Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / xtensa / xtfpga.c
diff --git a/qemu/hw/xtensa/xtfpga.c b/qemu/hw/xtensa/xtfpga.c
new file mode 100644 (file)
index 0000000..ab4d0e4
--- /dev/null
@@ -0,0 +1,466 @@
+/*
+ * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in the
+ *       documentation and/or other materials provided with the distribution.
+ *     * Neither the name of the Open Source and Linux Lab nor the
+ *       names of its contributors may be used to endorse or promote products
+ *       derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "sysemu/sysemu.h"
+#include "hw/boards.h"
+#include "hw/loader.h"
+#include "elf.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+#include "hw/char/serial.h"
+#include "net/net.h"
+#include "hw/sysbus.h"
+#include "hw/block/flash.h"
+#include "sysemu/block-backend.h"
+#include "sysemu/char.h"
+#include "sysemu/device_tree.h"
+#include "qemu/error-report.h"
+#include "bootparam.h"
+
+typedef struct LxBoardDesc {
+    hwaddr flash_base;
+    size_t flash_size;
+    size_t flash_boot_base;
+    size_t flash_sector_size;
+    size_t sram_size;
+} LxBoardDesc;
+
+typedef struct Lx60FpgaState {
+    MemoryRegion iomem;
+    uint32_t leds;
+    uint32_t switches;
+} Lx60FpgaState;
+
+static void lx60_fpga_reset(void *opaque)
+{
+    Lx60FpgaState *s = opaque;
+
+    s->leds = 0;
+    s->switches = 0;
+}
+
+static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
+        unsigned size)
+{
+    Lx60FpgaState *s = opaque;
+
+    switch (addr) {
+    case 0x0: /*build date code*/
+        return 0x09272011;
+
+    case 0x4: /*processor clock frequency, Hz*/
+        return 10000000;
+
+    case 0x8: /*LEDs (off = 0, on = 1)*/
+        return s->leds;
+
+    case 0xc: /*DIP switches (off = 0, on = 1)*/
+        return s->switches;
+    }
+    return 0;
+}
+
+static void lx60_fpga_write(void *opaque, hwaddr addr,
+        uint64_t val, unsigned size)
+{
+    Lx60FpgaState *s = opaque;
+
+    switch (addr) {
+    case 0x8: /*LEDs (off = 0, on = 1)*/
+        s->leds = val;
+        break;
+
+    case 0x10: /*board reset*/
+        if (val == 0xdead) {
+            qemu_system_reset_request();
+        }
+        break;
+    }
+}
+
+static const MemoryRegionOps lx60_fpga_ops = {
+    .read = lx60_fpga_read,
+    .write = lx60_fpga_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
+        hwaddr base)
+{
+    Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
+
+    memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
+            "lx60.fpga", 0x10000);
+    memory_region_add_subregion(address_space, base, &s->iomem);
+    lx60_fpga_reset(s);
+    qemu_register_reset(lx60_fpga_reset, s);
+    return s;
+}
+
+static void lx60_net_init(MemoryRegion *address_space,
+        hwaddr base,
+        hwaddr descriptors,
+        hwaddr buffers,
+        qemu_irq irq, NICInfo *nd)
+{
+    DeviceState *dev;
+    SysBusDevice *s;
+    MemoryRegion *ram;
+
+    dev = qdev_create(NULL, "open_eth");
+    qdev_set_nic_properties(dev, nd);
+    qdev_init_nofail(dev);
+
+    s = SYS_BUS_DEVICE(dev);
+    sysbus_connect_irq(s, 0, irq);
+    memory_region_add_subregion(address_space, base,
+            sysbus_mmio_get_region(s, 0));
+    memory_region_add_subregion(address_space, descriptors,
+            sysbus_mmio_get_region(s, 1));
+
+    ram = g_malloc(sizeof(*ram));
+    memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384, &error_abort);
+    vmstate_register_ram_global(ram);
+    memory_region_add_subregion(address_space, buffers, ram);
+}
+
+static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
+{
+    XtensaCPU *cpu = opaque;
+
+    return cpu_get_phys_page_debug(CPU(cpu), addr);
+}
+
+static void lx60_reset(void *opaque)
+{
+    XtensaCPU *cpu = opaque;
+
+    cpu_reset(CPU(cpu));
+}
+
+static uint64_t lx60_io_read(void *opaque, hwaddr addr,
+        unsigned size)
+{
+    return 0;
+}
+
+static void lx60_io_write(void *opaque, hwaddr addr,
+        uint64_t val, unsigned size)
+{
+}
+
+static const MemoryRegionOps lx60_io_ops = {
+    .read = lx60_io_read,
+    .write = lx60_io_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static void lx_init(const LxBoardDesc *board, MachineState *machine)
+{
+#ifdef TARGET_WORDS_BIGENDIAN
+    int be = 1;
+#else
+    int be = 0;
+#endif
+    MemoryRegion *system_memory = get_system_memory();
+    XtensaCPU *cpu = NULL;
+    CPUXtensaState *env = NULL;
+    MemoryRegion *ram, *rom, *system_io;
+    DriveInfo *dinfo;
+    pflash_t *flash = NULL;
+    QemuOpts *machine_opts = qemu_get_machine_opts();
+    const char *cpu_model = machine->cpu_model;
+    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
+    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
+    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
+    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
+    int n;
+
+    if (!cpu_model) {
+        cpu_model = XTENSA_DEFAULT_CPU_MODEL;
+    }
+
+    for (n = 0; n < smp_cpus; n++) {
+        cpu = cpu_xtensa_init(cpu_model);
+        if (cpu == NULL) {
+            error_report("unable to find CPU definition '%s'",
+                         cpu_model);
+            exit(EXIT_FAILURE);
+        }
+        env = &cpu->env;
+
+        env->sregs[PRID] = n;
+        qemu_register_reset(lx60_reset, cpu);
+        /* Need MMU initialized prior to ELF loading,
+         * so that ELF gets loaded into virtual addresses
+         */
+        cpu_reset(CPU(cpu));
+    }
+
+    ram = g_malloc(sizeof(*ram));
+    memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
+                           &error_abort);
+    vmstate_register_ram_global(ram);
+    memory_region_add_subregion(system_memory, 0, ram);
+
+    system_io = g_malloc(sizeof(*system_io));
+    memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
+                          224 * 1024 * 1024);
+    memory_region_add_subregion(system_memory, 0xf0000000, system_io);
+    lx60_fpga_init(system_io, 0x0d020000);
+    if (nd_table[0].used) {
+        lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
+                xtensa_get_extint(env, 1), nd_table);
+    }
+
+    if (!serial_hds[0]) {
+        serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
+    }
+
+    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
+            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
+
+    dinfo = drive_get(IF_PFLASH, 0, 0);
+    if (dinfo) {
+        flash = pflash_cfi01_register(board->flash_base,
+                NULL, "lx60.io.flash", board->flash_size,
+                blk_by_legacy_dinfo(dinfo),
+                board->flash_sector_size,
+                board->flash_size / board->flash_sector_size,
+                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
+        if (flash == NULL) {
+            error_report("unable to mount pflash");
+            exit(EXIT_FAILURE);
+        }
+    }
+
+    /* Use presence of kernel file name as 'boot from SRAM' switch. */
+    if (kernel_filename) {
+        uint32_t entry_point = env->pc;
+        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
+        uint32_t tagptr = 0xfe000000 + board->sram_size;
+        uint32_t cur_tagptr;
+        BpMemInfo memory_location = {
+            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
+            .start = tswap32(0),
+            .end = tswap32(machine->ram_size),
+        };
+        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
+            machine->ram_size : 0x08000000;
+        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
+
+        rom = g_malloc(sizeof(*rom));
+        memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
+                               &error_abort);
+        vmstate_register_ram_global(rom);
+        memory_region_add_subregion(system_memory, 0xfe000000, rom);
+
+        if (kernel_cmdline) {
+            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
+        }
+        if (dtb_filename) {
+            bp_size += get_tag_size(sizeof(uint32_t));
+        }
+        if (initrd_filename) {
+            bp_size += get_tag_size(sizeof(BpMemInfo));
+        }
+
+        /* Put kernel bootparameters to the end of that SRAM */
+        tagptr = (tagptr - bp_size) & ~0xff;
+        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
+        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
+                             sizeof(memory_location), &memory_location);
+
+        if (kernel_cmdline) {
+            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
+                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
+        }
+        if (dtb_filename) {
+            int fdt_size;
+            void *fdt = load_device_tree(dtb_filename, &fdt_size);
+            uint32_t dtb_addr = tswap32(cur_lowmem);
+
+            if (!fdt) {
+                error_report("could not load DTB '%s'", dtb_filename);
+                exit(EXIT_FAILURE);
+            }
+
+            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
+            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
+                                 sizeof(dtb_addr), &dtb_addr);
+            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
+        }
+        if (initrd_filename) {
+            BpMemInfo initrd_location = { 0 };
+            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
+                                           lowmem_end - cur_lowmem);
+
+            if (initrd_size < 0) {
+                initrd_size = load_image_targphys(initrd_filename,
+                                                  cur_lowmem,
+                                                  lowmem_end - cur_lowmem);
+            }
+            if (initrd_size < 0) {
+                error_report("could not load initrd '%s'", initrd_filename);
+                exit(EXIT_FAILURE);
+            }
+            initrd_location.start = tswap32(cur_lowmem);
+            initrd_location.end = tswap32(cur_lowmem + initrd_size);
+            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
+                                 sizeof(initrd_location), &initrd_location);
+            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
+        }
+        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
+        env->regs[2] = tagptr;
+
+        uint64_t elf_entry;
+        uint64_t elf_lowaddr;
+        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
+                &elf_entry, &elf_lowaddr, NULL, be, ELF_MACHINE, 0);
+        if (success > 0) {
+            entry_point = elf_entry;
+        } else {
+            hwaddr ep;
+            int is_linux;
+            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
+                                  translate_phys_addr, cpu);
+            if (success > 0 && is_linux) {
+                entry_point = ep;
+            } else {
+                error_report("could not load kernel '%s'",
+                             kernel_filename);
+                exit(EXIT_FAILURE);
+            }
+        }
+        if (entry_point != env->pc) {
+            static const uint8_t jx_a0[] = {
+#ifdef TARGET_WORDS_BIGENDIAN
+                0x0a, 0, 0,
+#else
+                0xa0, 0, 0,
+#endif
+            };
+            env->regs[0] = entry_point;
+            cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
+        }
+    } else {
+        if (flash) {
+            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
+            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
+
+            memory_region_init_alias(flash_io, NULL, "lx60.flash",
+                    flash_mr, board->flash_boot_base,
+                    board->flash_size - board->flash_boot_base < 0x02000000 ?
+                    board->flash_size - board->flash_boot_base : 0x02000000);
+            memory_region_add_subregion(system_memory, 0xfe000000,
+                    flash_io);
+        }
+    }
+}
+
+static void xtensa_lx60_init(MachineState *machine)
+{
+    static const LxBoardDesc lx60_board = {
+        .flash_base = 0xf8000000,
+        .flash_size = 0x00400000,
+        .flash_sector_size = 0x10000,
+        .sram_size = 0x20000,
+    };
+    lx_init(&lx60_board, machine);
+}
+
+static void xtensa_lx200_init(MachineState *machine)
+{
+    static const LxBoardDesc lx200_board = {
+        .flash_base = 0xf8000000,
+        .flash_size = 0x01000000,
+        .flash_sector_size = 0x20000,
+        .sram_size = 0x2000000,
+    };
+    lx_init(&lx200_board, machine);
+}
+
+static void xtensa_ml605_init(MachineState *machine)
+{
+    static const LxBoardDesc ml605_board = {
+        .flash_base = 0xf8000000,
+        .flash_size = 0x01000000,
+        .flash_sector_size = 0x20000,
+        .sram_size = 0x2000000,
+    };
+    lx_init(&ml605_board, machine);
+}
+
+static void xtensa_kc705_init(MachineState *machine)
+{
+    static const LxBoardDesc kc705_board = {
+        .flash_base = 0xf0000000,
+        .flash_size = 0x08000000,
+        .flash_boot_base = 0x06000000,
+        .flash_sector_size = 0x20000,
+        .sram_size = 0x2000000,
+    };
+    lx_init(&kc705_board, machine);
+}
+
+static QEMUMachine xtensa_lx60_machine = {
+    .name = "lx60",
+    .desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
+    .init = xtensa_lx60_init,
+    .max_cpus = 4,
+};
+
+static QEMUMachine xtensa_lx200_machine = {
+    .name = "lx200",
+    .desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
+    .init = xtensa_lx200_init,
+    .max_cpus = 4,
+};
+
+static QEMUMachine xtensa_ml605_machine = {
+    .name = "ml605",
+    .desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
+    .init = xtensa_ml605_init,
+    .max_cpus = 4,
+};
+
+static QEMUMachine xtensa_kc705_machine = {
+    .name = "kc705",
+    .desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
+    .init = xtensa_kc705_init,
+    .max_cpus = 4,
+};
+
+static void xtensa_lx_machines_init(void)
+{
+    qemu_register_machine(&xtensa_lx60_machine);
+    qemu_register_machine(&xtensa_lx200_machine);
+    qemu_register_machine(&xtensa_ml605_machine);
+    qemu_register_machine(&xtensa_kc705_machine);
+}
+
+machine_init(xtensa_lx_machines_init);