)
+                       edge_pwr = (s16) rep[rep_idx].edge;
+       }
+
+       if (edge_pwr) {
+               ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
+       }
+}
+
+
+/*
+ * Power to PCDAC table functions
+ */
+
+/*
+ * Fill Power to PCDAC table on RF5111
+ *
+ * No further processing is needed for RF5111, the only thing we have to
+ * do is fill the values below and above calibration range since eeprom data
+ * may not cover the entire PCDAC table.
+ */
+static void
+ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
+                                                       s16 *table_max)
+{
+       u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
+       u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
+       u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
+       s16     min_pwr, max_pwr;
+
+       /* Get table boundaries */
+       min_pwr = table_min[0];
+       pcdac_0 = pcdac_tmp[0];
+
+       max_pwr = table_max[0];
+       pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
+
+       /* Extrapolate below minimum using pcdac_0 */
+       pcdac_i = 0;
+       for (i = 0; i < min_pwr; i++)
+               pcdac_out[pcdac_i++] = pcdac_0;
+
+       /* Copy values from pcdac_tmp */
+       pwr_idx = min_pwr;
+       for (i = 0 ; pwr_idx <= max_pwr &&
+       pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
+               pcdac_out[pcdac_i++] = pcdac_tmp[i];
+               pwr_idx++;
+       }
+
+       /* Extrapolate above maximum */
+       while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
+               pcdac_out[pcdac_i++] = pcdac_n;
+
+}
+
+/*
+ * Combine available XPD Curves and fill Linear Power to PCDAC table
+ * on RF5112
+ *
+ * RFX112 can have up to 2 curves (one for low txpower range and one for
+ * higher txpower range). We need to put them both on pcdac_out and place
+ * them in the correct location. In case we only have one curve available
+ * just fit it on pcdac_out (it's supposed to cover the entire range of
+ * available pwr levels since it's always the higher power curve). Extrapolate
+ * below and above final table if needed.
+ */
+static void
+ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
+                                               s16 *table_max, u8 pdcurves)
+{
+       u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
+       u8      *pcdac_low_pwr;
+       u8      *pcdac_high_pwr;
+       u8      *pcdac_tmp;
+       u8      pwr;
+       s16     max_pwr_idx;
+       s16     min_pwr_idx;
+       s16     mid_pwr_idx = 0;
+       /* Edge flag turs on the 7nth bit on the PCDAC
+        * to delcare the higher power curve (force values
+        * to be greater than 64). If we only have one curve
+        * we don't need to set this, if we have 2 curves and
+        * fill the table backwards this can also be used to
+        * switch from higher power curve to lower power curve */
+       u8      edge_flag;
+       int     i;
+
+       /* When we have only one curve available
+        * that's the higher power curve. If we have
+        * two curves the first is the high power curve
+        * and the next is the low power curve. */
+       if (pdcurves > 1) {
+               pcdac_low_pwr = ah->ah_txpower.tmpL[1];
+               pcdac_high_pwr = ah->ah_txpower.tmpL[0];
+               mid_pwr_idx = table_max[1] - table_min[1] - 1;
+               max_pwr_idx = (table_max[0] - table_min[0]) / 2;
+
+               /* If table size goes beyond 31.5dB, keep the
+                * upper 31.5dB range when setting tx power.
+                * Note: 126 = 31.5 dB in quarter dB steps */
+               if (table_max[0] - table_min[1] > 126)
+                       min_pwr_idx = table_max[0] - 126;
+               else
+                       min_pwr_idx = table_min[1];
+
+               /* Since we fill table backwards
+                * start from high power curve */
+               pcdac_tmp = pcdac_high_pwr;
+
+               edge_flag = 0x40;
+       } else {
+               pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
+               pcdac_high_pwr = ah->ah_txpower.tmpL[0];
+               min_pwr_idx = table_min[0];
+               max_pwr_idx = (table_max[0] - table_min[0]) / 2;
+               pcdac_tmp = pcdac_high_pwr;
+               edge_flag = 0;
+       }
+
+       /* This is used when setting tx power*/
+       ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
+
+       /* Fill Power to PCDAC table backwards */
+       pwr = max_pwr_idx;
+       for (i = 63; i >= 0; i--) {
+               /* Entering lower power range, reset
+                * edge flag and set pcdac_tmp to lower
+                * power curve.*/
+               if (edge_flag == 0x40 &&
+               (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
+                       edge_flag = 0x00;
+                       pcdac_tmp = pcdac_low_pwr;
+                       pwr = mid_pwr_idx/2;
+               }
+
+               /* Don't go below 1, extrapolate below if we have
+                * already swithced to the lower power curve -or
+                * we only have one curve and edge_flag is zero
+                * anyway */
+               if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
+                       while (i >= 0) {
+                               pcdac_out[i] = pcdac_out[i + 1];
+                               i--;
+                       }
+                       break;
+               }
+
+               pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
+
+               /* Extrapolate above if pcdac is greater than
+                * 126 -this can happen because we OR pcdac_out
+                * value with edge_flag on high power curve */
+               if (pcdac_out[i] > 126)
+                       pcdac_out[i] = 126;
+
+               /* Decrease by a 0.5dB step */
+               pwr--;
+       }
+}
+
+/* Write PCDAC values on hw */
+static void
+ath5k_setup_pcdac_table(struct ath5k_hw *ah)
+{
+       u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
+       int     i;
+
+       /*
+        * Write TX power values
+        */
+       for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
+               ath5k_hw_reg_write(ah,
+                       (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
+                       (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
+                       AR5K_PHY_PCDAC_TXPOWER(i));
+       }
+}
+
+
+/*
+ * Power to PDADC table functions
+ */
+
+/*
+ * Set the gain boundaries and create final Power to PDADC table
+ *
+ * We can have up to 4 pd curves, we need to do a simmilar process
+ * as we do for RF5112. This time we don't have an edge_flag but we
+ * set the gain boundaries on a separate register.
+ */
+static void
+ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
+                       s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
+{
+       u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
+       u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
+       u8 *pdadc_tmp;
+       s16 pdadc_0;
+       u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
+       u8 pd_gain_overlap;
+
+       /* Note: Register value is initialized on initvals
+        * there is no feedback from hw.
+        * XXX: What about pd_gain_overlap from EEPROM ? */
+       pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
+               AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
+
+       /* Create final PDADC table */
+       for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
+               pdadc_tmp = ah->ah_txpower.tmpL[pdg];
+
+               if (pdg == pdcurves - 1)
+                       /* 2 dB boundary stretch for last
+                        * (higher power) curve */
+                       gain_boundaries[pdg] = pwr_max[pdg] + 4;
+               else
+                       /* Set gain boundary in the middle
+                        * between this curve and the next one */
+                       gain_boundaries[pdg] =
+                               (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
+
+               /* Sanity check in case our 2 db stretch got out of
+                * range. */
+               if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
+                       gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
+
+               /* For the first curve (lower power)
+                * start from 0 dB */
+               if (pdg == 0)
+                       pdadc_0 = 0;
+               else
+                       /* For the other curves use the gain overlap */
+                       pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
+                                                       pd_gain_overlap;
+
+               /* Force each power step to be at least 0.5 dB */
+               if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
+                       pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
+               else
+                       pwr_step = 1;
+
+               /* If pdadc_0 is negative, we need to extrapolate
+                * below this pdgain by a number of pwr_steps */
+               while ((pdadc_0 < 0) && (pdadc_i < 128)) {
+                       s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
+                       pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
+                       pdadc_0++;
+               }
+
+               /* Set last pwr level, using gain boundaries */
+               pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
+               /* Limit it to be inside pwr range */
+               table_size = pwr_max[pdg] - pwr_min[pdg];
+               max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
+
+               /* Fill pdadc_out table */
+               while (pdadc_0 < max_idx)
+                       pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
+
+               /* Need to extrapolate above this pdgain? */
+               if (pdadc_n <= max_idx)
+                       continue;
+
+               /* Force each power step to be at least 0.5 dB */
+               if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
+                       pwr_step = pdadc_tmp[table_size - 1] -
+                                               pdadc_tmp[table_size - 2];
+               else
+                       pwr_step = 1;
+
+               /* Extrapolate above */
+               while ((pdadc_0 < (s16) pdadc_n) &&
+               (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
+                       s16 tmp = pdadc_tmp[table_size - 1] +
+                                       (pdadc_0 - max_idx) * pwr_step;
+                       pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
+                       pdadc_0++;
+               }
+       }
+
+       while (pdg < AR5K_EEPROM_N_PD_GAINS) {
+               gain_boundaries[pdg] = gain_boundaries[pdg - 1];
+               pdg++;
+       }
+
+       while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
+               pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
+               pdadc_i++;
+       }
+
+       /* Set gain boundaries */
+       ath5k_hw_reg_write(ah,
+               AR5K_REG_SM(pd_gain_overlap,
+                       AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
+               AR5K_REG_SM(gain_boundaries[0],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
+               AR5K_REG_SM(gain_boundaries[1],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
+               AR5K_REG_SM(gain_boundaries[2],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
+               AR5K_REG_SM(gain_boundaries[3],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
+               AR5K_PHY_TPC_RG5);
+
+       /* Used for setting rate power table */
+       ah->ah_txpower.txp_min_idx = pwr_min[0];
+
+}
+
+/* Write PDADC values on hw */
+static void
+ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
+                       u8 pdcurves, u8 *pdg_to_idx)
+{
+       u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
+       u32 reg;
+       u8 i;
+
+       /* Select the right pdgain curves */
+
+       /* Clear current settings */
+       reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
+       reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
+               AR5K_PHY_TPC_RG1_PDGAIN_2 |
+               AR5K_PHY_TPC_RG1_PDGAIN_3 |
+               AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
+
+       /*
+        * Use pd_gains curve from eeprom
+        *
+        * This overrides the default setting from initvals
+        * in case some vendors (e.g. Zcomax) don't use the default
+        * curves. If we don't honor their settings we 'll get a
+        * 5dB (1 * gain overlap ?) drop.
+        */
+       reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
+
+       switch (pdcurves) {
+       case 3:
+               reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
+               /* Fall through */
+       case 2:
+               reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
+               /* Fall through */
+       case 1:
+               reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
+               break;
+       }
+       ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
+
+       /*
+        * Write TX power values
+        */
+       for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
+               ath5k_hw_reg_write(ah,
+                       ((pdadc_out[4*i + 0] & 0xff) << 0) |
+                       ((pdadc_out[4*i + 1] & 0xff) << 8) |
+                       ((pdadc_out[4*i + 2] & 0xff) << 16) |
+                       ((pdadc_out[4*i + 3] & 0xff) << 24),
+                       AR5K_PHY_PDADC_TXPOWER(i));
+       }
+}
+
+
+/*
+ * Common code for PCDAC/PDADC tables
+ */
+
+/*
+ * This is the main function that uses all of the above
+ * to set PCDAC/PDADC table on hw for the current channel.
+ * This table is used for tx power calibration on the basband,
+ * without it we get weird tx power levels and in some cases
+ * distorted spectral mask
+ */
+static int
+ath5k_setup_channel_powertable(struct ath5k_hw *ah,
+                       struct net80211_channel *channel,
+                       u8 ee_mode, u8 type)
+{
+       struct ath5k_pdgain_info *pdg_L, *pdg_R;
+       struct ath5k_chan_pcal_info *pcinfo_L;
+       struct ath5k_chan_pcal_info *pcinfo_R;
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
+       s16 table_min[AR5K_EEPROM_N_PD_GAINS];
+       s16 table_max[AR5K_EEPROM_N_PD_GAINS];
+       u8 *tmpL;
+       u8 *tmpR;
+       u32 target = channel->center_freq;
+       int pdg, i;
+
+       /* Get surounding freq piers for this channel */
+       ath5k_get_chan_pcal_surrounding_piers(ah, channel,
+                                               &pcinfo_L,
+                                               &pcinfo_R);
+
+       /* Loop over pd gain curves on
+        * surounding freq piers by index */
+       for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
+
+               /* Fill curves in reverse order
+                * from lower power (max gain)
+                * to higher power. Use curve -> idx
+                * backmaping we did on eeprom init */
+               u8 idx = pdg_curve_to_idx[pdg];
+
+               /* Grab the needed curves by index */
+               pdg_L = &pcinfo_L->pd_curves[idx];
+               pdg_R = &pcinfo_R->pd_curves[idx];
+
+               /* Initialize the temp tables */
+               tmpL = ah->ah_txpower.tmpL[pdg];
+               tmpR = ah->ah_txpower.tmpR[pdg];
+
+               /* Set curve's x boundaries and create
+                * curves so that they cover the same
+                * range (if we don't do that one table
+                * will have values on some range and the
+                * other one won't have any so interpolation
+                * will fail) */
+               table_min[pdg] = min(pdg_L->pd_pwr[0],
+                                       pdg_R->pd_pwr[0]) / 2;
+
+               table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
+                               pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
+
+               /* Now create the curves on surrounding channels
+                * and interpolate if needed to get the final
+                * curve for this gain on this channel */
+               switch (type) {
+               case AR5K_PWRTABLE_LINEAR_PCDAC:
+                       /* Override min/max so that we don't loose
+                        * accuracy (don't divide by 2) */
+                       table_min[pdg] = min(pdg_L->pd_pwr[0],
+                                               pdg_R->pd_pwr[0]);
+
+                       table_max[pdg] =
+                               max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
+                                       pdg_R->pd_pwr[pdg_R->pd_points - 1]);
+
+                       /* Override minimum so that we don't get
+                        * out of bounds while extrapolating
+                        * below. Don't do this when we have 2
+                        * curves and we are on the high power curve
+                        * because table_min is ok in this case */
+                       if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
+
+                               table_min[pdg] =
+                                       ath5k_get_linear_pcdac_min(pdg_L->pd_step,
+                                                               pdg_R->pd_step,
+                                                               pdg_L->pd_pwr,
+                                                               pdg_R->pd_pwr);
+
+                               /* Don't go too low because we will
+                                * miss the upper part of the curve.
+                                * Note: 126 = 31.5dB (max power supported)
+                                * in 0.25dB units */
+                               if (table_max[pdg] - table_min[pdg] > 126)
+                                       table_min[pdg] = table_max[pdg] - 126;
+                       }
+
+                       /* Fall through */
+               case AR5K_PWRTABLE_PWR_TO_PCDAC:
+               case AR5K_PWRTABLE_PWR_TO_PDADC:
+
+                       ath5k_create_power_curve(table_min[pdg],
+                                               table_max[pdg],
+                                               pdg_L->pd_pwr,
+                                               pdg_L->pd_step,
+                                               pdg_L->pd_points, tmpL, type);
+
+                       /* We are in a calibration
+                        * pier, no need to interpolate
+                        * between freq piers */
+                       if (pcinfo_L == pcinfo_R)
+                               continue;
+
+                       ath5k_create_power_curve(table_min[pdg],
+                                               table_max[pdg],
+                                               pdg_R->pd_pwr,
+                                               pdg_R->pd_step,
+                                               pdg_R->pd_points, tmpR, type);
+                       break;
+               default:
+                       return -EINVAL;
+               }
+
+               /* Interpolate between curves
+                * of surounding freq piers to
+                * get the final curve for this
+                * pd gain. Re-use tmpL for interpolation
+                * output */
+               for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
+               (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
+                       tmpL[i] = (u8) ath5k_get_interpolated_value(target,
+                                                       (s16) pcinfo_L->freq,
+                                                       (s16) pcinfo_R->freq,
+                                                       (s16) tmpL[i],
+                                                       (s16) tmpR[i]);
+               }
+       }
+
+       /* Now we have a set of curves for this
+        * channel on tmpL (x range is table_max - table_min
+        * and y values are tmpL[pdg][]) sorted in the same
+        * order as EEPROM (because we've used the backmaping).
+        * So for RF5112 it's from higher power to lower power
+        * and for RF2413 it's from lower power to higher power.
+        * For RF5111 we only have one curve. */
+
+       /* Fill min and max power levels for this
+        * channel by interpolating the values on
+        * surounding channels to complete the dataset */
+       ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
+                                       (s16) pcinfo_L->freq,
+                                       (s16) pcinfo_R->freq,
+                                       pcinfo_L->min_pwr, pcinfo_R->min_pwr);
+
+       ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
+                                       (s16) pcinfo_L->freq,
+                                       (s16) pcinfo_R->freq,
+                                       pcinfo_L->max_pwr, pcinfo_R->max_pwr);
+
+       /* We are ready to go, fill PCDAC/PDADC
+        * table and write settings on hardware */
+       switch (type) {
+       case AR5K_PWRTABLE_LINEAR_PCDAC:
+               /* For RF5112 we can have one or two curves
+                * and each curve covers a certain power lvl
+                * range so we need to do some more processing */
+               ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
+                                               ee->ee_pd_gains[ee_mode]);
+
+               /* Set txp.offset so that we can
+                * match max power value with max
+                * table index */
+               ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
+
+               /* Write settings on hw */
+               ath5k_setup_pcdac_table(ah);
+               break;
+       case AR5K_PWRTABLE_PWR_TO_PCDAC:
+               /* We are done for RF5111 since it has only
+                * one curve, just fit the curve on the table */
+               ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
+
+               /* No rate powertable adjustment for RF5111 */
+               ah->ah_txpower.txp_min_idx = 0;
+               ah->ah_txpower.txp_offset = 0;
+
+               /* Write settings on hw */
+               ath5k_setup_pcdac_table(ah);
+               break;
+       case AR5K_PWRTABLE_PWR_TO_PDADC:
+               /* Set PDADC boundaries and fill
+                * final PDADC table */
+               ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
+                                               ee->ee_pd_gains[ee_mode]);
+
+               /* Write settings on hw */
+               ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
+
+               /* Set txp.offset, note that table_min
+                * can be negative */
+               ah->ah_txpower.txp_offset = table_min[0];
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+
+/*
+ * Per-rate tx power setting
+ *
+ * This is the code that sets the desired tx power (below
+ * maximum) on hw for each rate (we also have TPC that sets
+ * power per packet). We do that by providing an index on the
+ * PCDAC/PDADC table we set up.
+ */
+
+/*
+ * Set rate power table
+ *
+ * For now we only limit txpower based on maximum tx power
+ * supported by hw (what's inside rate_info). We need to limit
+ * this even more, based on regulatory domain etc.
+ *
+ * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
+ * and is indexed as follows:
+ * rates[0] - rates[7] -> OFDM rates
+ * rates[8] - rates[14] -> CCK rates
+ * rates[15] -> XR rates (they all have the same power)
+ */
+static void
+ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
+                       struct ath5k_rate_pcal_info *rate_info,
+                       u8 ee_mode)
+{
+       unsigned int i;
+       u16 *rates;
+
+       /* max_pwr is power level we got from driver/user in 0.5dB
+        * units, switch to 0.25dB units so we can compare */
+       max_pwr *= 2;
+       max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
+
+       /* apply rate limits */
+       rates = ah->ah_txpower.txp_rates_power_table;
+
+       /* OFDM rates 6 to 24Mb/s */
+       for (i = 0; i < 5; i++)
+               rates[i] = min(max_pwr, rate_info->target_power_6to24);
+
+       /* Rest OFDM rates */
+       rates[5] = min(rates[0], rate_info->target_power_36);
+       rates[6] = min(rates[0], rate_info->target_power_48);
+       rates[7] = min(rates[0], rate_info->target_power_54);
+
+       /* CCK rates */
+       /* 1L */
+       rates[8] = min(rates[0], rate_info->target_power_6to24);
+       /* 2L */
+       rates[9] = min(rates[0], rate_info->target_power_36);
+       /* 2S */
+       rates[10] = min(rates[0], rate_info->target_power_36);
+       /* 5L */
+       rates[11] = min(rates[0], rate_info->target_power_48);
+       /* 5S */
+       rates[12] = min(rates[0], rate_info->target_power_48);
+       /* 11L */
+       rates[13] = min(rates[0], rate_info->target_power_54);
+       /* 11S */
+       rates[14] = min(rates[0], rate_info->target_power_54);
+
+       /* XR rates */
+       rates[15] = min(rates[0], rate_info->target_power_6to24);
+
+       /* CCK rates have different peak to average ratio
+        * so we have to tweak their power so that gainf
+        * correction works ok. For this we use OFDM to
+        * CCK delta from eeprom */
+       if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
+       (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
+               for (i = 8; i <= 15; i++)
+                       rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
+
+       ah->ah_txpower.txp_min_pwr = rates[7];
+       ah->ah_txpower.txp_max_pwr = rates[0];
+       ah->ah_txpower.txp_ofdm = rates[7];
+}
+
+
+/*
+ * Set transmition power
+ */
+int
+ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel,
+               u8 ee_mode, u8 txpower)
+{
+       struct ath5k_rate_pcal_info rate_info;
+       u8 type;
+       int ret;
+
+       if (txpower > AR5K_TUNE_MAX_TXPOWER) {
+               DBG("ath5k: invalid tx power %d\n", txpower);
+               return -EINVAL;
+       }
+       if (txpower == 0)
+               txpower = AR5K_TUNE_DEFAULT_TXPOWER;
+
+       /* Reset TX power values */
+       memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
+       ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
+       ah->ah_txpower.txp_min_pwr = 0;
+       ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
+
+       /* Initialize TX power table */
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               type = AR5K_PWRTABLE_PWR_TO_PCDAC;
+               break;
+       case AR5K_RF5112:
+               type = AR5K_PWRTABLE_LINEAR_PCDAC;
+               break;
+       case AR5K_RF2413:
+       case AR5K_RF5413:
+       case AR5K_RF2316:
+       case AR5K_RF2317:
+       case AR5K_RF2425:
+               type = AR5K_PWRTABLE_PWR_TO_PDADC;
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       /* FIXME: Only on channel/mode change */
+       ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
+       if (ret)
+               return ret;
+
+       /* Limit max power if we have a CTL available */
+       ath5k_get_max_ctl_power(ah, channel);
+
+       /* FIXME: Tx power limit for this regdomain
+        * XXX: Mac80211/CRDA will do that anyway ? */
+
+       /* FIXME: Antenna reduction stuff */
+
+       /* FIXME: Limit power on turbo modes */
+
+       /* FIXME: TPC scale reduction */
+
+       /* Get surounding channels for per-rate power table
+        * calibration */
+       ath5k_get_rate_pcal_data(ah, channel, &rate_info);
+
+       /* Setup rate power table */
+       ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
+
+       /* Write rate power table on hw */
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
+               AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
+               AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
+
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
+               AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
+               AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
+
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
+               AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
+               AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
+
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
+               AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
+               AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
+
+       /* FIXME: TPC support */
+       if (ah->ah_txpower.txp_tpc) {
+               ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
+                       AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
+
+               ath5k_hw_reg_write(ah,
+                       AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
+                       AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
+                       AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
+                       AR5K_TPC);
+       } else {
+               ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
+                       AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
+       }
+
+       return 0;
+}
+
+int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
+{
+       struct net80211_channel *channel = ah->ah_current_channel;
+
+       DBG2("ath5k: changing txpower to %d\n", txpower);
+
+       return ath5k_hw_txpower(ah, channel, mode, txpower);
+}
+
+#undef _ATH5K_PHY