These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / staging / rdma / ipath / ipath_eeprom.c
diff --git a/kernel/drivers/staging/rdma/ipath/ipath_eeprom.c b/kernel/drivers/staging/rdma/ipath/ipath_eeprom.c
new file mode 100644 (file)
index 0000000..ef84107
--- /dev/null
@@ -0,0 +1,1183 @@
+/*
+ * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
+ * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/delay.h>
+#include <linux/pci.h>
+#include <linux/vmalloc.h>
+
+#include "ipath_kernel.h"
+
+/*
+ * InfiniPath I2C driver for a serial eeprom.  This is not a generic
+ * I2C interface.  For a start, the device we're using (Atmel AT24C11)
+ * doesn't work like a regular I2C device.  It looks like one
+ * electrically, but not logically.  Normal I2C devices have a single
+ * 7-bit or 10-bit I2C address that they respond to.  Valid 7-bit
+ * addresses range from 0x03 to 0x77.  Addresses 0x00 to 0x02 and 0x78
+ * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
+ * call" address.)  The Atmel device, on the other hand, responds to ALL
+ * 7-bit addresses.  It's designed to be the only device on a given I2C
+ * bus.  A 7-bit address corresponds to the memory address within the
+ * Atmel device itself.
+ *
+ * Also, the timing requirements mean more than simple software
+ * bitbanging, with readbacks from chip to ensure timing (simple udelay
+ * is not enough).
+ *
+ * This all means that accessing the device is specialized enough
+ * that using the standard kernel I2C bitbanging interface would be
+ * impossible.  For example, the core I2C eeprom driver expects to find
+ * a device at one or more of a limited set of addresses only.  It doesn't
+ * allow writing to an eeprom.  It also doesn't provide any means of
+ * accessing eeprom contents from within the kernel, only via sysfs.
+ */
+
+/* Added functionality for IBA7220-based cards */
+#define IPATH_EEPROM_DEV_V1 0xA0
+#define IPATH_EEPROM_DEV_V2 0xA2
+#define IPATH_TEMP_DEV 0x98
+#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2)
+#define IPATH_NO_DEV (0xFF)
+
+/*
+ * The number of I2C chains is proliferating. Table below brings
+ * some order to the madness. The basic principle is that the
+ * table is scanned from the top, and a "probe" is made to the
+ * device probe_dev. If that succeeds, the chain is considered
+ * to be of that type, and dd->i2c_chain_type is set to the index+1
+ * of the entry.
+ * The +1 is so static initialization can mean "unknown, do probe."
+ */
+static struct i2c_chain_desc {
+       u8 probe_dev;   /* If seen at probe, chain is this type */
+       u8 eeprom_dev;  /* Dev addr (if any) for EEPROM */
+       u8 temp_dev;    /* Dev Addr (if any) for Temp-sense */
+} i2c_chains[] = {
+       { IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */
+       { IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */
+       { IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */
+       { IPATH_NO_DEV }
+};
+
+enum i2c_type {
+       i2c_line_scl = 0,
+       i2c_line_sda
+};
+
+enum i2c_state {
+       i2c_line_low = 0,
+       i2c_line_high
+};
+
+#define READ_CMD 1
+#define WRITE_CMD 0
+
+/**
+ * i2c_gpio_set - set a GPIO line
+ * @dd: the infinipath device
+ * @line: the line to set
+ * @new_line_state: the state to set
+ *
+ * Returns 0 if the line was set to the new state successfully, non-zero
+ * on error.
+ */
+static int i2c_gpio_set(struct ipath_devdata *dd,
+                       enum i2c_type line,
+                       enum i2c_state new_line_state)
+{
+       u64 out_mask, dir_mask, *gpioval;
+       unsigned long flags = 0;
+
+       gpioval = &dd->ipath_gpio_out;
+
+       if (line == i2c_line_scl) {
+               dir_mask = dd->ipath_gpio_scl;
+               out_mask = (1UL << dd->ipath_gpio_scl_num);
+       } else {
+               dir_mask = dd->ipath_gpio_sda;
+               out_mask = (1UL << dd->ipath_gpio_sda_num);
+       }
+
+       spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
+       if (new_line_state == i2c_line_high) {
+               /* tri-state the output rather than force high */
+               dd->ipath_extctrl &= ~dir_mask;
+       } else {
+               /* config line to be an output */
+               dd->ipath_extctrl |= dir_mask;
+       }
+       ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
+
+       /* set output as well (no real verify) */
+       if (new_line_state == i2c_line_high)
+               *gpioval |= out_mask;
+       else
+               *gpioval &= ~out_mask;
+
+       ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
+       spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
+
+       return 0;
+}
+
+/**
+ * i2c_gpio_get - get a GPIO line state
+ * @dd: the infinipath device
+ * @line: the line to get
+ * @curr_statep: where to put the line state
+ *
+ * Returns 0 if the line was set to the new state successfully, non-zero
+ * on error.  curr_state is not set on error.
+ */
+static int i2c_gpio_get(struct ipath_devdata *dd,
+                       enum i2c_type line,
+                       enum i2c_state *curr_statep)
+{
+       u64 read_val, mask;
+       int ret;
+       unsigned long flags = 0;
+
+       /* check args */
+       if (curr_statep == NULL) {
+               ret = 1;
+               goto bail;
+       }
+
+       /* config line to be an input */
+       if (line == i2c_line_scl)
+               mask = dd->ipath_gpio_scl;
+       else
+               mask = dd->ipath_gpio_sda;
+
+       spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
+       dd->ipath_extctrl &= ~mask;
+       ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
+       /*
+        * Below is very unlikely to reflect true input state if Output
+        * Enable actually changed.
+        */
+       read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
+       spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
+
+       if (read_val & mask)
+               *curr_statep = i2c_line_high;
+       else
+               *curr_statep = i2c_line_low;
+
+       ret = 0;
+
+bail:
+       return ret;
+}
+
+/**
+ * i2c_wait_for_writes - wait for a write
+ * @dd: the infinipath device
+ *
+ * We use this instead of udelay directly, so we can make sure
+ * that previous register writes have been flushed all the way
+ * to the chip.  Since we are delaying anyway, the cost doesn't
+ * hurt, and makes the bit twiddling more regular
+ */
+static void i2c_wait_for_writes(struct ipath_devdata *dd)
+{
+       (void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
+       rmb();
+}
+
+static void scl_out(struct ipath_devdata *dd, u8 bit)
+{
+       udelay(1);
+       i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
+
+       i2c_wait_for_writes(dd);
+}
+
+static void sda_out(struct ipath_devdata *dd, u8 bit)
+{
+       i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
+
+       i2c_wait_for_writes(dd);
+}
+
+static u8 sda_in(struct ipath_devdata *dd, int wait)
+{
+       enum i2c_state bit;
+
+       if (i2c_gpio_get(dd, i2c_line_sda, &bit))
+               ipath_dbg("get bit failed!\n");
+
+       if (wait)
+               i2c_wait_for_writes(dd);
+
+       return bit == i2c_line_high ? 1U : 0;
+}
+
+/**
+ * i2c_ackrcv - see if ack following write is true
+ * @dd: the infinipath device
+ */
+static int i2c_ackrcv(struct ipath_devdata *dd)
+{
+       u8 ack_received;
+
+       /* AT ENTRY SCL = LOW */
+       /* change direction, ignore data */
+       ack_received = sda_in(dd, 1);
+       scl_out(dd, i2c_line_high);
+       ack_received = sda_in(dd, 1) == 0;
+       scl_out(dd, i2c_line_low);
+       return ack_received;
+}
+
+/**
+ * rd_byte - read a byte, leaving ACK, STOP, etc up to caller
+ * @dd: the infinipath device
+ *
+ * Returns byte shifted out of device
+ */
+static int rd_byte(struct ipath_devdata *dd)
+{
+       int bit_cntr, data;
+
+       data = 0;
+
+       for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
+               data <<= 1;
+               scl_out(dd, i2c_line_high);
+               data |= sda_in(dd, 0);
+               scl_out(dd, i2c_line_low);
+       }
+       return data;
+}
+
+/**
+ * wr_byte - write a byte, one bit at a time
+ * @dd: the infinipath device
+ * @data: the byte to write
+ *
+ * Returns 0 if we got the following ack, otherwise 1
+ */
+static int wr_byte(struct ipath_devdata *dd, u8 data)
+{
+       int bit_cntr;
+       u8 bit;
+
+       for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
+               bit = (data >> bit_cntr) & 1;
+               sda_out(dd, bit);
+               scl_out(dd, i2c_line_high);
+               scl_out(dd, i2c_line_low);
+       }
+       return (!i2c_ackrcv(dd)) ? 1 : 0;
+}
+
+static void send_ack(struct ipath_devdata *dd)
+{
+       sda_out(dd, i2c_line_low);
+       scl_out(dd, i2c_line_high);
+       scl_out(dd, i2c_line_low);
+       sda_out(dd, i2c_line_high);
+}
+
+/**
+ * i2c_startcmd - transmit the start condition, followed by address/cmd
+ * @dd: the infinipath device
+ * @offset_dir: direction byte
+ *
+ *      (both clock/data high, clock high, data low while clock is high)
+ */
+static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
+{
+       int res;
+
+       /* issue start sequence */
+       sda_out(dd, i2c_line_high);
+       scl_out(dd, i2c_line_high);
+       sda_out(dd, i2c_line_low);
+       scl_out(dd, i2c_line_low);
+
+       /* issue length and direction byte */
+       res = wr_byte(dd, offset_dir);
+
+       if (res)
+               ipath_cdbg(VERBOSE, "No ack to complete start\n");
+
+       return res;
+}
+
+/**
+ * stop_cmd - transmit the stop condition
+ * @dd: the infinipath device
+ *
+ * (both clock/data low, clock high, data high while clock is high)
+ */
+static void stop_cmd(struct ipath_devdata *dd)
+{
+       scl_out(dd, i2c_line_low);
+       sda_out(dd, i2c_line_low);
+       scl_out(dd, i2c_line_high);
+       sda_out(dd, i2c_line_high);
+       udelay(2);
+}
+
+/**
+ * eeprom_reset - reset I2C communication
+ * @dd: the infinipath device
+ */
+
+static int eeprom_reset(struct ipath_devdata *dd)
+{
+       int clock_cycles_left = 9;
+       u64 *gpioval = &dd->ipath_gpio_out;
+       int ret;
+       unsigned long flags;
+
+       spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
+       /* Make sure shadows are consistent */
+       dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
+       *gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
+       spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
+
+       ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
+                  "is %llx\n", (unsigned long long) *gpioval);
+
+       /*
+        * This is to get the i2c into a known state, by first going low,
+        * then tristate sda (and then tristate scl as first thing
+        * in loop)
+        */
+       scl_out(dd, i2c_line_low);
+       sda_out(dd, i2c_line_high);
+
+       /* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */
+       while (clock_cycles_left--) {
+               scl_out(dd, i2c_line_high);
+
+               /* SDA seen high, issue START by dropping it while SCL high */
+               if (sda_in(dd, 0)) {
+                       sda_out(dd, i2c_line_low);
+                       scl_out(dd, i2c_line_low);
+                       /* ATMEL spec says must be followed by STOP. */
+                       scl_out(dd, i2c_line_high);
+                       sda_out(dd, i2c_line_high);
+                       ret = 0;
+                       goto bail;
+               }
+
+               scl_out(dd, i2c_line_low);
+       }
+
+       ret = 1;
+
+bail:
+       return ret;
+}
+
+/*
+ * Probe for I2C device at specified address. Returns 0 for "success"
+ * to match rest of this file.
+ * Leave bus in "reasonable" state for further commands.
+ */
+static int i2c_probe(struct ipath_devdata *dd, int devaddr)
+{
+       int ret;
+
+       ret = eeprom_reset(dd);
+       if (ret) {
+               ipath_dev_err(dd, "Failed reset probing device 0x%02X\n",
+                             devaddr);
+               return ret;
+       }
+       /*
+        * Reset no longer leaves bus in start condition, so normal
+        * i2c_startcmd() will do.
+        */
+       ret = i2c_startcmd(dd, devaddr | READ_CMD);
+       if (ret)
+               ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n",
+                          devaddr);
+       else {
+               /*
+                * Device did respond. Complete a single-byte read, because some
+                * devices apparently cannot handle STOP immediately after they
+                * ACK the start-cmd.
+                */
+               int data;
+               data = rd_byte(dd);
+               stop_cmd(dd);
+               ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr);
+       }
+       return ret;
+}
+
+/*
+ * Returns the "i2c type". This is a pointer to a struct that describes
+ * the I2C chain on this board. To minimize impact on struct ipath_devdata,
+ * the (small integer) index into the table is actually memoized, rather
+ * then the pointer.
+ * Memoization is because the type is determined on the first call per chip.
+ * An alternative would be to move type determination to early
+ * init code.
+ */
+static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd)
+{
+       int idx;
+
+       /* Get memoized index, from previous successful probes */
+       idx = dd->ipath_i2c_chain_type - 1;
+       if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1))
+               goto done;
+
+       idx = 0;
+       while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) {
+               /* if probe succeeds, this is type */
+               if (!i2c_probe(dd, i2c_chains[idx].probe_dev))
+                       break;
+               ++idx;
+       }
+
+       /*
+        * Old EEPROM (first entry) may require a reset after probe,
+        * rather than being able to "start" after "stop"
+        */
+       if (idx == 0)
+               eeprom_reset(dd);
+
+       if (i2c_chains[idx].probe_dev == IPATH_NO_DEV)
+               idx = -1;
+       else
+               dd->ipath_i2c_chain_type = idx + 1;
+done:
+       return (idx >= 0) ? i2c_chains + idx : NULL;
+}
+
+static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
+                                       u8 eeprom_offset, void *buffer, int len)
+{
+       int ret;
+       struct i2c_chain_desc *icd;
+       u8 *bp = buffer;
+
+       ret = 1;
+       icd = ipath_i2c_type(dd);
+       if (!icd)
+               goto bail;
+
+       if (icd->eeprom_dev == IPATH_NO_DEV) {
+               /* legacy not-really-I2C */
+               ipath_cdbg(VERBOSE, "Start command only address\n");
+               eeprom_offset = (eeprom_offset << 1) | READ_CMD;
+               ret = i2c_startcmd(dd, eeprom_offset);
+       } else {
+               /* Actual I2C */
+               ipath_cdbg(VERBOSE, "Start command uses devaddr\n");
+               if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
+                       ipath_dbg("Failed EEPROM startcmd\n");
+                       stop_cmd(dd);
+                       ret = 1;
+                       goto bail;
+               }
+               ret = wr_byte(dd, eeprom_offset);
+               stop_cmd(dd);
+               if (ret) {
+                       ipath_dev_err(dd, "Failed to write EEPROM address\n");
+                       ret = 1;
+                       goto bail;
+               }
+               ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD);
+       }
+       if (ret) {
+               ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev);
+               stop_cmd(dd);
+               ret = 1;
+               goto bail;
+       }
+
+       /*
+        * eeprom keeps clocking data out as long as we ack, automatically
+        * incrementing the address.
+        */
+       while (len-- > 0) {
+               /* get and store data */
+               *bp++ = rd_byte(dd);
+               /* send ack if not the last byte */
+               if (len)
+                       send_ack(dd);
+       }
+
+       stop_cmd(dd);
+
+       ret = 0;
+
+bail:
+       return ret;
+}
+
+static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
+                                      const void *buffer, int len)
+{
+       int sub_len;
+       const u8 *bp = buffer;
+       int max_wait_time, i;
+       int ret;
+       struct i2c_chain_desc *icd;
+
+       ret = 1;
+       icd = ipath_i2c_type(dd);
+       if (!icd)
+               goto bail;
+
+       while (len > 0) {
+               if (icd->eeprom_dev == IPATH_NO_DEV) {
+                       if (i2c_startcmd(dd,
+                                        (eeprom_offset << 1) | WRITE_CMD)) {
+                               ipath_dbg("Failed to start cmd offset %u\n",
+                                       eeprom_offset);
+                               goto failed_write;
+                       }
+               } else {
+                       /* Real I2C */
+                       if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
+                               ipath_dbg("Failed EEPROM startcmd\n");
+                               goto failed_write;
+                       }
+                       ret = wr_byte(dd, eeprom_offset);
+                       if (ret) {
+                               ipath_dev_err(dd, "Failed to write EEPROM "
+                                             "address\n");
+                               goto failed_write;
+                       }
+               }
+
+               sub_len = min(len, 4);
+               eeprom_offset += sub_len;
+               len -= sub_len;
+
+               for (i = 0; i < sub_len; i++) {
+                       if (wr_byte(dd, *bp++)) {
+                               ipath_dbg("no ack after byte %u/%u (%u "
+                                         "total remain)\n", i, sub_len,
+                                         len + sub_len - i);
+                               goto failed_write;
+                       }
+               }
+
+               stop_cmd(dd);
+
+               /*
+                * wait for write complete by waiting for a successful
+                * read (the chip replies with a zero after the write
+                * cmd completes, and before it writes to the eeprom.
+                * The startcmd for the read will fail the ack until
+                * the writes have completed.   We do this inline to avoid
+                * the debug prints that are in the real read routine
+                * if the startcmd fails.
+                * We also use the proper device address, so it doesn't matter
+                * whether we have real eeprom_dev. legacy likes any address.
+                */
+               max_wait_time = 100;
+               while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) {
+                       stop_cmd(dd);
+                       if (!--max_wait_time) {
+                               ipath_dbg("Did not get successful read to "
+                                         "complete write\n");
+                               goto failed_write;
+                       }
+               }
+               /* now read (and ignore) the resulting byte */
+               rd_byte(dd);
+               stop_cmd(dd);
+       }
+
+       ret = 0;
+       goto bail;
+
+failed_write:
+       stop_cmd(dd);
+       ret = 1;
+
+bail:
+       return ret;
+}
+
+/**
+ * ipath_eeprom_read - receives bytes from the eeprom via I2C
+ * @dd: the infinipath device
+ * @eeprom_offset: address to read from
+ * @buffer: where to store result
+ * @len: number of bytes to receive
+ */
+int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
+                       void *buff, int len)
+{
+       int ret;
+
+       ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
+       if (!ret) {
+               ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
+               mutex_unlock(&dd->ipath_eep_lock);
+       }
+
+       return ret;
+}
+
+/**
+ * ipath_eeprom_write - writes data to the eeprom via I2C
+ * @dd: the infinipath device
+ * @eeprom_offset: where to place data
+ * @buffer: data to write
+ * @len: number of bytes to write
+ */
+int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
+                       const void *buff, int len)
+{
+       int ret;
+
+       ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
+       if (!ret) {
+               ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
+               mutex_unlock(&dd->ipath_eep_lock);
+       }
+
+       return ret;
+}
+
+static u8 flash_csum(struct ipath_flash *ifp, int adjust)
+{
+       u8 *ip = (u8 *) ifp;
+       u8 csum = 0, len;
+
+       /*
+        * Limit length checksummed to max length of actual data.
+        * Checksum of erased eeprom will still be bad, but we avoid
+        * reading past the end of the buffer we were passed.
+        */
+       len = ifp->if_length;
+       if (len > sizeof(struct ipath_flash))
+               len = sizeof(struct ipath_flash);
+       while (len--)
+               csum += *ip++;
+       csum -= ifp->if_csum;
+       csum = ~csum;
+       if (adjust)
+               ifp->if_csum = csum;
+
+       return csum;
+}
+
+/**
+ * ipath_get_guid - get the GUID from the i2c device
+ * @dd: the infinipath device
+ *
+ * We have the capability to use the ipath_nguid field, and get
+ * the guid from the first chip's flash, to use for all of them.
+ */
+void ipath_get_eeprom_info(struct ipath_devdata *dd)
+{
+       void *buf;
+       struct ipath_flash *ifp;
+       __be64 guid;
+       int len, eep_stat;
+       u8 csum, *bguid;
+       int t = dd->ipath_unit;
+       struct ipath_devdata *dd0 = ipath_lookup(0);
+
+       if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
+               u8 oguid;
+               dd->ipath_guid = dd0->ipath_guid;
+               bguid = (u8 *) & dd->ipath_guid;
+
+               oguid = bguid[7];
+               bguid[7] += t;
+               if (oguid > bguid[7]) {
+                       if (bguid[6] == 0xff) {
+                               if (bguid[5] == 0xff) {
+                                       ipath_dev_err(
+                                               dd,
+                                               "Can't set %s GUID from "
+                                               "base, wraps to OUI!\n",
+                                               ipath_get_unit_name(t));
+                                       dd->ipath_guid = 0;
+                                       goto bail;
+                               }
+                               bguid[5]++;
+                       }
+                       bguid[6]++;
+               }
+               dd->ipath_nguid = 1;
+
+               ipath_dbg("nguid %u, so adding %u to device 0 guid, "
+                         "for %llx\n",
+                         dd0->ipath_nguid, t,
+                         (unsigned long long) be64_to_cpu(dd->ipath_guid));
+               goto bail;
+       }
+
+       /*
+        * read full flash, not just currently used part, since it may have
+        * been written with a newer definition
+        * */
+       len = sizeof(struct ipath_flash);
+       buf = vmalloc(len);
+       if (!buf) {
+               ipath_dev_err(dd, "Couldn't allocate memory to read %u "
+                             "bytes from eeprom for GUID\n", len);
+               goto bail;
+       }
+
+       mutex_lock(&dd->ipath_eep_lock);
+       eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
+       mutex_unlock(&dd->ipath_eep_lock);
+
+       if (eep_stat) {
+               ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
+               goto done;
+       }
+       ifp = (struct ipath_flash *)buf;
+
+       csum = flash_csum(ifp, 0);
+       if (csum != ifp->if_csum) {
+               dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
+                        "0x%x, not 0x%x\n", csum, ifp->if_csum);
+               goto done;
+       }
+       if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) ||
+           *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) {
+               ipath_dev_err(dd, "Invalid GUID %llx from flash; "
+                             "ignoring\n",
+                             *(unsigned long long *) ifp->if_guid);
+               /* don't allow GUID if all 0 or all 1's */
+               goto done;
+       }
+
+       /* complain, but allow it */
+       if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
+               dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
+                        "default, probably not correct!\n",
+                        *(unsigned long long *) ifp->if_guid);
+
+       bguid = ifp->if_guid;
+       if (!bguid[0] && !bguid[1] && !bguid[2]) {
+               /* original incorrect GUID format in flash; fix in
+                * core copy, by shifting up 2 octets; don't need to
+                * change top octet, since both it and shifted are
+                * 0.. */
+               bguid[1] = bguid[3];
+               bguid[2] = bguid[4];
+               bguid[3] = bguid[4] = 0;
+               guid = *(__be64 *) ifp->if_guid;
+               ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
+                          "shifting 2 octets\n");
+       } else
+               guid = *(__be64 *) ifp->if_guid;
+       dd->ipath_guid = guid;
+       dd->ipath_nguid = ifp->if_numguid;
+       /*
+        * Things are slightly complicated by the desire to transparently
+        * support both the Pathscale 10-digit serial number and the QLogic
+        * 13-character version.
+        */
+       if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
+               && ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
+               /* This board has a Serial-prefix, which is stored
+                * elsewhere for backward-compatibility.
+                */
+               char *snp = dd->ipath_serial;
+               memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
+               snp[sizeof ifp->if_sprefix] = '\0';
+               len = strlen(snp);
+               snp += len;
+               len = (sizeof dd->ipath_serial) - len;
+               if (len > sizeof ifp->if_serial) {
+                       len = sizeof ifp->if_serial;
+               }
+               memcpy(snp, ifp->if_serial, len);
+       } else
+               memcpy(dd->ipath_serial, ifp->if_serial,
+                      sizeof ifp->if_serial);
+       if (!strstr(ifp->if_comment, "Tested successfully"))
+               ipath_dev_err(dd, "Board SN %s did not pass functional "
+                       "test: %s\n", dd->ipath_serial,
+                       ifp->if_comment);
+
+       ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
+                  (unsigned long long) be64_to_cpu(dd->ipath_guid));
+
+       memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
+       /*
+        * Power-on (actually "active") hours are kept as little-endian value
+        * in EEPROM, but as seconds in a (possibly as small as 24-bit)
+        * atomic_t while running.
+        */
+       atomic_set(&dd->ipath_active_time, 0);
+       dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);
+
+done:
+       vfree(buf);
+
+bail:;
+}
+
+/**
+ * ipath_update_eeprom_log - copy active-time and error counters to eeprom
+ * @dd: the infinipath device
+ *
+ * Although the time is kept as seconds in the ipath_devdata struct, it is
+ * rounded to hours for re-write, as we have only 16 bits in EEPROM.
+ * First-cut code reads whole (expected) struct ipath_flash, modifies,
+ * re-writes. Future direction: read/write only what we need, assuming
+ * that the EEPROM had to have been "good enough" for driver init, and
+ * if not, we aren't making it worse.
+ *
+ */
+
+int ipath_update_eeprom_log(struct ipath_devdata *dd)
+{
+       void *buf;
+       struct ipath_flash *ifp;
+       int len, hi_water;
+       uint32_t new_time, new_hrs;
+       u8 csum;
+       int ret, idx;
+       unsigned long flags;
+
+       /* first, check if we actually need to do anything. */
+       ret = 0;
+       for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
+               if (dd->ipath_eep_st_new_errs[idx]) {
+                       ret = 1;
+                       break;
+               }
+       }
+       new_time = atomic_read(&dd->ipath_active_time);
+
+       if (ret == 0 && new_time < 3600)
+               return 0;
+
+       /*
+        * The quick-check above determined that there is something worthy
+        * of logging, so get current contents and do a more detailed idea.
+        * read full flash, not just currently used part, since it may have
+        * been written with a newer definition
+        */
+       len = sizeof(struct ipath_flash);
+       buf = vmalloc(len);
+       ret = 1;
+       if (!buf) {
+               ipath_dev_err(dd, "Couldn't allocate memory to read %u "
+                               "bytes from eeprom for logging\n", len);
+               goto bail;
+       }
+
+       /* Grab semaphore and read current EEPROM. If we get an
+        * error, let go, but if not, keep it until we finish write.
+        */
+       ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
+       if (ret) {
+               ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
+               goto free_bail;
+       }
+       ret = ipath_eeprom_internal_read(dd, 0, buf, len);
+       if (ret) {
+               mutex_unlock(&dd->ipath_eep_lock);
+               ipath_dev_err(dd, "Unable read EEPROM for logging\n");
+               goto free_bail;
+       }
+       ifp = (struct ipath_flash *)buf;
+
+       csum = flash_csum(ifp, 0);
+       if (csum != ifp->if_csum) {
+               mutex_unlock(&dd->ipath_eep_lock);
+               ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
+                               csum, ifp->if_csum);
+               ret = 1;
+               goto free_bail;
+       }
+       hi_water = 0;
+       spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
+       for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
+               int new_val = dd->ipath_eep_st_new_errs[idx];
+               if (new_val) {
+                       /*
+                        * If we have seen any errors, add to EEPROM values
+                        * We need to saturate at 0xFF (255) and we also
+                        * would need to adjust the checksum if we were
+                        * trying to minimize EEPROM traffic
+                        * Note that we add to actual current count in EEPROM,
+                        * in case it was altered while we were running.
+                        */
+                       new_val += ifp->if_errcntp[idx];
+                       if (new_val > 0xFF)
+                               new_val = 0xFF;
+                       if (ifp->if_errcntp[idx] != new_val) {
+                               ifp->if_errcntp[idx] = new_val;
+                               hi_water = offsetof(struct ipath_flash,
+                                               if_errcntp) + idx;
+                       }
+                       /*
+                        * update our shadow (used to minimize EEPROM
+                        * traffic), to match what we are about to write.
+                        */
+                       dd->ipath_eep_st_errs[idx] = new_val;
+                       dd->ipath_eep_st_new_errs[idx] = 0;
+               }
+       }
+       /*
+        * now update active-time. We would like to round to the nearest hour
+        * but unless atomic_t are sure to be proper signed ints we cannot,
+        * because we need to account for what we "transfer" to EEPROM and
+        * if we log an hour at 31 minutes, then we would need to set
+        * active_time to -29 to accurately count the _next_ hour.
+        */
+       if (new_time >= 3600) {
+               new_hrs = new_time / 3600;
+               atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
+               new_hrs += dd->ipath_eep_hrs;
+               if (new_hrs > 0xFFFF)
+                       new_hrs = 0xFFFF;
+               dd->ipath_eep_hrs = new_hrs;
+               if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
+                       ifp->if_powerhour[0] = new_hrs & 0xFF;
+                       hi_water = offsetof(struct ipath_flash, if_powerhour);
+               }
+               if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
+                       ifp->if_powerhour[1] = new_hrs >> 8;
+                       hi_water = offsetof(struct ipath_flash, if_powerhour)
+                                       + 1;
+               }
+       }
+       /*
+        * There is a tiny possibility that we could somehow fail to write
+        * the EEPROM after updating our shadows, but problems from holding
+        * the spinlock too long are a much bigger issue.
+        */
+       spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
+       if (hi_water) {
+               /* we made some change to the data, uopdate cksum and write */
+               csum = flash_csum(ifp, 1);
+               ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
+       }
+       mutex_unlock(&dd->ipath_eep_lock);
+       if (ret)
+               ipath_dev_err(dd, "Failed updating EEPROM\n");
+
+free_bail:
+       vfree(buf);
+bail:
+       return ret;
+
+}
+
+/**
+ * ipath_inc_eeprom_err - increment one of the four error counters
+ * that are logged to EEPROM.
+ * @dd: the infinipath device
+ * @eidx: 0..3, the counter to increment
+ * @incr: how much to add
+ *
+ * Each counter is 8-bits, and saturates at 255 (0xFF). They
+ * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
+ * is called, but it can only be called in a context that allows sleep.
+ * This function can be called even at interrupt level.
+ */
+
+void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
+{
+       uint new_val;
+       unsigned long flags;
+
+       spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
+       new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
+       if (new_val > 255)
+               new_val = 255;
+       dd->ipath_eep_st_new_errs[eidx] = new_val;
+       spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
+       return;
+}
+
+static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum)
+{
+       int ret;
+       struct i2c_chain_desc *icd;
+
+       ret = -ENOENT;
+
+       icd = ipath_i2c_type(dd);
+       if (!icd)
+               goto bail;
+
+       if (icd->temp_dev == IPATH_NO_DEV) {
+               /* tempsense only exists on new, real-I2C boards */
+               ret = -ENXIO;
+               goto bail;
+       }
+
+       if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
+               ipath_dbg("Failed tempsense startcmd\n");
+               stop_cmd(dd);
+               ret = -ENXIO;
+               goto bail;
+       }
+       ret = wr_byte(dd, regnum);
+       stop_cmd(dd);
+       if (ret) {
+               ipath_dev_err(dd, "Failed tempsense WR command %02X\n",
+                             regnum);
+               ret = -ENXIO;
+               goto bail;
+       }
+       if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) {
+               ipath_dbg("Failed tempsense RD startcmd\n");
+               stop_cmd(dd);
+               ret = -ENXIO;
+               goto bail;
+       }
+       /*
+        * We can only clock out one byte per command, sensibly
+        */
+       ret = rd_byte(dd);
+       stop_cmd(dd);
+
+bail:
+       return ret;
+}
+
+#define VALID_TS_RD_REG_MASK 0xBF
+
+/**
+ * ipath_tempsense_read - read register of temp sensor via I2C
+ * @dd: the infinipath device
+ * @regnum: register to read from
+ *
+ * returns reg contents (0..255) or < 0 for error
+ */
+int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum)
+{
+       int ret;
+
+       if (regnum > 7)
+               return -EINVAL;
+
+       /* return a bogus value for (the one) register we do not have */
+       if (!((1 << regnum) & VALID_TS_RD_REG_MASK))
+               return 0;
+
+       ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
+       if (!ret) {
+               ret = ipath_tempsense_internal_read(dd, regnum);
+               mutex_unlock(&dd->ipath_eep_lock);
+       }
+
+       /*
+        * There are three possibilities here:
+        * ret is actual value (0..255)
+        * ret is -ENXIO or -EINVAL from code in this file
+        * ret is -EINTR from mutex_lock_interruptible.
+        */
+       return ret;
+}
+
+static int ipath_tempsense_internal_write(struct ipath_devdata *dd,
+                                         u8 regnum, u8 data)
+{
+       int ret = -ENOENT;
+       struct i2c_chain_desc *icd;
+
+       icd = ipath_i2c_type(dd);
+       if (!icd)
+               goto bail;
+
+       if (icd->temp_dev == IPATH_NO_DEV) {
+               /* tempsense only exists on new, real-I2C boards */
+               ret = -ENXIO;
+               goto bail;
+       }
+       if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
+               ipath_dbg("Failed tempsense startcmd\n");
+               stop_cmd(dd);
+               ret = -ENXIO;
+               goto bail;
+       }
+       ret = wr_byte(dd, regnum);
+       if (ret) {
+               stop_cmd(dd);
+               ipath_dev_err(dd, "Failed to write tempsense command %02X\n",
+                             regnum);
+               ret = -ENXIO;
+               goto bail;
+       }
+       ret = wr_byte(dd, data);
+       stop_cmd(dd);
+       ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD);
+       if (ret) {
+               ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n",
+                             regnum);
+               ret = -ENXIO;
+       }
+
+bail:
+       return ret;
+}
+
+#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD))
+
+/**
+ * ipath_tempsense_write - write register of temp sensor via I2C
+ * @dd: the infinipath device
+ * @regnum: register to write
+ * @data: data to write
+ *
+ * returns 0 for success or < 0 for error
+ */
+int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data)
+{
+       int ret;
+
+       if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK))
+               return -EINVAL;
+
+       ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
+       if (!ret) {
+               ret = ipath_tempsense_internal_write(dd, regnum, data);
+               mutex_unlock(&dd->ipath_eep_lock);
+       }
+
+       /*
+        * There are three possibilities here:
+        * ret is 0 for success
+        * ret is -ENXIO or -EINVAL from code in this file
+        * ret is -EINTR from mutex_lock_interruptible.
+        */
+       return ret;
+}