Add qemu 2.4.0
[kvmfornfv.git] / qemu / cputlb.c
diff --git a/qemu/cputlb.c b/qemu/cputlb.c
new file mode 100644 (file)
index 0000000..a506086
--- /dev/null
@@ -0,0 +1,411 @@
+/*
+ *  Common CPU TLB handling
+ *
+ *  Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "config.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+#include "exec/cpu_ldst.h"
+
+#include "exec/cputlb.h"
+
+#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
+#include "tcg/tcg.h"
+
+//#define DEBUG_TLB
+//#define DEBUG_TLB_CHECK
+
+/* statistics */
+int tlb_flush_count;
+
+/* NOTE:
+ * If flush_global is true (the usual case), flush all tlb entries.
+ * If flush_global is false, flush (at least) all tlb entries not
+ * marked global.
+ *
+ * Since QEMU doesn't currently implement a global/not-global flag
+ * for tlb entries, at the moment tlb_flush() will also flush all
+ * tlb entries in the flush_global == false case. This is OK because
+ * CPU architectures generally permit an implementation to drop
+ * entries from the TLB at any time, so flushing more entries than
+ * required is only an efficiency issue, not a correctness issue.
+ */
+void tlb_flush(CPUState *cpu, int flush_global)
+{
+    CPUArchState *env = cpu->env_ptr;
+
+#if defined(DEBUG_TLB)
+    printf("tlb_flush:\n");
+#endif
+    /* must reset current TB so that interrupts cannot modify the
+       links while we are modifying them */
+    cpu->current_tb = NULL;
+
+    memset(env->tlb_table, -1, sizeof(env->tlb_table));
+    memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
+    memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
+
+    env->vtlb_index = 0;
+    env->tlb_flush_addr = -1;
+    env->tlb_flush_mask = 0;
+    tlb_flush_count++;
+}
+
+static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+    if (addr == (tlb_entry->addr_read &
+                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+        addr == (tlb_entry->addr_write &
+                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+        addr == (tlb_entry->addr_code &
+                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+        memset(tlb_entry, -1, sizeof(*tlb_entry));
+    }
+}
+
+void tlb_flush_page(CPUState *cpu, target_ulong addr)
+{
+    CPUArchState *env = cpu->env_ptr;
+    int i;
+    int mmu_idx;
+
+#if defined(DEBUG_TLB)
+    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
+#endif
+    /* Check if we need to flush due to large pages.  */
+    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
+#if defined(DEBUG_TLB)
+        printf("tlb_flush_page: forced full flush ("
+               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
+               env->tlb_flush_addr, env->tlb_flush_mask);
+#endif
+        tlb_flush(cpu, 1);
+        return;
+    }
+    /* must reset current TB so that interrupts cannot modify the
+       links while we are modifying them */
+    cpu->current_tb = NULL;
+
+    addr &= TARGET_PAGE_MASK;
+    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
+    }
+
+    /* check whether there are entries that need to be flushed in the vtlb */
+    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+        int k;
+        for (k = 0; k < CPU_VTLB_SIZE; k++) {
+            tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
+        }
+    }
+
+    tb_flush_jmp_cache(cpu, addr);
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+   can be detected */
+void tlb_protect_code(ram_addr_t ram_addr)
+{
+    cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
+                                             DIRTY_MEMORY_CODE);
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+   tested for self modifying code */
+void tlb_unprotect_code(ram_addr_t ram_addr)
+{
+    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
+}
+
+static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
+{
+    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
+}
+
+void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
+                           uintptr_t length)
+{
+    uintptr_t addr;
+
+    if (tlb_is_dirty_ram(tlb_entry)) {
+        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
+        if ((addr - start) < length) {
+            tlb_entry->addr_write |= TLB_NOTDIRTY;
+        }
+    }
+}
+
+static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
+{
+    ram_addr_t ram_addr;
+
+    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
+        fprintf(stderr, "Bad ram pointer %p\n", ptr);
+        abort();
+    }
+    return ram_addr;
+}
+
+void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
+{
+    CPUState *cpu;
+    CPUArchState *env;
+
+    CPU_FOREACH(cpu) {
+        int mmu_idx;
+
+        env = cpu->env_ptr;
+        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+            unsigned int i;
+
+            for (i = 0; i < CPU_TLB_SIZE; i++) {
+                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
+                                      start1, length);
+            }
+
+            for (i = 0; i < CPU_VTLB_SIZE; i++) {
+                tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
+                                      start1, length);
+            }
+        }
+    }
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
+{
+    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
+        tlb_entry->addr_write = vaddr;
+    }
+}
+
+/* update the TLB corresponding to virtual page vaddr
+   so that it is no longer dirty */
+void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
+{
+    int i;
+    int mmu_idx;
+
+    vaddr &= TARGET_PAGE_MASK;
+    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
+    }
+
+    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+        int k;
+        for (k = 0; k < CPU_VTLB_SIZE; k++) {
+            tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
+        }
+    }
+}
+
+/* Our TLB does not support large pages, so remember the area covered by
+   large pages and trigger a full TLB flush if these are invalidated.  */
+static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
+                               target_ulong size)
+{
+    target_ulong mask = ~(size - 1);
+
+    if (env->tlb_flush_addr == (target_ulong)-1) {
+        env->tlb_flush_addr = vaddr & mask;
+        env->tlb_flush_mask = mask;
+        return;
+    }
+    /* Extend the existing region to include the new page.
+       This is a compromise between unnecessary flushes and the cost
+       of maintaining a full variable size TLB.  */
+    mask &= env->tlb_flush_mask;
+    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
+        mask <<= 1;
+    }
+    env->tlb_flush_addr &= mask;
+    env->tlb_flush_mask = mask;
+}
+
+/* Add a new TLB entry. At most one entry for a given virtual address
+ * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
+ * supplied size is only used by tlb_flush_page.
+ *
+ * Called from TCG-generated code, which is under an RCU read-side
+ * critical section.
+ */
+void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
+                             hwaddr paddr, MemTxAttrs attrs, int prot,
+                             int mmu_idx, target_ulong size)
+{
+    CPUArchState *env = cpu->env_ptr;
+    MemoryRegionSection *section;
+    unsigned int index;
+    target_ulong address;
+    target_ulong code_address;
+    uintptr_t addend;
+    CPUTLBEntry *te;
+    hwaddr iotlb, xlat, sz;
+    unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
+
+    assert(size >= TARGET_PAGE_SIZE);
+    if (size != TARGET_PAGE_SIZE) {
+        tlb_add_large_page(env, vaddr, size);
+    }
+
+    sz = size;
+    section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
+    assert(sz >= TARGET_PAGE_SIZE);
+
+#if defined(DEBUG_TLB)
+    qemu_log_mask(CPU_LOG_MMU,
+           "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
+           " prot=%x idx=%d\n",
+           vaddr, paddr, prot, mmu_idx);
+#endif
+
+    address = vaddr;
+    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
+        /* IO memory case */
+        address |= TLB_MMIO;
+        addend = 0;
+    } else {
+        /* TLB_MMIO for rom/romd handled below */
+        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
+    }
+
+    code_address = address;
+    iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
+                                            prot, &address);
+
+    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    te = &env->tlb_table[mmu_idx][index];
+
+    /* do not discard the translation in te, evict it into a victim tlb */
+    env->tlb_v_table[mmu_idx][vidx] = *te;
+    env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
+
+    /* refill the tlb */
+    env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
+    env->iotlb[mmu_idx][index].attrs = attrs;
+    te->addend = addend - vaddr;
+    if (prot & PAGE_READ) {
+        te->addr_read = address;
+    } else {
+        te->addr_read = -1;
+    }
+
+    if (prot & PAGE_EXEC) {
+        te->addr_code = code_address;
+    } else {
+        te->addr_code = -1;
+    }
+    if (prot & PAGE_WRITE) {
+        if ((memory_region_is_ram(section->mr) && section->readonly)
+            || memory_region_is_romd(section->mr)) {
+            /* Write access calls the I/O callback.  */
+            te->addr_write = address | TLB_MMIO;
+        } else if (memory_region_is_ram(section->mr)
+                   && cpu_physical_memory_is_clean(section->mr->ram_addr
+                                                   + xlat)) {
+            te->addr_write = address | TLB_NOTDIRTY;
+        } else {
+            te->addr_write = address;
+        }
+    } else {
+        te->addr_write = -1;
+    }
+}
+
+/* Add a new TLB entry, but without specifying the memory
+ * transaction attributes to be used.
+ */
+void tlb_set_page(CPUState *cpu, target_ulong vaddr,
+                  hwaddr paddr, int prot,
+                  int mmu_idx, target_ulong size)
+{
+    tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
+                            prot, mmu_idx, size);
+}
+
+/* NOTE: this function can trigger an exception */
+/* NOTE2: the returned address is not exactly the physical address: it
+ * is actually a ram_addr_t (in system mode; the user mode emulation
+ * version of this function returns a guest virtual address).
+ */
+tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
+{
+    int mmu_idx, page_index, pd;
+    void *p;
+    MemoryRegion *mr;
+    CPUState *cpu = ENV_GET_CPU(env1);
+
+    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    mmu_idx = cpu_mmu_index(env1);
+    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
+                 (addr & TARGET_PAGE_MASK))) {
+        cpu_ldub_code(env1, addr);
+    }
+    pd = env1->iotlb[mmu_idx][page_index].addr & ~TARGET_PAGE_MASK;
+    mr = iotlb_to_region(cpu, pd);
+    if (memory_region_is_unassigned(mr)) {
+        CPUClass *cc = CPU_GET_CLASS(cpu);
+
+        if (cc->do_unassigned_access) {
+            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
+        } else {
+            cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
+                      TARGET_FMT_lx "\n", addr);
+        }
+    }
+    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
+    return qemu_ram_addr_from_host_nofail(p);
+}
+
+#define MMUSUFFIX _mmu
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+#undef MMUSUFFIX
+
+#define MMUSUFFIX _cmmu
+#undef GETPC_ADJ
+#define GETPC_ADJ 0
+#undef GETRA
+#define GETRA() ((uintptr_t)0)
+#define SOFTMMU_CODE_ACCESS
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"