Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / mips / mips_malta.c
diff --git a/qemu/hw/mips/mips_malta.c b/qemu/hw/mips/mips_malta.c
new file mode 100644 (file)
index 0000000..3082e75
--- /dev/null
@@ -0,0 +1,1238 @@
+/*
+ * QEMU Malta board support
+ *
+ * Copyright (c) 2006 Aurelien Jarno
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "hw/hw.h"
+#include "hw/i386/pc.h"
+#include "hw/char/serial.h"
+#include "hw/block/fdc.h"
+#include "net/net.h"
+#include "hw/boards.h"
+#include "hw/i2c/smbus.h"
+#include "sysemu/block-backend.h"
+#include "hw/block/flash.h"
+#include "hw/mips/mips.h"
+#include "hw/mips/cpudevs.h"
+#include "hw/pci/pci.h"
+#include "sysemu/char.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/arch_init.h"
+#include "qemu/log.h"
+#include "hw/mips/bios.h"
+#include "hw/ide.h"
+#include "hw/loader.h"
+#include "elf.h"
+#include "hw/timer/mc146818rtc.h"
+#include "hw/timer/i8254.h"
+#include "sysemu/block-backend.h"
+#include "sysemu/blockdev.h"
+#include "exec/address-spaces.h"
+#include "hw/sysbus.h"             /* SysBusDevice */
+#include "qemu/host-utils.h"
+#include "sysemu/qtest.h"
+#include "qemu/error-report.h"
+#include "hw/empty_slot.h"
+#include "sysemu/kvm.h"
+#include "exec/semihost.h"
+
+//#define DEBUG_BOARD_INIT
+
+#define ENVP_ADDR              0x80002000l
+#define ENVP_NB_ENTRIES                16
+#define ENVP_ENTRY_SIZE                256
+
+/* Hardware addresses */
+#define FLASH_ADDRESS 0x1e000000ULL
+#define FPGA_ADDRESS  0x1f000000ULL
+#define RESET_ADDRESS 0x1fc00000ULL
+
+#define FLASH_SIZE    0x400000
+
+#define MAX_IDE_BUS 2
+
+typedef struct {
+    MemoryRegion iomem;
+    MemoryRegion iomem_lo; /* 0 - 0x900 */
+    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
+    uint32_t leds;
+    uint32_t brk;
+    uint32_t gpout;
+    uint32_t i2cin;
+    uint32_t i2coe;
+    uint32_t i2cout;
+    uint32_t i2csel;
+    CharDriverState *display;
+    char display_text[9];
+    SerialState *uart;
+} MaltaFPGAState;
+
+#define TYPE_MIPS_MALTA "mips-malta"
+#define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
+
+typedef struct {
+    SysBusDevice parent_obj;
+
+    qemu_irq *i8259;
+} MaltaState;
+
+static ISADevice *pit;
+
+static struct _loaderparams {
+    int ram_size, ram_low_size;
+    const char *kernel_filename;
+    const char *kernel_cmdline;
+    const char *initrd_filename;
+} loaderparams;
+
+/* Malta FPGA */
+static void malta_fpga_update_display(void *opaque)
+{
+    char leds_text[9];
+    int i;
+    MaltaFPGAState *s = opaque;
+
+    for (i = 7 ; i >= 0 ; i--) {
+        if (s->leds & (1 << i))
+            leds_text[i] = '#';
+        else
+            leds_text[i] = ' ';
+    }
+    leds_text[8] = '\0';
+
+    qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
+    qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
+}
+
+/*
+ * EEPROM 24C01 / 24C02 emulation.
+ *
+ * Emulation for serial EEPROMs:
+ * 24C01 - 1024 bit (128 x 8)
+ * 24C02 - 2048 bit (256 x 8)
+ *
+ * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
+ */
+
+//~ #define DEBUG
+
+#if defined(DEBUG)
+#  define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
+#else
+#  define logout(fmt, ...) ((void)0)
+#endif
+
+struct _eeprom24c0x_t {
+  uint8_t tick;
+  uint8_t address;
+  uint8_t command;
+  uint8_t ack;
+  uint8_t scl;
+  uint8_t sda;
+  uint8_t data;
+  //~ uint16_t size;
+  uint8_t contents[256];
+};
+
+typedef struct _eeprom24c0x_t eeprom24c0x_t;
+
+static eeprom24c0x_t spd_eeprom = {
+    .contents = {
+        /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
+        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
+        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
+        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
+        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
+        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
+        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
+    },
+};
+
+static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
+{
+    enum { SDR = 0x4, DDR2 = 0x8 } type;
+    uint8_t *spd = spd_eeprom.contents;
+    uint8_t nbanks = 0;
+    uint16_t density = 0;
+    int i;
+
+    /* work in terms of MB */
+    ram_size >>= 20;
+
+    while ((ram_size >= 4) && (nbanks <= 2)) {
+        int sz_log2 = MIN(31 - clz32(ram_size), 14);
+        nbanks++;
+        density |= 1 << (sz_log2 - 2);
+        ram_size -= 1 << sz_log2;
+    }
+
+    /* split to 2 banks if possible */
+    if ((nbanks == 1) && (density > 1)) {
+        nbanks++;
+        density >>= 1;
+    }
+
+    if (density & 0xff00) {
+        density = (density & 0xe0) | ((density >> 8) & 0x1f);
+        type = DDR2;
+    } else if (!(density & 0x1f)) {
+        type = DDR2;
+    } else {
+        type = SDR;
+    }
+
+    if (ram_size) {
+        fprintf(stderr, "Warning: SPD cannot represent final %dMB"
+                " of SDRAM\n", (int)ram_size);
+    }
+
+    /* fill in SPD memory information */
+    spd[2] = type;
+    spd[5] = nbanks;
+    spd[31] = density;
+
+    /* checksum */
+    spd[63] = 0;
+    for (i = 0; i < 63; i++) {
+        spd[63] += spd[i];
+    }
+
+    /* copy for SMBUS */
+    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
+}
+
+static void generate_eeprom_serial(uint8_t *eeprom)
+{
+    int i, pos = 0;
+    uint8_t mac[6] = { 0x00 };
+    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
+
+    /* version */
+    eeprom[pos++] = 0x01;
+
+    /* count */
+    eeprom[pos++] = 0x02;
+
+    /* MAC address */
+    eeprom[pos++] = 0x01; /* MAC */
+    eeprom[pos++] = 0x06; /* length */
+    memcpy(&eeprom[pos], mac, sizeof(mac));
+    pos += sizeof(mac);
+
+    /* serial number */
+    eeprom[pos++] = 0x02; /* serial */
+    eeprom[pos++] = 0x05; /* length */
+    memcpy(&eeprom[pos], sn, sizeof(sn));
+    pos += sizeof(sn);
+
+    /* checksum */
+    eeprom[pos] = 0;
+    for (i = 0; i < pos; i++) {
+        eeprom[pos] += eeprom[i];
+    }
+}
+
+static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
+{
+    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
+        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
+    return eeprom->sda;
+}
+
+static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
+{
+    if (eeprom->scl && scl && (eeprom->sda != sda)) {
+        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
+                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
+                sda ? "stop" : "start");
+        if (!sda) {
+            eeprom->tick = 1;
+            eeprom->command = 0;
+        }
+    } else if (eeprom->tick == 0 && !eeprom->ack) {
+        /* Waiting for start. */
+        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
+                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
+    } else if (!eeprom->scl && scl) {
+        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
+                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
+        if (eeprom->ack) {
+            logout("\ti2c ack bit = 0\n");
+            sda = 0;
+            eeprom->ack = 0;
+        } else if (eeprom->sda == sda) {
+            uint8_t bit = (sda != 0);
+            logout("\ti2c bit = %d\n", bit);
+            if (eeprom->tick < 9) {
+                eeprom->command <<= 1;
+                eeprom->command += bit;
+                eeprom->tick++;
+                if (eeprom->tick == 9) {
+                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
+                           bit ? "read" : "write");
+                    eeprom->ack = 1;
+                }
+            } else if (eeprom->tick < 17) {
+                if (eeprom->command & 1) {
+                    sda = ((eeprom->data & 0x80) != 0);
+                }
+                eeprom->address <<= 1;
+                eeprom->address += bit;
+                eeprom->tick++;
+                eeprom->data <<= 1;
+                if (eeprom->tick == 17) {
+                    eeprom->data = eeprom->contents[eeprom->address];
+                    logout("\taddress 0x%04x, data 0x%02x\n",
+                           eeprom->address, eeprom->data);
+                    eeprom->ack = 1;
+                    eeprom->tick = 0;
+                }
+            } else if (eeprom->tick >= 17) {
+                sda = 0;
+            }
+        } else {
+            logout("\tsda changed with raising scl\n");
+        }
+    } else {
+        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
+               scl, eeprom->sda, sda);
+    }
+    eeprom->scl = scl;
+    eeprom->sda = sda;
+}
+
+static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
+                                unsigned size)
+{
+    MaltaFPGAState *s = opaque;
+    uint32_t val = 0;
+    uint32_t saddr;
+
+    saddr = (addr & 0xfffff);
+
+    switch (saddr) {
+
+    /* SWITCH Register */
+    case 0x00200:
+        val = 0x00000000;              /* All switches closed */
+        break;
+
+    /* STATUS Register */
+    case 0x00208:
+#ifdef TARGET_WORDS_BIGENDIAN
+        val = 0x00000012;
+#else
+        val = 0x00000010;
+#endif
+        break;
+
+    /* JMPRS Register */
+    case 0x00210:
+        val = 0x00;
+        break;
+
+    /* LEDBAR Register */
+    case 0x00408:
+        val = s->leds;
+        break;
+
+    /* BRKRES Register */
+    case 0x00508:
+        val = s->brk;
+        break;
+
+    /* UART Registers are handled directly by the serial device */
+
+    /* GPOUT Register */
+    case 0x00a00:
+        val = s->gpout;
+        break;
+
+    /* XXX: implement a real I2C controller */
+
+    /* GPINP Register */
+    case 0x00a08:
+        /* IN = OUT until a real I2C control is implemented */
+        if (s->i2csel)
+            val = s->i2cout;
+        else
+            val = 0x00;
+        break;
+
+    /* I2CINP Register */
+    case 0x00b00:
+        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
+        break;
+
+    /* I2COE Register */
+    case 0x00b08:
+        val = s->i2coe;
+        break;
+
+    /* I2COUT Register */
+    case 0x00b10:
+        val = s->i2cout;
+        break;
+
+    /* I2CSEL Register */
+    case 0x00b18:
+        val = s->i2csel;
+        break;
+
+    default:
+#if 0
+        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
+                addr);
+#endif
+        break;
+    }
+    return val;
+}
+
+static void malta_fpga_write(void *opaque, hwaddr addr,
+                             uint64_t val, unsigned size)
+{
+    MaltaFPGAState *s = opaque;
+    uint32_t saddr;
+
+    saddr = (addr & 0xfffff);
+
+    switch (saddr) {
+
+    /* SWITCH Register */
+    case 0x00200:
+        break;
+
+    /* JMPRS Register */
+    case 0x00210:
+        break;
+
+    /* LEDBAR Register */
+    case 0x00408:
+        s->leds = val & 0xff;
+        malta_fpga_update_display(s);
+        break;
+
+    /* ASCIIWORD Register */
+    case 0x00410:
+        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
+        malta_fpga_update_display(s);
+        break;
+
+    /* ASCIIPOS0 to ASCIIPOS7 Registers */
+    case 0x00418:
+    case 0x00420:
+    case 0x00428:
+    case 0x00430:
+    case 0x00438:
+    case 0x00440:
+    case 0x00448:
+    case 0x00450:
+        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
+        malta_fpga_update_display(s);
+        break;
+
+    /* SOFTRES Register */
+    case 0x00500:
+        if (val == 0x42)
+            qemu_system_reset_request ();
+        break;
+
+    /* BRKRES Register */
+    case 0x00508:
+        s->brk = val & 0xff;
+        break;
+
+    /* UART Registers are handled directly by the serial device */
+
+    /* GPOUT Register */
+    case 0x00a00:
+        s->gpout = val & 0xff;
+        break;
+
+    /* I2COE Register */
+    case 0x00b08:
+        s->i2coe = val & 0x03;
+        break;
+
+    /* I2COUT Register */
+    case 0x00b10:
+        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
+        s->i2cout = val;
+        break;
+
+    /* I2CSEL Register */
+    case 0x00b18:
+        s->i2csel = val & 0x01;
+        break;
+
+    default:
+#if 0
+        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
+                addr);
+#endif
+        break;
+    }
+}
+
+static const MemoryRegionOps malta_fpga_ops = {
+    .read = malta_fpga_read,
+    .write = malta_fpga_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static void malta_fpga_reset(void *opaque)
+{
+    MaltaFPGAState *s = opaque;
+
+    s->leds   = 0x00;
+    s->brk    = 0x0a;
+    s->gpout  = 0x00;
+    s->i2cin  = 0x3;
+    s->i2coe  = 0x0;
+    s->i2cout = 0x3;
+    s->i2csel = 0x1;
+
+    s->display_text[8] = '\0';
+    snprintf(s->display_text, 9, "        ");
+}
+
+static void malta_fpga_led_init(CharDriverState *chr)
+{
+    qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
+    qemu_chr_fe_printf(chr, "+--------+\r\n");
+    qemu_chr_fe_printf(chr, "+        +\r\n");
+    qemu_chr_fe_printf(chr, "+--------+\r\n");
+    qemu_chr_fe_printf(chr, "\n");
+    qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
+    qemu_chr_fe_printf(chr, "+--------+\r\n");
+    qemu_chr_fe_printf(chr, "+        +\r\n");
+    qemu_chr_fe_printf(chr, "+--------+\r\n");
+}
+
+static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
+         hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
+{
+    MaltaFPGAState *s;
+
+    s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
+
+    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
+                          "malta-fpga", 0x100000);
+    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
+                             &s->iomem, 0, 0x900);
+    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
+                             &s->iomem, 0xa00, 0x10000-0xa00);
+
+    memory_region_add_subregion(address_space, base, &s->iomem_lo);
+    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
+
+    s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
+
+    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
+                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);
+
+    malta_fpga_reset(s);
+    qemu_register_reset(malta_fpga_reset, s);
+
+    return s;
+}
+
+/* Network support */
+static void network_init(PCIBus *pci_bus)
+{
+    int i;
+
+    for(i = 0; i < nb_nics; i++) {
+        NICInfo *nd = &nd_table[i];
+        const char *default_devaddr = NULL;
+
+        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
+            /* The malta board has a PCNet card using PCI SLOT 11 */
+            default_devaddr = "0b";
+
+        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
+    }
+}
+
+/* ROM and pseudo bootloader
+
+   The following code implements a very very simple bootloader. It first
+   loads the registers a0 to a3 to the values expected by the OS, and
+   then jump at the kernel address.
+
+   The bootloader should pass the locations of the kernel arguments and
+   environment variables tables. Those tables contain the 32-bit address
+   of NULL terminated strings. The environment variables table should be
+   terminated by a NULL address.
+
+   For a simpler implementation, the number of kernel arguments is fixed
+   to two (the name of the kernel and the command line), and the two
+   tables are actually the same one.
+
+   The registers a0 to a3 should contain the following values:
+     a0 - number of kernel arguments
+     a1 - 32-bit address of the kernel arguments table
+     a2 - 32-bit address of the environment variables table
+     a3 - RAM size in bytes
+*/
+
+static void write_bootloader (CPUMIPSState *env, uint8_t *base,
+                              int64_t run_addr, int64_t kernel_entry)
+{
+    uint32_t *p;
+
+    /* Small bootloader */
+    p = (uint32_t *)base;
+
+    stl_p(p++, 0x08000000 |                                      /* j 0x1fc00580 */
+                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
+    stl_p(p++, 0x00000000);                                      /* nop */
+
+    /* YAMON service vector */
+    stl_p(base + 0x500, run_addr + 0x0580);      /* start: */
+    stl_p(base + 0x504, run_addr + 0x083c);      /* print_count: */
+    stl_p(base + 0x520, run_addr + 0x0580);      /* start: */
+    stl_p(base + 0x52c, run_addr + 0x0800);      /* flush_cache: */
+    stl_p(base + 0x534, run_addr + 0x0808);      /* print: */
+    stl_p(base + 0x538, run_addr + 0x0800);      /* reg_cpu_isr: */
+    stl_p(base + 0x53c, run_addr + 0x0800);      /* unred_cpu_isr: */
+    stl_p(base + 0x540, run_addr + 0x0800);      /* reg_ic_isr: */
+    stl_p(base + 0x544, run_addr + 0x0800);      /* unred_ic_isr: */
+    stl_p(base + 0x548, run_addr + 0x0800);      /* reg_esr: */
+    stl_p(base + 0x54c, run_addr + 0x0800);      /* unreg_esr: */
+    stl_p(base + 0x550, run_addr + 0x0800);      /* getchar: */
+    stl_p(base + 0x554, run_addr + 0x0800);      /* syscon_read: */
+
+
+    /* Second part of the bootloader */
+    p = (uint32_t *) (base + 0x580);
+
+    if (semihosting_get_argc()) {
+        /* Preserve a0 content as arguments have been passed */
+        stl_p(p++, 0x00000000);                         /* nop */
+    } else {
+        stl_p(p++, 0x24040002);                         /* addiu a0, zero, 2 */
+    }
+    stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
+    stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));        /* ori sp, sp, low(ENVP_ADDR) */
+    stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
+    stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a1, low(ENVP_ADDR) */
+    stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
+    stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
+    stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));     /* lui a3, high(ram_low_size) */
+    stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));  /* ori a3, a3, low(ram_low_size) */
+
+    /* Load BAR registers as done by YAMON */
+    stl_p(p++, 0x3c09b400);                                      /* lui t1, 0xb400 */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+    stl_p(p++, 0x3c08df00);                                      /* lui t0, 0xdf00 */
+#else
+    stl_p(p++, 0x340800df);                                      /* ori t0, r0, 0x00df */
+#endif
+    stl_p(p++, 0xad280068);                                      /* sw t0, 0x0068(t1) */
+
+    stl_p(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+    stl_p(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
+#else
+    stl_p(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
+#endif
+    stl_p(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
+#ifdef TARGET_WORDS_BIGENDIAN
+    stl_p(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
+#else
+    stl_p(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
+#endif
+    stl_p(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+    stl_p(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
+#else
+    stl_p(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
+#endif
+    stl_p(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
+#ifdef TARGET_WORDS_BIGENDIAN
+    stl_p(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
+#else
+    stl_p(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
+#endif
+    stl_p(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+    stl_p(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
+#else
+    stl_p(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
+#endif
+    stl_p(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
+#ifdef TARGET_WORDS_BIGENDIAN
+    stl_p(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
+#else
+    stl_p(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
+#endif
+    stl_p(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */
+
+    /* Jump to kernel code */
+    stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
+    stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
+    stl_p(p++, 0x03e00009);                                      /* jalr ra */
+    stl_p(p++, 0x00000000);                                      /* nop */
+
+    /* YAMON subroutines */
+    p = (uint32_t *) (base + 0x800);
+    stl_p(p++, 0x03e00009);                                     /* jalr ra */
+    stl_p(p++, 0x24020000);                                     /* li v0,0 */
+    /* 808 YAMON print */
+    stl_p(p++, 0x03e06821);                                     /* move t5,ra */
+    stl_p(p++, 0x00805821);                                     /* move t3,a0 */
+    stl_p(p++, 0x00a05021);                                     /* move t2,a1 */
+    stl_p(p++, 0x91440000);                                     /* lbu a0,0(t2) */
+    stl_p(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
+    stl_p(p++, 0x10800005);                                     /* beqz a0,834 */
+    stl_p(p++, 0x00000000);                                     /* nop */
+    stl_p(p++, 0x0ff0021c);                                     /* jal 870 */
+    stl_p(p++, 0x00000000);                                     /* nop */
+    stl_p(p++, 0x08000205);                                     /* j 814 */
+    stl_p(p++, 0x00000000);                                     /* nop */
+    stl_p(p++, 0x01a00009);                                     /* jalr t5 */
+    stl_p(p++, 0x01602021);                                     /* move a0,t3 */
+    /* 0x83c YAMON print_count */
+    stl_p(p++, 0x03e06821);                                     /* move t5,ra */
+    stl_p(p++, 0x00805821);                                     /* move t3,a0 */
+    stl_p(p++, 0x00a05021);                                     /* move t2,a1 */
+    stl_p(p++, 0x00c06021);                                     /* move t4,a2 */
+    stl_p(p++, 0x91440000);                                     /* lbu a0,0(t2) */
+    stl_p(p++, 0x0ff0021c);                                     /* jal 870 */
+    stl_p(p++, 0x00000000);                                     /* nop */
+    stl_p(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
+    stl_p(p++, 0x258cffff);                                     /* addiu t4,t4,-1 */
+    stl_p(p++, 0x1580fffa);                                     /* bnez t4,84c */
+    stl_p(p++, 0x00000000);                                     /* nop */
+    stl_p(p++, 0x01a00009);                                     /* jalr t5 */
+    stl_p(p++, 0x01602021);                                     /* move a0,t3 */
+    /* 0x870 */
+    stl_p(p++, 0x3c08b800);                                     /* lui t0,0xb400 */
+    stl_p(p++, 0x350803f8);                                     /* ori t0,t0,0x3f8 */
+    stl_p(p++, 0x91090005);                                     /* lbu t1,5(t0) */
+    stl_p(p++, 0x00000000);                                     /* nop */
+    stl_p(p++, 0x31290040);                                     /* andi t1,t1,0x40 */
+    stl_p(p++, 0x1120fffc);                                     /* beqz t1,878 <outch+0x8> */
+    stl_p(p++, 0x00000000);                                     /* nop */
+    stl_p(p++, 0x03e00009);                                     /* jalr ra */
+    stl_p(p++, 0xa1040000);                                     /* sb a0,0(t0) */
+
+}
+
+static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
+                                        const char *string, ...)
+{
+    va_list ap;
+    int32_t table_addr;
+
+    if (index >= ENVP_NB_ENTRIES)
+        return;
+
+    if (string == NULL) {
+        prom_buf[index] = 0;
+        return;
+    }
+
+    table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
+    prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
+
+    va_start(ap, string);
+    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
+    va_end(ap);
+}
+
+/* Kernel */
+static int64_t load_kernel (void)
+{
+    int64_t kernel_entry, kernel_high;
+    long initrd_size;
+    ram_addr_t initrd_offset;
+    int big_endian;
+    uint32_t *prom_buf;
+    long prom_size;
+    int prom_index = 0;
+    uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
+
+#ifdef TARGET_WORDS_BIGENDIAN
+    big_endian = 1;
+#else
+    big_endian = 0;
+#endif
+
+    if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
+                 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
+                 big_endian, ELF_MACHINE, 1) < 0) {
+        fprintf(stderr, "qemu: could not load kernel '%s'\n",
+                loaderparams.kernel_filename);
+        exit(1);
+    }
+
+    /* Sanity check where the kernel has been linked */
+    if (kvm_enabled()) {
+        if (kernel_entry & 0x80000000ll) {
+            error_report("KVM guest kernels must be linked in useg. "
+                         "Did you forget to enable CONFIG_KVM_GUEST?");
+            exit(1);
+        }
+
+        xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
+    } else {
+        if (!(kernel_entry & 0x80000000ll)) {
+            error_report("KVM guest kernels aren't supported with TCG. "
+                         "Did you unintentionally enable CONFIG_KVM_GUEST?");
+            exit(1);
+        }
+
+        xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
+    }
+
+    /* load initrd */
+    initrd_size = 0;
+    initrd_offset = 0;
+    if (loaderparams.initrd_filename) {
+        initrd_size = get_image_size (loaderparams.initrd_filename);
+        if (initrd_size > 0) {
+            initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
+            if (initrd_offset + initrd_size > ram_size) {
+                fprintf(stderr,
+                        "qemu: memory too small for initial ram disk '%s'\n",
+                        loaderparams.initrd_filename);
+                exit(1);
+            }
+            initrd_size = load_image_targphys(loaderparams.initrd_filename,
+                                              initrd_offset,
+                                              ram_size - initrd_offset);
+        }
+        if (initrd_size == (target_ulong) -1) {
+            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
+                    loaderparams.initrd_filename);
+            exit(1);
+        }
+    }
+
+    /* Setup prom parameters. */
+    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
+    prom_buf = g_malloc(prom_size);
+
+    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
+    if (initrd_size > 0) {
+        prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
+                 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
+                 loaderparams.kernel_cmdline);
+    } else {
+        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
+    }
+
+    prom_set(prom_buf, prom_index++, "memsize");
+    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
+
+    prom_set(prom_buf, prom_index++, "ememsize");
+    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
+
+    prom_set(prom_buf, prom_index++, "modetty0");
+    prom_set(prom_buf, prom_index++, "38400n8r");
+    prom_set(prom_buf, prom_index++, NULL);
+
+    rom_add_blob_fixed("prom", prom_buf, prom_size,
+                       cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
+
+    g_free(prom_buf);
+    return kernel_entry;
+}
+
+static void malta_mips_config(MIPSCPU *cpu)
+{
+    CPUMIPSState *env = &cpu->env;
+    CPUState *cs = CPU(cpu);
+
+    env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
+                         ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
+}
+
+static void main_cpu_reset(void *opaque)
+{
+    MIPSCPU *cpu = opaque;
+    CPUMIPSState *env = &cpu->env;
+
+    cpu_reset(CPU(cpu));
+
+    /* The bootloader does not need to be rewritten as it is located in a
+       read only location. The kernel location and the arguments table
+       location does not change. */
+    if (loaderparams.kernel_filename) {
+        env->CP0_Status &= ~(1 << CP0St_ERL);
+    }
+
+    malta_mips_config(cpu);
+
+    if (kvm_enabled()) {
+        /* Start running from the bootloader we wrote to end of RAM */
+        env->active_tc.PC = 0x40000000 + loaderparams.ram_size;
+    }
+}
+
+static void cpu_request_exit(void *opaque, int irq, int level)
+{
+    CPUState *cpu = current_cpu;
+
+    if (cpu && level) {
+        cpu_exit(cpu);
+    }
+}
+
+static
+void mips_malta_init(MachineState *machine)
+{
+    ram_addr_t ram_size = machine->ram_size;
+    ram_addr_t ram_low_size;
+    const char *cpu_model = machine->cpu_model;
+    const char *kernel_filename = machine->kernel_filename;
+    const char *kernel_cmdline = machine->kernel_cmdline;
+    const char *initrd_filename = machine->initrd_filename;
+    char *filename;
+    pflash_t *fl;
+    MemoryRegion *system_memory = get_system_memory();
+    MemoryRegion *ram_high = g_new(MemoryRegion, 1);
+    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
+    MemoryRegion *ram_low_postio;
+    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
+    target_long bios_size = FLASH_SIZE;
+    const size_t smbus_eeprom_size = 8 * 256;
+    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
+    int64_t kernel_entry, bootloader_run_addr;
+    PCIBus *pci_bus;
+    ISABus *isa_bus;
+    MIPSCPU *cpu;
+    CPUMIPSState *env;
+    qemu_irq *isa_irq;
+    qemu_irq *cpu_exit_irq;
+    int piix4_devfn;
+    I2CBus *smbus;
+    int i;
+    DriveInfo *dinfo;
+    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
+    DriveInfo *fd[MAX_FD];
+    int fl_idx = 0;
+    int fl_sectors = bios_size >> 16;
+    int be;
+
+    DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
+    MaltaState *s = MIPS_MALTA(dev);
+
+    /* The whole address space decoded by the GT-64120A doesn't generate
+       exception when accessing invalid memory. Create an empty slot to
+       emulate this feature. */
+    empty_slot_init(0, 0x20000000);
+
+    qdev_init_nofail(dev);
+
+    /* Make sure the first 3 serial ports are associated with a device. */
+    for(i = 0; i < 3; i++) {
+        if (!serial_hds[i]) {
+            char label[32];
+            snprintf(label, sizeof(label), "serial%d", i);
+            serial_hds[i] = qemu_chr_new(label, "null", NULL);
+        }
+    }
+
+    /* init CPUs */
+    if (cpu_model == NULL) {
+#ifdef TARGET_MIPS64
+        cpu_model = "20Kc";
+#else
+        cpu_model = "24Kf";
+#endif
+    }
+
+    for (i = 0; i < smp_cpus; i++) {
+        cpu = cpu_mips_init(cpu_model);
+        if (cpu == NULL) {
+            fprintf(stderr, "Unable to find CPU definition\n");
+            exit(1);
+        }
+        env = &cpu->env;
+
+        /* Init internal devices */
+        cpu_mips_irq_init_cpu(env);
+        cpu_mips_clock_init(env);
+        qemu_register_reset(main_cpu_reset, cpu);
+    }
+    cpu = MIPS_CPU(first_cpu);
+    env = &cpu->env;
+
+    /* allocate RAM */
+    if (ram_size > (2048u << 20)) {
+        fprintf(stderr,
+                "qemu: Too much memory for this machine: %d MB, maximum 2048 MB\n",
+                ((unsigned int)ram_size / (1 << 20)));
+        exit(1);
+    }
+
+    /* register RAM at high address where it is undisturbed by IO */
+    memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
+                                         ram_size);
+    memory_region_add_subregion(system_memory, 0x80000000, ram_high);
+
+    /* alias for pre IO hole access */
+    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
+                             ram_high, 0, MIN(ram_size, (256 << 20)));
+    memory_region_add_subregion(system_memory, 0, ram_low_preio);
+
+    /* alias for post IO hole access, if there is enough RAM */
+    if (ram_size > (512 << 20)) {
+        ram_low_postio = g_new(MemoryRegion, 1);
+        memory_region_init_alias(ram_low_postio, NULL,
+                                 "mips_malta_low_postio.ram",
+                                 ram_high, 512 << 20,
+                                 ram_size - (512 << 20));
+        memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
+    }
+
+    /* generate SPD EEPROM data */
+    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
+    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
+
+#ifdef TARGET_WORDS_BIGENDIAN
+    be = 1;
+#else
+    be = 0;
+#endif
+    /* FPGA */
+    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
+    malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[4], serial_hds[2]);
+
+    /* Load firmware in flash / BIOS. */
+    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
+#ifdef DEBUG_BOARD_INIT
+    if (dinfo) {
+        printf("Register parallel flash %d size " TARGET_FMT_lx " at "
+               "addr %08llx '%s' %x\n",
+               fl_idx, bios_size, FLASH_ADDRESS,
+               blk_name(dinfo->bdrv), fl_sectors);
+    }
+#endif
+    fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
+                               BIOS_SIZE,
+                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
+                               65536, fl_sectors,
+                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
+    bios = pflash_cfi01_get_memory(fl);
+    fl_idx++;
+    if (kernel_filename) {
+        ram_low_size = MIN(ram_size, 256 << 20);
+        /* For KVM we reserve 1MB of RAM for running bootloader */
+        if (kvm_enabled()) {
+            ram_low_size -= 0x100000;
+            bootloader_run_addr = 0x40000000 + ram_low_size;
+        } else {
+            bootloader_run_addr = 0xbfc00000;
+        }
+
+        /* Write a small bootloader to the flash location. */
+        loaderparams.ram_size = ram_size;
+        loaderparams.ram_low_size = ram_low_size;
+        loaderparams.kernel_filename = kernel_filename;
+        loaderparams.kernel_cmdline = kernel_cmdline;
+        loaderparams.initrd_filename = initrd_filename;
+        kernel_entry = load_kernel();
+
+        write_bootloader(env, memory_region_get_ram_ptr(bios),
+                         bootloader_run_addr, kernel_entry);
+        if (kvm_enabled()) {
+            /* Write the bootloader code @ the end of RAM, 1MB reserved */
+            write_bootloader(env, memory_region_get_ram_ptr(ram_low_preio) +
+                                    ram_low_size,
+                             bootloader_run_addr, kernel_entry);
+        }
+    } else {
+        /* The flash region isn't executable from a KVM guest */
+        if (kvm_enabled()) {
+            error_report("KVM enabled but no -kernel argument was specified. "
+                         "Booting from flash is not supported with KVM.");
+            exit(1);
+        }
+        /* Load firmware from flash. */
+        if (!dinfo) {
+            /* Load a BIOS image. */
+            if (bios_name == NULL) {
+                bios_name = BIOS_FILENAME;
+            }
+            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
+            if (filename) {
+                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
+                                                BIOS_SIZE);
+                g_free(filename);
+            } else {
+                bios_size = -1;
+            }
+            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
+                !kernel_filename && !qtest_enabled()) {
+                error_report("Could not load MIPS bios '%s', and no "
+                             "-kernel argument was specified", bios_name);
+                exit(1);
+            }
+        }
+        /* In little endian mode the 32bit words in the bios are swapped,
+           a neat trick which allows bi-endian firmware. */
+#ifndef TARGET_WORDS_BIGENDIAN
+        {
+            uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
+            if (!addr) {
+                addr = memory_region_get_ram_ptr(bios);
+            }
+            end = (void *)addr + MIN(bios_size, 0x3e0000);
+            while (addr < end) {
+                bswap32s(addr);
+                addr++;
+            }
+        }
+#endif
+    }
+
+    /*
+     * Map the BIOS at a 2nd physical location, as on the real board.
+     * Copy it so that we can patch in the MIPS revision, which cannot be
+     * handled by an overlapping region as the resulting ROM code subpage
+     * regions are not executable.
+     */
+    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
+                           &error_abort);
+    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
+                  FLASH_ADDRESS, BIOS_SIZE)) {
+        memcpy(memory_region_get_ram_ptr(bios_copy),
+               memory_region_get_ram_ptr(bios), BIOS_SIZE);
+    }
+    memory_region_set_readonly(bios_copy, true);
+    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
+
+    /* Board ID = 0x420 (Malta Board with CoreLV) */
+    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
+
+    /* Init internal devices */
+    cpu_mips_irq_init_cpu(env);
+    cpu_mips_clock_init(env);
+
+    /*
+     * We have a circular dependency problem: pci_bus depends on isa_irq,
+     * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
+     * on piix4, and piix4 depends on pci_bus.  To stop the cycle we have
+     * qemu_irq_proxy() adds an extra bit of indirection, allowing us
+     * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
+     */
+    isa_irq = qemu_irq_proxy(&s->i8259, 16);
+
+    /* Northbridge */
+    pci_bus = gt64120_register(isa_irq);
+
+    /* Southbridge */
+    ide_drive_get(hd, ARRAY_SIZE(hd));
+
+    piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
+
+    /* Interrupt controller */
+    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
+    s->i8259 = i8259_init(isa_bus, env->irq[2]);
+
+    isa_bus_irqs(isa_bus, s->i8259);
+    pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
+    pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
+    smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
+                          isa_get_irq(NULL, 9), NULL, 0, NULL);
+    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
+    g_free(smbus_eeprom_buf);
+    pit = pit_init(isa_bus, 0x40, 0, NULL);
+    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
+    DMA_init(0, cpu_exit_irq);
+
+    /* Super I/O */
+    isa_create_simple(isa_bus, "i8042");
+
+    rtc_init(isa_bus, 2000, NULL);
+    serial_hds_isa_init(isa_bus, 2);
+    parallel_hds_isa_init(isa_bus, 1);
+
+    for(i = 0; i < MAX_FD; i++) {
+        fd[i] = drive_get(IF_FLOPPY, 0, i);
+    }
+    fdctrl_init_isa(isa_bus, fd);
+
+    /* Network card */
+    network_init(pci_bus);
+
+    /* Optional PCI video card */
+    pci_vga_init(pci_bus);
+}
+
+static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
+{
+    return 0;
+}
+
+static void mips_malta_class_init(ObjectClass *klass, void *data)
+{
+    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
+
+    k->init = mips_malta_sysbus_device_init;
+}
+
+static const TypeInfo mips_malta_device = {
+    .name          = TYPE_MIPS_MALTA,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(MaltaState),
+    .class_init    = mips_malta_class_init,
+};
+
+static QEMUMachine mips_malta_machine = {
+    .name = "malta",
+    .desc = "MIPS Malta Core LV",
+    .init = mips_malta_init,
+    .max_cpus = 16,
+    .is_default = 1,
+};
+
+static void mips_malta_register_types(void)
+{
+    type_register_static(&mips_malta_device);
+}
+
+static void mips_malta_machine_init(void)
+{
+    qemu_register_machine(&mips_malta_machine);
+}
+
+type_init(mips_malta_register_types)
+machine_init(mips_malta_machine_init);