Add qemu 2.4.0
[kvmfornfv.git] / qemu / hw / arm / boot.c
diff --git a/qemu/hw/arm/boot.c b/qemu/hw/arm/boot.c
new file mode 100644 (file)
index 0000000..5b969cd
--- /dev/null
@@ -0,0 +1,805 @@
+/*
+ * ARM kernel loader.
+ *
+ * Copyright (c) 2006-2007 CodeSourcery.
+ * Written by Paul Brook
+ *
+ * This code is licensed under the GPL.
+ */
+
+#include "config.h"
+#include "hw/hw.h"
+#include "hw/arm/arm.h"
+#include "sysemu/sysemu.h"
+#include "hw/boards.h"
+#include "hw/loader.h"
+#include "elf.h"
+#include "sysemu/device_tree.h"
+#include "qemu/config-file.h"
+#include "exec/address-spaces.h"
+
+/* Kernel boot protocol is specified in the kernel docs
+ * Documentation/arm/Booting and Documentation/arm64/booting.txt
+ * They have different preferred image load offsets from system RAM base.
+ */
+#define KERNEL_ARGS_ADDR 0x100
+#define KERNEL_LOAD_ADDR 0x00010000
+#define KERNEL64_LOAD_ADDR 0x00080000
+
+typedef enum {
+    FIXUP_NONE = 0,   /* do nothing */
+    FIXUP_TERMINATOR, /* end of insns */
+    FIXUP_BOARDID,    /* overwrite with board ID number */
+    FIXUP_ARGPTR,     /* overwrite with pointer to kernel args */
+    FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
+    FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
+    FIXUP_BOOTREG,    /* overwrite with boot register address */
+    FIXUP_DSB,        /* overwrite with correct DSB insn for cpu */
+    FIXUP_MAX,
+} FixupType;
+
+typedef struct ARMInsnFixup {
+    uint32_t insn;
+    FixupType fixup;
+} ARMInsnFixup;
+
+static const ARMInsnFixup bootloader_aarch64[] = {
+    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
+    { 0xaa1f03e1 }, /* mov x1, xzr */
+    { 0xaa1f03e2 }, /* mov x2, xzr */
+    { 0xaa1f03e3 }, /* mov x3, xzr */
+    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
+    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
+    { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
+    { 0 }, /* .word @DTB Higher 32-bits */
+    { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
+    { 0 }, /* .word @Kernel Entry Higher 32-bits */
+    { 0, FIXUP_TERMINATOR }
+};
+
+/* The worlds second smallest bootloader.  Set r0-r2, then jump to kernel.  */
+static const ARMInsnFixup bootloader[] = {
+    { 0xe3a00000 }, /* mov     r0, #0 */
+    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
+    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
+    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
+    { 0, FIXUP_BOARDID },
+    { 0, FIXUP_ARGPTR },
+    { 0, FIXUP_ENTRYPOINT },
+    { 0, FIXUP_TERMINATOR }
+};
+
+/* Handling for secondary CPU boot in a multicore system.
+ * Unlike the uniprocessor/primary CPU boot, this is platform
+ * dependent. The default code here is based on the secondary
+ * CPU boot protocol used on realview/vexpress boards, with
+ * some parameterisation to increase its flexibility.
+ * QEMU platform models for which this code is not appropriate
+ * should override write_secondary_boot and secondary_cpu_reset_hook
+ * instead.
+ *
+ * This code enables the interrupt controllers for the secondary
+ * CPUs and then puts all the secondary CPUs into a loop waiting
+ * for an interprocessor interrupt and polling a configurable
+ * location for the kernel secondary CPU entry point.
+ */
+#define DSB_INSN 0xf57ff04f
+#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
+
+static const ARMInsnFixup smpboot[] = {
+    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
+    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
+    { 0xe3a01001 }, /* mov r1, #1 */
+    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
+    { 0xe3a010ff }, /* mov r1, #0xff */
+    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
+    { 0, FIXUP_DSB },   /* dsb */
+    { 0xe320f003 }, /* wfi */
+    { 0xe5901000 }, /* ldr     r1, [r0] */
+    { 0xe1110001 }, /* tst     r1, r1 */
+    { 0x0afffffb }, /* beq     <wfi> */
+    { 0xe12fff11 }, /* bx      r1 */
+    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
+    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
+    { 0, FIXUP_TERMINATOR }
+};
+
+static void write_bootloader(const char *name, hwaddr addr,
+                             const ARMInsnFixup *insns, uint32_t *fixupcontext)
+{
+    /* Fix up the specified bootloader fragment and write it into
+     * guest memory using rom_add_blob_fixed(). fixupcontext is
+     * an array giving the values to write in for the fixup types
+     * which write a value into the code array.
+     */
+    int i, len;
+    uint32_t *code;
+
+    len = 0;
+    while (insns[len].fixup != FIXUP_TERMINATOR) {
+        len++;
+    }
+
+    code = g_new0(uint32_t, len);
+
+    for (i = 0; i < len; i++) {
+        uint32_t insn = insns[i].insn;
+        FixupType fixup = insns[i].fixup;
+
+        switch (fixup) {
+        case FIXUP_NONE:
+            break;
+        case FIXUP_BOARDID:
+        case FIXUP_ARGPTR:
+        case FIXUP_ENTRYPOINT:
+        case FIXUP_GIC_CPU_IF:
+        case FIXUP_BOOTREG:
+        case FIXUP_DSB:
+            insn = fixupcontext[fixup];
+            break;
+        default:
+            abort();
+        }
+        code[i] = tswap32(insn);
+    }
+
+    rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
+
+    g_free(code);
+}
+
+static void default_write_secondary(ARMCPU *cpu,
+                                    const struct arm_boot_info *info)
+{
+    uint32_t fixupcontext[FIXUP_MAX];
+
+    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
+    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
+    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
+        fixupcontext[FIXUP_DSB] = DSB_INSN;
+    } else {
+        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
+    }
+
+    write_bootloader("smpboot", info->smp_loader_start,
+                     smpboot, fixupcontext);
+}
+
+static void default_reset_secondary(ARMCPU *cpu,
+                                    const struct arm_boot_info *info)
+{
+    CPUState *cs = CPU(cpu);
+
+    address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
+                               0, MEMTXATTRS_UNSPECIFIED, NULL);
+    cpu_set_pc(cs, info->smp_loader_start);
+}
+
+static inline bool have_dtb(const struct arm_boot_info *info)
+{
+    return info->dtb_filename || info->get_dtb;
+}
+
+#define WRITE_WORD(p, value) do { \
+    address_space_stl_notdirty(&address_space_memory, p, value, \
+                               MEMTXATTRS_UNSPECIFIED, NULL);  \
+    p += 4;                       \
+} while (0)
+
+static void set_kernel_args(const struct arm_boot_info *info)
+{
+    int initrd_size = info->initrd_size;
+    hwaddr base = info->loader_start;
+    hwaddr p;
+
+    p = base + KERNEL_ARGS_ADDR;
+    /* ATAG_CORE */
+    WRITE_WORD(p, 5);
+    WRITE_WORD(p, 0x54410001);
+    WRITE_WORD(p, 1);
+    WRITE_WORD(p, 0x1000);
+    WRITE_WORD(p, 0);
+    /* ATAG_MEM */
+    /* TODO: handle multiple chips on one ATAG list */
+    WRITE_WORD(p, 4);
+    WRITE_WORD(p, 0x54410002);
+    WRITE_WORD(p, info->ram_size);
+    WRITE_WORD(p, info->loader_start);
+    if (initrd_size) {
+        /* ATAG_INITRD2 */
+        WRITE_WORD(p, 4);
+        WRITE_WORD(p, 0x54420005);
+        WRITE_WORD(p, info->initrd_start);
+        WRITE_WORD(p, initrd_size);
+    }
+    if (info->kernel_cmdline && *info->kernel_cmdline) {
+        /* ATAG_CMDLINE */
+        int cmdline_size;
+
+        cmdline_size = strlen(info->kernel_cmdline);
+        cpu_physical_memory_write(p + 8, info->kernel_cmdline,
+                                  cmdline_size + 1);
+        cmdline_size = (cmdline_size >> 2) + 1;
+        WRITE_WORD(p, cmdline_size + 2);
+        WRITE_WORD(p, 0x54410009);
+        p += cmdline_size * 4;
+    }
+    if (info->atag_board) {
+        /* ATAG_BOARD */
+        int atag_board_len;
+        uint8_t atag_board_buf[0x1000];
+
+        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
+        WRITE_WORD(p, (atag_board_len + 8) >> 2);
+        WRITE_WORD(p, 0x414f4d50);
+        cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
+        p += atag_board_len;
+    }
+    /* ATAG_END */
+    WRITE_WORD(p, 0);
+    WRITE_WORD(p, 0);
+}
+
+static void set_kernel_args_old(const struct arm_boot_info *info)
+{
+    hwaddr p;
+    const char *s;
+    int initrd_size = info->initrd_size;
+    hwaddr base = info->loader_start;
+
+    /* see linux/include/asm-arm/setup.h */
+    p = base + KERNEL_ARGS_ADDR;
+    /* page_size */
+    WRITE_WORD(p, 4096);
+    /* nr_pages */
+    WRITE_WORD(p, info->ram_size / 4096);
+    /* ramdisk_size */
+    WRITE_WORD(p, 0);
+#define FLAG_READONLY  1
+#define FLAG_RDLOAD    4
+#define FLAG_RDPROMPT  8
+    /* flags */
+    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
+    /* rootdev */
+    WRITE_WORD(p, (31 << 8) | 0);      /* /dev/mtdblock0 */
+    /* video_num_cols */
+    WRITE_WORD(p, 0);
+    /* video_num_rows */
+    WRITE_WORD(p, 0);
+    /* video_x */
+    WRITE_WORD(p, 0);
+    /* video_y */
+    WRITE_WORD(p, 0);
+    /* memc_control_reg */
+    WRITE_WORD(p, 0);
+    /* unsigned char sounddefault */
+    /* unsigned char adfsdrives */
+    /* unsigned char bytes_per_char_h */
+    /* unsigned char bytes_per_char_v */
+    WRITE_WORD(p, 0);
+    /* pages_in_bank[4] */
+    WRITE_WORD(p, 0);
+    WRITE_WORD(p, 0);
+    WRITE_WORD(p, 0);
+    WRITE_WORD(p, 0);
+    /* pages_in_vram */
+    WRITE_WORD(p, 0);
+    /* initrd_start */
+    if (initrd_size) {
+        WRITE_WORD(p, info->initrd_start);
+    } else {
+        WRITE_WORD(p, 0);
+    }
+    /* initrd_size */
+    WRITE_WORD(p, initrd_size);
+    /* rd_start */
+    WRITE_WORD(p, 0);
+    /* system_rev */
+    WRITE_WORD(p, 0);
+    /* system_serial_low */
+    WRITE_WORD(p, 0);
+    /* system_serial_high */
+    WRITE_WORD(p, 0);
+    /* mem_fclk_21285 */
+    WRITE_WORD(p, 0);
+    /* zero unused fields */
+    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
+        WRITE_WORD(p, 0);
+    }
+    s = info->kernel_cmdline;
+    if (s) {
+        cpu_physical_memory_write(p, s, strlen(s) + 1);
+    } else {
+        WRITE_WORD(p, 0);
+    }
+}
+
+/**
+ * load_dtb() - load a device tree binary image into memory
+ * @addr:       the address to load the image at
+ * @binfo:      struct describing the boot environment
+ * @addr_limit: upper limit of the available memory area at @addr
+ *
+ * Load a device tree supplied by the machine or by the user  with the
+ * '-dtb' command line option, and put it at offset @addr in target
+ * memory.
+ *
+ * If @addr_limit contains a meaningful value (i.e., it is strictly greater
+ * than @addr), the device tree is only loaded if its size does not exceed
+ * the limit.
+ *
+ * Returns: the size of the device tree image on success,
+ *          0 if the image size exceeds the limit,
+ *          -1 on errors.
+ *
+ * Note: Must not be called unless have_dtb(binfo) is true.
+ */
+static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
+                    hwaddr addr_limit)
+{
+    void *fdt = NULL;
+    int size, rc;
+    uint32_t acells, scells;
+
+    if (binfo->dtb_filename) {
+        char *filename;
+        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
+        if (!filename) {
+            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
+            goto fail;
+        }
+
+        fdt = load_device_tree(filename, &size);
+        if (!fdt) {
+            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
+            g_free(filename);
+            goto fail;
+        }
+        g_free(filename);
+    } else {
+        fdt = binfo->get_dtb(binfo, &size);
+        if (!fdt) {
+            fprintf(stderr, "Board was unable to create a dtb blob\n");
+            goto fail;
+        }
+    }
+
+    if (addr_limit > addr && size > (addr_limit - addr)) {
+        /* Installing the device tree blob at addr would exceed addr_limit.
+         * Whether this constitutes failure is up to the caller to decide,
+         * so just return 0 as size, i.e., no error.
+         */
+        g_free(fdt);
+        return 0;
+    }
+
+    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
+    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
+    if (acells == 0 || scells == 0) {
+        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
+        goto fail;
+    }
+
+    if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
+        /* This is user error so deserves a friendlier error message
+         * than the failure of setprop_sized_cells would provide
+         */
+        fprintf(stderr, "qemu: dtb file not compatible with "
+                "RAM size > 4GB\n");
+        goto fail;
+    }
+
+    rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
+                                      acells, binfo->loader_start,
+                                      scells, binfo->ram_size);
+    if (rc < 0) {
+        fprintf(stderr, "couldn't set /memory/reg\n");
+        goto fail;
+    }
+
+    if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
+        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
+                                     binfo->kernel_cmdline);
+        if (rc < 0) {
+            fprintf(stderr, "couldn't set /chosen/bootargs\n");
+            goto fail;
+        }
+    }
+
+    if (binfo->initrd_size) {
+        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
+                                   binfo->initrd_start);
+        if (rc < 0) {
+            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
+            goto fail;
+        }
+
+        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
+                                   binfo->initrd_start + binfo->initrd_size);
+        if (rc < 0) {
+            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
+            goto fail;
+        }
+    }
+
+    if (binfo->modify_dtb) {
+        binfo->modify_dtb(binfo, fdt);
+    }
+
+    qemu_fdt_dumpdtb(fdt, size);
+
+    /* Put the DTB into the memory map as a ROM image: this will ensure
+     * the DTB is copied again upon reset, even if addr points into RAM.
+     */
+    rom_add_blob_fixed("dtb", fdt, size, addr);
+
+    g_free(fdt);
+
+    return size;
+
+fail:
+    g_free(fdt);
+    return -1;
+}
+
+static void do_cpu_reset(void *opaque)
+{
+    ARMCPU *cpu = opaque;
+    CPUState *cs = CPU(cpu);
+    CPUARMState *env = &cpu->env;
+    const struct arm_boot_info *info = env->boot_info;
+
+    cpu_reset(cs);
+    if (info) {
+        if (!info->is_linux) {
+            /* Jump to the entry point.  */
+            uint64_t entry = info->entry;
+
+            if (!env->aarch64) {
+                env->thumb = info->entry & 1;
+                entry &= 0xfffffffe;
+            }
+            cpu_set_pc(cs, entry);
+        } else {
+            /* If we are booting Linux then we need to check whether we are
+             * booting into secure or non-secure state and adjust the state
+             * accordingly.  Out of reset, ARM is defined to be in secure state
+             * (SCR.NS = 0), we change that here if non-secure boot has been
+             * requested.
+             */
+            if (arm_feature(env, ARM_FEATURE_EL3)) {
+                /* AArch64 is defined to come out of reset into EL3 if enabled.
+                 * If we are booting Linux then we need to adjust our EL as
+                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
+                 * SVC, which Linux expects, so no privilege/exception level to
+                 * adjust.
+                 */
+                if (env->aarch64) {
+                    if (arm_feature(env, ARM_FEATURE_EL2)) {
+                        env->pstate = PSTATE_MODE_EL2h;
+                    } else {
+                        env->pstate = PSTATE_MODE_EL1h;
+                    }
+                }
+
+                /* Set to non-secure if not a secure boot */
+                if (!info->secure_boot) {
+                    /* Linux expects non-secure state */
+                    env->cp15.scr_el3 |= SCR_NS;
+                }
+            }
+
+            if (cs == first_cpu) {
+                cpu_set_pc(cs, info->loader_start);
+
+                if (!have_dtb(info)) {
+                    if (old_param) {
+                        set_kernel_args_old(info);
+                    } else {
+                        set_kernel_args(info);
+                    }
+                }
+            } else {
+                info->secondary_cpu_reset_hook(cpu, info);
+            }
+        }
+    }
+}
+
+/**
+ * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
+ *                          by key.
+ * @fw_cfg:         The firmware config instance to store the data in.
+ * @size_key:       The firmware config key to store the size of the loaded
+ *                  data under, with fw_cfg_add_i32().
+ * @data_key:       The firmware config key to store the loaded data under,
+ *                  with fw_cfg_add_bytes().
+ * @image_name:     The name of the image file to load. If it is NULL, the
+ *                  function returns without doing anything.
+ * @try_decompress: Whether the image should be decompressed (gunzipped) before
+ *                  adding it to fw_cfg. If decompression fails, the image is
+ *                  loaded as-is.
+ *
+ * In case of failure, the function prints an error message to stderr and the
+ * process exits with status 1.
+ */
+static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
+                                 uint16_t data_key, const char *image_name,
+                                 bool try_decompress)
+{
+    size_t size = -1;
+    uint8_t *data;
+
+    if (image_name == NULL) {
+        return;
+    }
+
+    if (try_decompress) {
+        size = load_image_gzipped_buffer(image_name,
+                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
+    }
+
+    if (size == (size_t)-1) {
+        gchar *contents;
+        gsize length;
+
+        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
+            fprintf(stderr, "failed to load \"%s\"\n", image_name);
+            exit(1);
+        }
+        size = length;
+        data = (uint8_t *)contents;
+    }
+
+    fw_cfg_add_i32(fw_cfg, size_key, size);
+    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
+}
+
+static void arm_load_kernel_notify(Notifier *notifier, void *data)
+{
+    CPUState *cs;
+    int kernel_size;
+    int initrd_size;
+    int is_linux = 0;
+    uint64_t elf_entry, elf_low_addr, elf_high_addr;
+    int elf_machine;
+    hwaddr entry, kernel_load_offset;
+    int big_endian;
+    static const ARMInsnFixup *primary_loader;
+    ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
+                                         notifier, notifier);
+    ARMCPU *cpu = n->cpu;
+    struct arm_boot_info *info =
+        container_of(n, struct arm_boot_info, load_kernel_notifier);
+
+    /* Load the kernel.  */
+    if (!info->kernel_filename || info->firmware_loaded) {
+
+        if (have_dtb(info)) {
+            /* If we have a device tree blob, but no kernel to supply it to (or
+             * the kernel is supposed to be loaded by the bootloader), copy the
+             * DTB to the base of RAM for the bootloader to pick up.
+             */
+            if (load_dtb(info->loader_start, info, 0) < 0) {
+                exit(1);
+            }
+        }
+
+        if (info->kernel_filename) {
+            FWCfgState *fw_cfg;
+            bool try_decompressing_kernel;
+
+            fw_cfg = fw_cfg_find();
+            try_decompressing_kernel = arm_feature(&cpu->env,
+                                                   ARM_FEATURE_AARCH64);
+
+            /* Expose the kernel, the command line, and the initrd in fw_cfg.
+             * We don't process them here at all, it's all left to the
+             * firmware.
+             */
+            load_image_to_fw_cfg(fw_cfg,
+                                 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
+                                 info->kernel_filename,
+                                 try_decompressing_kernel);
+            load_image_to_fw_cfg(fw_cfg,
+                                 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
+                                 info->initrd_filename, false);
+
+            if (info->kernel_cmdline) {
+                fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
+                               strlen(info->kernel_cmdline) + 1);
+                fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
+                                  info->kernel_cmdline);
+            }
+        }
+
+        /* We will start from address 0 (typically a boot ROM image) in the
+         * same way as hardware.
+         */
+        return;
+    }
+
+    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        primary_loader = bootloader_aarch64;
+        kernel_load_offset = KERNEL64_LOAD_ADDR;
+        elf_machine = EM_AARCH64;
+    } else {
+        primary_loader = bootloader;
+        kernel_load_offset = KERNEL_LOAD_ADDR;
+        elf_machine = EM_ARM;
+    }
+
+    info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
+
+    if (!info->secondary_cpu_reset_hook) {
+        info->secondary_cpu_reset_hook = default_reset_secondary;
+    }
+    if (!info->write_secondary_boot) {
+        info->write_secondary_boot = default_write_secondary;
+    }
+
+    if (info->nb_cpus == 0)
+        info->nb_cpus = 1;
+
+#ifdef TARGET_WORDS_BIGENDIAN
+    big_endian = 1;
+#else
+    big_endian = 0;
+#endif
+
+    /* We want to put the initrd far enough into RAM that when the
+     * kernel is uncompressed it will not clobber the initrd. However
+     * on boards without much RAM we must ensure that we still leave
+     * enough room for a decent sized initrd, and on boards with large
+     * amounts of RAM we must avoid the initrd being so far up in RAM
+     * that it is outside lowmem and inaccessible to the kernel.
+     * So for boards with less  than 256MB of RAM we put the initrd
+     * halfway into RAM, and for boards with 256MB of RAM or more we put
+     * the initrd at 128MB.
+     */
+    info->initrd_start = info->loader_start +
+        MIN(info->ram_size / 2, 128 * 1024 * 1024);
+
+    /* Assume that raw images are linux kernels, and ELF images are not.  */
+    kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
+                           &elf_low_addr, &elf_high_addr, big_endian,
+                           elf_machine, 1);
+    if (kernel_size > 0 && have_dtb(info)) {
+        /* If there is still some room left at the base of RAM, try and put
+         * the DTB there like we do for images loaded with -bios or -pflash.
+         */
+        if (elf_low_addr > info->loader_start
+            || elf_high_addr < info->loader_start) {
+            /* Pass elf_low_addr as address limit to load_dtb if it may be
+             * pointing into RAM, otherwise pass '0' (no limit)
+             */
+            if (elf_low_addr < info->loader_start) {
+                elf_low_addr = 0;
+            }
+            if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
+                exit(1);
+            }
+        }
+    }
+    entry = elf_entry;
+    if (kernel_size < 0) {
+        kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
+                                  &is_linux, NULL, NULL);
+    }
+    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
+    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
+        entry = info->loader_start + kernel_load_offset;
+        kernel_size = load_image_gzipped(info->kernel_filename, entry,
+                                         info->ram_size - kernel_load_offset);
+        is_linux = 1;
+    }
+    if (kernel_size < 0) {
+        entry = info->loader_start + kernel_load_offset;
+        kernel_size = load_image_targphys(info->kernel_filename, entry,
+                                          info->ram_size - kernel_load_offset);
+        is_linux = 1;
+    }
+    if (kernel_size < 0) {
+        fprintf(stderr, "qemu: could not load kernel '%s'\n",
+                info->kernel_filename);
+        exit(1);
+    }
+    info->entry = entry;
+    if (is_linux) {
+        uint32_t fixupcontext[FIXUP_MAX];
+
+        if (info->initrd_filename) {
+            initrd_size = load_ramdisk(info->initrd_filename,
+                                       info->initrd_start,
+                                       info->ram_size -
+                                       info->initrd_start);
+            if (initrd_size < 0) {
+                initrd_size = load_image_targphys(info->initrd_filename,
+                                                  info->initrd_start,
+                                                  info->ram_size -
+                                                  info->initrd_start);
+            }
+            if (initrd_size < 0) {
+                fprintf(stderr, "qemu: could not load initrd '%s'\n",
+                        info->initrd_filename);
+                exit(1);
+            }
+        } else {
+            initrd_size = 0;
+        }
+        info->initrd_size = initrd_size;
+
+        fixupcontext[FIXUP_BOARDID] = info->board_id;
+
+        /* for device tree boot, we pass the DTB directly in r2. Otherwise
+         * we point to the kernel args.
+         */
+        if (have_dtb(info)) {
+            hwaddr align;
+            hwaddr dtb_start;
+
+            if (elf_machine == EM_AARCH64) {
+                /*
+                 * Some AArch64 kernels on early bootup map the fdt region as
+                 *
+                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
+                 *
+                 * Let's play safe and prealign it to 2MB to give us some space.
+                 */
+                align = 2 * 1024 * 1024;
+            } else {
+                /*
+                 * Some 32bit kernels will trash anything in the 4K page the
+                 * initrd ends in, so make sure the DTB isn't caught up in that.
+                 */
+                align = 4096;
+            }
+
+            /* Place the DTB after the initrd in memory with alignment. */
+            dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
+            if (load_dtb(dtb_start, info, 0) < 0) {
+                exit(1);
+            }
+            fixupcontext[FIXUP_ARGPTR] = dtb_start;
+        } else {
+            fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
+            if (info->ram_size >= (1ULL << 32)) {
+                fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
+                        " Linux kernel using ATAGS (try passing a device tree"
+                        " using -dtb)\n");
+                exit(1);
+            }
+        }
+        fixupcontext[FIXUP_ENTRYPOINT] = entry;
+
+        write_bootloader("bootloader", info->loader_start,
+                         primary_loader, fixupcontext);
+
+        if (info->nb_cpus > 1) {
+            info->write_secondary_boot(cpu, info);
+        }
+    }
+    info->is_linux = is_linux;
+
+    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+        ARM_CPU(cs)->env.boot_info = info;
+    }
+}
+
+void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
+{
+    CPUState *cs;
+
+    info->load_kernel_notifier.cpu = cpu;
+    info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
+    qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
+
+    /* CPU objects (unlike devices) are not automatically reset on system
+     * reset, so we must always register a handler to do so. If we're
+     * actually loading a kernel, the handler is also responsible for
+     * arranging that we start it correctly.
+     */
+    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
+    }
+}