Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wimax / i2400m / fw.c
diff --git a/kernel/drivers/net/wimax/i2400m/fw.c b/kernel/drivers/net/wimax/i2400m/fw.c
new file mode 100644 (file)
index 0000000..c9c711d
--- /dev/null
@@ -0,0 +1,1657 @@
+/*
+ * Intel Wireless WiMAX Connection 2400m
+ * Firmware uploader
+ *
+ *
+ * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *   * Redistributions of source code must retain the above copyright
+ *     notice, this list of conditions and the following disclaimer.
+ *   * Redistributions in binary form must reproduce the above copyright
+ *     notice, this list of conditions and the following disclaimer in
+ *     the documentation and/or other materials provided with the
+ *     distribution.
+ *   * Neither the name of Intel Corporation nor the names of its
+ *     contributors may be used to endorse or promote products derived
+ *     from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *
+ * Intel Corporation <linux-wimax@intel.com>
+ * Yanir Lubetkin <yanirx.lubetkin@intel.com>
+ * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
+ *  - Initial implementation
+ *
+ *
+ * THE PROCEDURE
+ *
+ * The 2400m and derived devices work in two modes: boot-mode or
+ * normal mode. In boot mode we can execute only a handful of commands
+ * targeted at uploading the firmware and launching it.
+ *
+ * The 2400m enters boot mode when it is first connected to the
+ * system, when it crashes and when you ask it to reboot. There are
+ * two submodes of the boot mode: signed and non-signed. Signed takes
+ * firmwares signed with a certain private key, non-signed takes any
+ * firmware. Normal hardware takes only signed firmware.
+ *
+ * On boot mode, in USB, we write to the device using the bulk out
+ * endpoint and read from it in the notification endpoint.
+ *
+ * Upon entrance to boot mode, the device sends (preceded with a few
+ * zero length packets (ZLPs) on the notification endpoint in USB) a
+ * reboot barker (4 le32 words with the same value). We ack it by
+ * sending the same barker to the device. The device acks with a
+ * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
+ * then is fully booted. At this point we can upload the firmware.
+ *
+ * Note that different iterations of the device and EEPROM
+ * configurations will send different [re]boot barkers; these are
+ * collected in i2400m_barker_db along with the firmware
+ * characteristics they require.
+ *
+ * This process is accomplished by the i2400m_bootrom_init()
+ * function. All the device interaction happens through the
+ * i2400m_bm_cmd() [boot mode command]. Special return values will
+ * indicate if the device did reset during the process.
+ *
+ * After this, we read the MAC address and then (if needed)
+ * reinitialize the device. We need to read it ahead of time because
+ * in the future, we might not upload the firmware until userspace
+ * 'ifconfig up's the device.
+ *
+ * We can then upload the firmware file. The file is composed of a BCF
+ * header (basic data, keys and signatures) and a list of write
+ * commands and payloads. Optionally more BCF headers might follow the
+ * main payload. We first upload the header [i2400m_dnload_init()] and
+ * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
+ * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
+ * the new firmware [i2400m_dnload_finalize()].
+ *
+ * Once firmware is uploaded, we are good to go :)
+ *
+ * When we don't know in which mode we are, we first try by sending a
+ * warm reset request that will take us to boot-mode. If we time out
+ * waiting for a reboot barker, that means maybe we are already in
+ * boot mode, so we send a reboot barker.
+ *
+ * COMMAND EXECUTION
+ *
+ * This code (and process) is single threaded; for executing commands,
+ * we post a URB to the notification endpoint, post the command, wait
+ * for data on the notification buffer. We don't need to worry about
+ * others as we know we are the only ones in there.
+ *
+ * BACKEND IMPLEMENTATION
+ *
+ * This code is bus-generic; the bus-specific driver provides back end
+ * implementations to send a boot mode command to the device and to
+ * read an acknolwedgement from it (or an asynchronous notification)
+ * from it.
+ *
+ * FIRMWARE LOADING
+ *
+ * Note that in some cases, we can't just load a firmware file (for
+ * example, when resuming). For that, we might cache the firmware
+ * file. Thus, when doing the bootstrap, if there is a cache firmware
+ * file, it is used; if not, loading from disk is attempted.
+ *
+ * ROADMAP
+ *
+ * i2400m_barker_db_init              Called by i2400m_driver_init()
+ *   i2400m_barker_db_add
+ *
+ * i2400m_barker_db_exit              Called by i2400m_driver_exit()
+ *
+ * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
+ *   request_firmware
+ *   i2400m_fw_bootstrap
+ *     i2400m_fw_check
+ *       i2400m_fw_hdr_check
+ *     i2400m_fw_dnload
+ *   release_firmware
+ *
+ * i2400m_fw_dnload
+ *   i2400m_bootrom_init
+ *     i2400m_bm_cmd
+ *     i2400m_reset
+ *   i2400m_dnload_init
+ *     i2400m_dnload_init_signed
+ *     i2400m_dnload_init_nonsigned
+ *       i2400m_download_chunk
+ *         i2400m_bm_cmd
+ *   i2400m_dnload_bcf
+ *     i2400m_bm_cmd
+ *   i2400m_dnload_finalize
+ *     i2400m_bm_cmd
+ *
+ * i2400m_bm_cmd
+ *   i2400m->bus_bm_cmd_send()
+ *   i2400m->bus_bm_wait_for_ack
+ *   __i2400m_bm_ack_verify
+ *     i2400m_is_boot_barker
+ *
+ * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
+ *                                    commands before sending
+ *
+ * i2400m_pm_notifier                 Called on Power Management events
+ *   i2400m_fw_cache
+ *   i2400m_fw_uncache
+ */
+#include <linux/firmware.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/usb.h>
+#include <linux/export.h>
+#include "i2400m.h"
+
+
+#define D_SUBMODULE fw
+#include "debug-levels.h"
+
+
+static const __le32 i2400m_ACK_BARKER[4] = {
+       cpu_to_le32(I2400M_ACK_BARKER),
+       cpu_to_le32(I2400M_ACK_BARKER),
+       cpu_to_le32(I2400M_ACK_BARKER),
+       cpu_to_le32(I2400M_ACK_BARKER)
+};
+
+
+/**
+ * Prepare a boot-mode command for delivery
+ *
+ * @cmd: pointer to bootrom header to prepare
+ *
+ * Computes checksum if so needed. After calling this function, DO NOT
+ * modify the command or header as the checksum won't work anymore.
+ *
+ * We do it from here because some times we cannot do it in the
+ * original context the command was sent (it is a const), so when we
+ * copy it to our staging buffer, we add the checksum there.
+ */
+void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
+{
+       if (i2400m_brh_get_use_checksum(cmd)) {
+               int i;
+               u32 checksum = 0;
+               const u32 *checksum_ptr = (void *) cmd->payload;
+               for (i = 0; i < cmd->data_size / 4; i++)
+                       checksum += cpu_to_le32(*checksum_ptr++);
+               checksum += cmd->command + cmd->target_addr + cmd->data_size;
+               cmd->block_checksum = cpu_to_le32(checksum);
+       }
+}
+EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
+
+
+/*
+ * Database of known barkers.
+ *
+ * A barker is what the device sends indicating he is ready to be
+ * bootloaded. Different versions of the device will send different
+ * barkers. Depending on the barker, it might mean the device wants
+ * some kind of firmware or the other.
+ */
+static struct i2400m_barker_db {
+       __le32 data[4];
+} *i2400m_barker_db;
+static size_t i2400m_barker_db_used, i2400m_barker_db_size;
+
+
+static
+int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
+                      gfp_t gfp_flags)
+{
+       size_t old_count = *_count,
+               new_count = old_count ? 2 * old_count : 2,
+               old_size = el_size * old_count,
+               new_size = el_size * new_count;
+       void *nptr = krealloc(*ptr, new_size, gfp_flags);
+       if (nptr) {
+               /* zero the other half or the whole thing if old_count
+                * was zero */
+               if (old_size == 0)
+                       memset(nptr, 0, new_size);
+               else
+                       memset(nptr + old_size, 0, old_size);
+               *_count = new_count;
+               *ptr = nptr;
+               return 0;
+       } else
+               return -ENOMEM;
+}
+
+
+/*
+ * Add a barker to the database
+ *
+ * This cannot used outside of this module and only at at module_init
+ * time. This is to avoid the need to do locking.
+ */
+static
+int i2400m_barker_db_add(u32 barker_id)
+{
+       int result;
+
+       struct i2400m_barker_db *barker;
+       if (i2400m_barker_db_used >= i2400m_barker_db_size) {
+               result = i2400m_zrealloc_2x(
+                       (void **) &i2400m_barker_db, &i2400m_barker_db_size,
+                       sizeof(i2400m_barker_db[0]), GFP_KERNEL);
+               if (result < 0)
+                       return result;
+       }
+       barker = i2400m_barker_db + i2400m_barker_db_used++;
+       barker->data[0] = le32_to_cpu(barker_id);
+       barker->data[1] = le32_to_cpu(barker_id);
+       barker->data[2] = le32_to_cpu(barker_id);
+       barker->data[3] = le32_to_cpu(barker_id);
+       return 0;
+}
+
+
+void i2400m_barker_db_exit(void)
+{
+       kfree(i2400m_barker_db);
+       i2400m_barker_db = NULL;
+       i2400m_barker_db_size = 0;
+       i2400m_barker_db_used = 0;
+}
+
+
+/*
+ * Helper function to add all the known stable barkers to the barker
+ * database.
+ */
+static
+int i2400m_barker_db_known_barkers(void)
+{
+       int result;
+
+       result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
+       if (result < 0)
+               goto error_add;
+       result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
+       if (result < 0)
+               goto error_add;
+       result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
+       if (result < 0)
+               goto error_add;
+error_add:
+       return result;
+}
+
+
+/*
+ * Initialize the barker database
+ *
+ * This can only be used from the module_init function for this
+ * module; this is to avoid the need to do locking.
+ *
+ * @options: command line argument with extra barkers to
+ *     recognize. This is a comma-separated list of 32-bit hex
+ *     numbers. They are appended to the existing list. Setting 0
+ *     cleans the existing list and starts a new one.
+ */
+int i2400m_barker_db_init(const char *_options)
+{
+       int result;
+       char *options = NULL, *options_orig, *token;
+
+       i2400m_barker_db = NULL;
+       i2400m_barker_db_size = 0;
+       i2400m_barker_db_used = 0;
+
+       result = i2400m_barker_db_known_barkers();
+       if (result < 0)
+               goto error_add;
+       /* parse command line options from i2400m.barkers */
+       if (_options != NULL) {
+               unsigned barker;
+
+               options_orig = kstrdup(_options, GFP_KERNEL);
+               if (options_orig == NULL) {
+                       result = -ENOMEM;
+                       goto error_parse;
+               }
+               options = options_orig;
+
+               while ((token = strsep(&options, ",")) != NULL) {
+                       if (*token == '\0')     /* eat joint commas */
+                               continue;
+                       if (sscanf(token, "%x", &barker) != 1
+                           || barker > 0xffffffff) {
+                               printk(KERN_ERR "%s: can't recognize "
+                                      "i2400m.barkers value '%s' as "
+                                      "a 32-bit number\n",
+                                      __func__, token);
+                               result = -EINVAL;
+                               goto error_parse;
+                       }
+                       if (barker == 0) {
+                               /* clean list and start new */
+                               i2400m_barker_db_exit();
+                               continue;
+                       }
+                       result = i2400m_barker_db_add(barker);
+                       if (result < 0)
+                               goto error_add;
+               }
+               kfree(options_orig);
+       }
+       return 0;
+
+error_parse:
+error_add:
+       kfree(i2400m_barker_db);
+       return result;
+}
+
+
+/*
+ * Recognize a boot barker
+ *
+ * @buf: buffer where the boot barker.
+ * @buf_size: size of the buffer (has to be 16 bytes). It is passed
+ *     here so the function can check it for the caller.
+ *
+ * Note that as a side effect, upon identifying the obtained boot
+ * barker, this function will set i2400m->barker to point to the right
+ * barker database entry. Subsequent calls to the function will result
+ * in verifying that the same type of boot barker is returned when the
+ * device [re]boots (as long as the same device instance is used).
+ *
+ * Return: 0 if @buf matches a known boot barker. -ENOENT if the
+ *     buffer in @buf doesn't match any boot barker in the database or
+ *     -EILSEQ if the buffer doesn't have the right size.
+ */
+int i2400m_is_boot_barker(struct i2400m *i2400m,
+                         const void *buf, size_t buf_size)
+{
+       int result;
+       struct device *dev = i2400m_dev(i2400m);
+       struct i2400m_barker_db *barker;
+       int i;
+
+       result = -ENOENT;
+       if (buf_size != sizeof(i2400m_barker_db[i].data))
+               return result;
+
+       /* Short circuit if we have already discovered the barker
+        * associated with the device. */
+       if (i2400m->barker
+           && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
+               unsigned index = (i2400m->barker - i2400m_barker_db)
+                       / sizeof(*i2400m->barker);
+               d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
+                        index, le32_to_cpu(i2400m->barker->data[0]));
+               return 0;
+       }
+
+       for (i = 0; i < i2400m_barker_db_used; i++) {
+               barker = &i2400m_barker_db[i];
+               BUILD_BUG_ON(sizeof(barker->data) != 16);
+               if (memcmp(buf, barker->data, sizeof(barker->data)))
+                       continue;
+
+               if (i2400m->barker == NULL) {
+                       i2400m->barker = barker;
+                       d_printf(1, dev, "boot barker set to #%u/%08x\n",
+                                i, le32_to_cpu(barker->data[0]));
+                       if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
+                               i2400m->sboot = 0;
+                       else
+                               i2400m->sboot = 1;
+               } else if (i2400m->barker != barker) {
+                       dev_err(dev, "HW inconsistency: device "
+                               "reports a different boot barker "
+                               "than set (from %08x to %08x)\n",
+                               le32_to_cpu(i2400m->barker->data[0]),
+                               le32_to_cpu(barker->data[0]));
+                       result = -EIO;
+               } else
+                       d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
+                                i, le32_to_cpu(barker->data[0]));
+               result = 0;
+               break;
+       }
+       return result;
+}
+EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
+
+
+/*
+ * Verify the ack data received
+ *
+ * Given a reply to a boot mode command, chew it and verify everything
+ * is ok.
+ *
+ * @opcode: opcode which generated this ack. For error messages.
+ * @ack: pointer to ack data we received
+ * @ack_size: size of that data buffer
+ * @flags: I2400M_BM_CMD_* flags we called the command with.
+ *
+ * Way too long function -- maybe it should be further split
+ */
+static
+ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
+                              struct i2400m_bootrom_header *ack,
+                              size_t ack_size, int flags)
+{
+       ssize_t result = -ENOMEM;
+       struct device *dev = i2400m_dev(i2400m);
+
+       d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
+                 i2400m, opcode, ack, ack_size);
+       if (ack_size < sizeof(*ack)) {
+               result = -EIO;
+               dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
+                       "return enough data (%zu bytes vs %zu expected)\n",
+                       opcode, ack_size, sizeof(*ack));
+               goto error_ack_short;
+       }
+       result = i2400m_is_boot_barker(i2400m, ack, ack_size);
+       if (result >= 0) {
+               result = -ERESTARTSYS;
+               d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
+               goto error_reboot;
+       }
+       if (ack_size == sizeof(i2400m_ACK_BARKER)
+                && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
+               result = -EISCONN;
+               d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
+                        opcode);
+               goto error_reboot_ack;
+       }
+       result = 0;
+       if (flags & I2400M_BM_CMD_RAW)
+               goto out_raw;
+       ack->data_size = le32_to_cpu(ack->data_size);
+       ack->target_addr = le32_to_cpu(ack->target_addr);
+       ack->block_checksum = le32_to_cpu(ack->block_checksum);
+       d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
+                "response %u csum %u rr %u da %u\n",
+                opcode, i2400m_brh_get_opcode(ack),
+                i2400m_brh_get_response(ack),
+                i2400m_brh_get_use_checksum(ack),
+                i2400m_brh_get_response_required(ack),
+                i2400m_brh_get_direct_access(ack));
+       result = -EIO;
+       if (i2400m_brh_get_signature(ack) != 0xcbbc) {
+               dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
+                       "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
+               goto error_ack_signature;
+       }
+       if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
+               dev_err(dev, "boot-mode cmd %d: HW BUG? "
+                       "received response for opcode %u, expected %u\n",
+                       opcode, i2400m_brh_get_opcode(ack), opcode);
+               goto error_ack_opcode;
+       }
+       if (i2400m_brh_get_response(ack) != 0) {        /* failed? */
+               dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
+                       opcode, i2400m_brh_get_response(ack));
+               goto error_ack_failed;
+       }
+       if (ack_size < ack->data_size + sizeof(*ack)) {
+               dev_err(dev, "boot-mode cmd %d: SW BUG "
+                       "driver provided only %zu bytes for %zu bytes "
+                       "of data\n", opcode, ack_size,
+                       (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
+               goto error_ack_short_buffer;
+       }
+       result = ack_size;
+       /* Don't you love this stack of empty targets? Well, I don't
+        * either, but it helps track exactly who comes in here and
+        * why :) */
+error_ack_short_buffer:
+error_ack_failed:
+error_ack_opcode:
+error_ack_signature:
+out_raw:
+error_reboot_ack:
+error_reboot:
+error_ack_short:
+       d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
+               i2400m, opcode, ack, ack_size, (int) result);
+       return result;
+}
+
+
+/**
+ * i2400m_bm_cmd - Execute a boot mode command
+ *
+ * @cmd: buffer containing the command data (pointing at the header).
+ *     This data can be ANYWHERE (for USB, we will copy it to an
+ *     specific buffer). Make sure everything is in proper little
+ *     endian.
+ *
+ *     A raw buffer can be also sent, just cast it and set flags to
+ *     I2400M_BM_CMD_RAW.
+ *
+ *     This function will generate a checksum for you if the
+ *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
+ *     is set).
+ *
+ *     You can use the i2400m->bm_cmd_buf to stage your commands and
+ *     send them.
+ *
+ *     If NULL, no command is sent (we just wait for an ack).
+ *
+ * @cmd_size: size of the command. Will be auto padded to the
+ *     bus-specific drivers padding requirements.
+ *
+ * @ack: buffer where to place the acknowledgement. If it is a regular
+ *     command response, all fields will be returned with the right,
+ *     native endianess.
+ *
+ *     You *cannot* use i2400m->bm_ack_buf for this buffer.
+ *
+ * @ack_size: size of @ack, 16 aligned; you need to provide at least
+ *     sizeof(*ack) bytes and then enough to contain the return data
+ *     from the command
+ *
+ * @flags: see I2400M_BM_CMD_* above.
+ *
+ * @returns: bytes received by the notification; if < 0, an errno code
+ *     denoting an error or:
+ *
+ *     -ERESTARTSYS  The device has rebooted
+ *
+ * Executes a boot-mode command and waits for a response, doing basic
+ * validation on it; if a zero length response is received, it retries
+ * waiting for a response until a non-zero one is received (timing out
+ * after %I2400M_BOOT_RETRIES retries).
+ */
+static
+ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
+                     const struct i2400m_bootrom_header *cmd, size_t cmd_size,
+                     struct i2400m_bootrom_header *ack, size_t ack_size,
+                     int flags)
+{
+       ssize_t result = -ENOMEM, rx_bytes;
+       struct device *dev = i2400m_dev(i2400m);
+       int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
+
+       d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
+                 i2400m, cmd, cmd_size, ack, ack_size);
+       BUG_ON(ack_size < sizeof(*ack));
+       BUG_ON(i2400m->boot_mode == 0);
+
+       if (cmd != NULL) {              /* send the command */
+               result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
+               if (result < 0)
+                       goto error_cmd_send;
+               if ((flags & I2400M_BM_CMD_RAW) == 0)
+                       d_printf(5, dev,
+                                "boot-mode cmd %d csum %u rr %u da %u: "
+                                "addr 0x%04x size %u block csum 0x%04x\n",
+                                opcode, i2400m_brh_get_use_checksum(cmd),
+                                i2400m_brh_get_response_required(cmd),
+                                i2400m_brh_get_direct_access(cmd),
+                                cmd->target_addr, cmd->data_size,
+                                cmd->block_checksum);
+       }
+       result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
+       if (result < 0) {
+               dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
+                       opcode, (int) result);  /* bah, %zd doesn't work */
+               goto error_wait_for_ack;
+       }
+       rx_bytes = result;
+       /* verify the ack and read more if necessary [result is the
+        * final amount of bytes we get in the ack]  */
+       result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
+       if (result < 0)
+               goto error_bad_ack;
+       /* Don't you love this stack of empty targets? Well, I don't
+        * either, but it helps track exactly who comes in here and
+        * why :) */
+       result = rx_bytes;
+error_bad_ack:
+error_wait_for_ack:
+error_cmd_send:
+       d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
+               i2400m, cmd, cmd_size, ack, ack_size, (int) result);
+       return result;
+}
+
+
+/**
+ * i2400m_download_chunk - write a single chunk of data to the device's memory
+ *
+ * @i2400m: device descriptor
+ * @buf: the buffer to write
+ * @buf_len: length of the buffer to write
+ * @addr: address in the device memory space
+ * @direct: bootrom write mode
+ * @do_csum: should a checksum validation be performed
+ */
+static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
+                                size_t __chunk_len, unsigned long addr,
+                                unsigned int direct, unsigned int do_csum)
+{
+       int ret;
+       size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
+       struct device *dev = i2400m_dev(i2400m);
+       struct {
+               struct i2400m_bootrom_header cmd;
+               u8 cmd_payload[chunk_len];
+       } __packed *buf;
+       struct i2400m_bootrom_header ack;
+
+       d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
+                 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
+                 addr, direct, do_csum);
+       buf = i2400m->bm_cmd_buf;
+       memcpy(buf->cmd_payload, chunk, __chunk_len);
+       memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
+
+       buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
+                                             __chunk_len & 0x3 ? 0 : do_csum,
+                                             __chunk_len & 0xf ? 0 : direct);
+       buf->cmd.target_addr = cpu_to_le32(addr);
+       buf->cmd.data_size = cpu_to_le32(__chunk_len);
+       ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
+                           &ack, sizeof(ack), 0);
+       if (ret >= 0)
+               ret = 0;
+       d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
+               "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
+               addr, direct, do_csum, ret);
+       return ret;
+}
+
+
+/*
+ * Download a BCF file's sections to the device
+ *
+ * @i2400m: device descriptor
+ * @bcf: pointer to firmware data (first header followed by the
+ *     payloads). Assumed verified and consistent.
+ * @bcf_len: length (in bytes) of the @bcf buffer.
+ *
+ * Returns: < 0 errno code on error or the offset to the jump instruction.
+ *
+ * Given a BCF file, downloads each section (a command and a payload)
+ * to the device's address space. Actually, it just executes each
+ * command i the BCF file.
+ *
+ * The section size has to be aligned to 4 bytes AND the padding has
+ * to be taken from the firmware file, as the signature takes it into
+ * account.
+ */
+static
+ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
+                         const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
+{
+       ssize_t ret;
+       struct device *dev = i2400m_dev(i2400m);
+       size_t offset,          /* iterator offset */
+               data_size,      /* Size of the data payload */
+               section_size,   /* Size of the whole section (cmd + payload) */
+               section = 1;
+       const struct i2400m_bootrom_header *bh;
+       struct i2400m_bootrom_header ack;
+
+       d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
+                 i2400m, bcf, bcf_len);
+       /* Iterate over the command blocks in the BCF file that start
+        * after the header */
+       offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
+       while (1) {     /* start sending the file */
+               bh = (void *) bcf + offset;
+               data_size = le32_to_cpu(bh->data_size);
+               section_size = ALIGN(sizeof(*bh) + data_size, 4);
+               d_printf(7, dev,
+                        "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
+                        section, offset, sizeof(*bh) + data_size,
+                        le32_to_cpu(bh->target_addr));
+               /*
+                * We look for JUMP cmd from the bootmode header,
+                * either I2400M_BRH_SIGNED_JUMP for secure boot
+                * or I2400M_BRH_JUMP for unsecure boot, the last chunk
+                * should be the bootmode header with JUMP cmd.
+                */
+               if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
+                       i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
+                       d_printf(5, dev,  "jump found @%zu\n", offset);
+                       break;
+               }
+               if (offset + section_size > bcf_len) {
+                       dev_err(dev, "fw %s: bad section #%zu, "
+                               "end (@%zu) beyond EOF (@%zu)\n",
+                               i2400m->fw_name, section,
+                               offset + section_size,  bcf_len);
+                       ret = -EINVAL;
+                       goto error_section_beyond_eof;
+               }
+               __i2400m_msleep(20);
+               ret = i2400m_bm_cmd(i2400m, bh, section_size,
+                                   &ack, sizeof(ack), I2400M_BM_CMD_RAW);
+               if (ret < 0) {
+                       dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
+                               "failed %d\n", i2400m->fw_name, section,
+                               offset, sizeof(*bh) + data_size, (int) ret);
+                       goto error_send;
+               }
+               offset += section_size;
+               section++;
+       }
+       ret = offset;
+error_section_beyond_eof:
+error_send:
+       d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
+               i2400m, bcf, bcf_len, (int) ret);
+       return ret;
+}
+
+
+/*
+ * Indicate if the device emitted a reboot barker that indicates
+ * "signed boot"
+ */
+static
+unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
+{
+       return likely(i2400m->sboot);
+}
+
+
+/*
+ * Do the final steps of uploading firmware
+ *
+ * @bcf_hdr: BCF header we are actually using
+ * @bcf: pointer to the firmware image (which matches the first header
+ *     that is followed by the actual payloads).
+ * @offset: [byte] offset into @bcf for the command we need to send.
+ *
+ * Depending on the boot mode (signed vs non-signed), different
+ * actions need to be taken.
+ */
+static
+int i2400m_dnload_finalize(struct i2400m *i2400m,
+                          const struct i2400m_bcf_hdr *bcf_hdr,
+                          const struct i2400m_bcf_hdr *bcf, size_t offset)
+{
+       int ret = 0;
+       struct device *dev = i2400m_dev(i2400m);
+       struct i2400m_bootrom_header *cmd, ack;
+       struct {
+               struct i2400m_bootrom_header cmd;
+               u8 cmd_pl[0];
+       } __packed *cmd_buf;
+       size_t signature_block_offset, signature_block_size;
+
+       d_fnstart(3, dev, "offset %zu\n", offset);
+       cmd = (void *) bcf + offset;
+       if (i2400m_boot_is_signed(i2400m) == 0) {
+               struct i2400m_bootrom_header jump_ack;
+               d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
+                       le32_to_cpu(cmd->target_addr));
+               cmd_buf = i2400m->bm_cmd_buf;
+               memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
+               cmd = &cmd_buf->cmd;
+               /* now cmd points to the actual bootrom_header in cmd_buf */
+               i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
+               cmd->data_size = 0;
+               ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
+                                   &jump_ack, sizeof(jump_ack), 0);
+       } else {
+               d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
+                        le32_to_cpu(cmd->target_addr));
+               cmd_buf = i2400m->bm_cmd_buf;
+               memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
+               signature_block_offset =
+                       sizeof(*bcf_hdr)
+                       + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
+                       + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
+               signature_block_size =
+                       le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
+               memcpy(cmd_buf->cmd_pl,
+                      (void *) bcf_hdr + signature_block_offset,
+                      signature_block_size);
+               ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
+                                   sizeof(cmd_buf->cmd) + signature_block_size,
+                                   &ack, sizeof(ack), I2400M_BM_CMD_RAW);
+       }
+       d_fnend(3, dev, "returning %d\n", ret);
+       return ret;
+}
+
+
+/**
+ * i2400m_bootrom_init - Reboots a powered device into boot mode
+ *
+ * @i2400m: device descriptor
+ * @flags:
+ *      I2400M_BRI_SOFT: a reboot barker has been seen
+ *          already, so don't wait for it.
+ *
+ *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
+ *          for a reboot barker notification. This is a one shot; if
+ *          the state machine needs to send a reboot command it will.
+ *
+ * Returns:
+ *
+ *     < 0 errno code on error, 0 if ok.
+ *
+ * Description:
+ *
+ * Tries hard enough to put the device in boot-mode. There are two
+ * main phases to this:
+ *
+ * a. (1) send a reboot command and (2) get a reboot barker
+ *
+ * b. (1) echo/ack the reboot sending the reboot barker back and (2)
+ *        getting an ack barker in return
+ *
+ * We want to skip (a) in some cases [soft]. The state machine is
+ * horrible, but it is basically: on each phase, send what has to be
+ * sent (if any), wait for the answer and act on the answer. We might
+ * have to backtrack and retry, so we keep a max tries counter for
+ * that.
+ *
+ * It sucks because we don't know ahead of time which is going to be
+ * the reboot barker (the device might send different ones depending
+ * on its EEPROM config) and once the device reboots and waits for the
+ * echo/ack reboot barker being sent back, it doesn't understand
+ * anything else. So we can be left at the point where we don't know
+ * what to send to it -- cold reset and bus reset seem to have little
+ * effect. So the function iterates (in this case) through all the
+ * known barkers and tries them all until an ACK is
+ * received. Otherwise, it gives up.
+ *
+ * If we get a timeout after sending a warm reset, we do it again.
+ */
+int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
+{
+       int result;
+       struct device *dev = i2400m_dev(i2400m);
+       struct i2400m_bootrom_header *cmd;
+       struct i2400m_bootrom_header ack;
+       int count = i2400m->bus_bm_retries;
+       int ack_timeout_cnt = 1;
+       unsigned i;
+
+       BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
+       BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
+
+       d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
+       result = -ENOMEM;
+       cmd = i2400m->bm_cmd_buf;
+       if (flags & I2400M_BRI_SOFT)
+               goto do_reboot_ack;
+do_reboot:
+       ack_timeout_cnt = 1;
+       if (--count < 0)
+               goto error_timeout;
+       d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
+                count);
+       if ((flags & I2400M_BRI_NO_REBOOT) == 0)
+               i2400m_reset(i2400m, I2400M_RT_WARM);
+       result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
+                              I2400M_BM_CMD_RAW);
+       flags &= ~I2400M_BRI_NO_REBOOT;
+       switch (result) {
+       case -ERESTARTSYS:
+               /*
+                * at this point, i2400m_bm_cmd(), through
+                * __i2400m_bm_ack_process(), has updated
+                * i2400m->barker and we are good to go.
+                */
+               d_printf(4, dev, "device reboot: got reboot barker\n");
+               break;
+       case -EISCONN:  /* we don't know how it got here...but we follow it */
+               d_printf(4, dev, "device reboot: got ack barker - whatever\n");
+               goto do_reboot;
+       case -ETIMEDOUT:
+               /*
+                * Device has timed out, we might be in boot mode
+                * already and expecting an ack; if we don't know what
+                * the barker is, we just send them all. Cold reset
+                * and bus reset don't work. Beats me.
+                */
+               if (i2400m->barker != NULL) {
+                       dev_err(dev, "device boot: reboot barker timed out, "
+                               "trying (set) %08x echo/ack\n",
+                               le32_to_cpu(i2400m->barker->data[0]));
+                       goto do_reboot_ack;
+               }
+               for (i = 0; i < i2400m_barker_db_used; i++) {
+                       struct i2400m_barker_db *barker = &i2400m_barker_db[i];
+                       memcpy(cmd, barker->data, sizeof(barker->data));
+                       result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
+                                              &ack, sizeof(ack),
+                                              I2400M_BM_CMD_RAW);
+                       if (result == -EISCONN) {
+                               dev_warn(dev, "device boot: got ack barker "
+                                        "after sending echo/ack barker "
+                                        "#%d/%08x; rebooting j.i.c.\n",
+                                        i, le32_to_cpu(barker->data[0]));
+                               flags &= ~I2400M_BRI_NO_REBOOT;
+                               goto do_reboot;
+                       }
+               }
+               dev_err(dev, "device boot: tried all the echo/acks, could "
+                       "not get device to respond; giving up");
+               result = -ESHUTDOWN;
+       case -EPROTO:
+       case -ESHUTDOWN:        /* dev is gone */
+       case -EINTR:            /* user cancelled */
+               goto error_dev_gone;
+       default:
+               dev_err(dev, "device reboot: error %d while waiting "
+                       "for reboot barker - rebooting\n", result);
+               d_dump(1, dev, &ack, result);
+               goto do_reboot;
+       }
+       /* At this point we ack back with 4 REBOOT barkers and expect
+        * 4 ACK barkers. This is ugly, as we send a raw command --
+        * hence the cast. _bm_cmd() will catch the reboot ack
+        * notification and report it as -EISCONN. */
+do_reboot_ack:
+       d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
+       memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
+       result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
+                              &ack, sizeof(ack), I2400M_BM_CMD_RAW);
+       switch (result) {
+       case -ERESTARTSYS:
+               d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
+               if (--count < 0)
+                       goto error_timeout;
+               goto do_reboot_ack;
+       case -EISCONN:
+               d_printf(4, dev, "reboot ack: got ack barker - good\n");
+               break;
+       case -ETIMEDOUT:        /* no response, maybe it is the other type? */
+               if (ack_timeout_cnt-- < 0) {
+                       d_printf(4, dev, "reboot ack timedout: retrying\n");
+                       goto do_reboot_ack;
+               } else {
+                       dev_err(dev, "reboot ack timedout too long: "
+                               "trying reboot\n");
+                       goto do_reboot;
+               }
+               break;
+       case -EPROTO:
+       case -ESHUTDOWN:        /* dev is gone */
+               goto error_dev_gone;
+       default:
+               dev_err(dev, "device reboot ack: error %d while waiting for "
+                       "reboot ack barker - rebooting\n", result);
+               goto do_reboot;
+       }
+       d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
+       result = 0;
+exit_timeout:
+error_dev_gone:
+       d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
+               i2400m, flags, result);
+       return result;
+
+error_timeout:
+       dev_err(dev, "Timed out waiting for reboot ack\n");
+       result = -ETIMEDOUT;
+       goto exit_timeout;
+}
+
+
+/*
+ * Read the MAC addr
+ *
+ * The position this function reads is fixed in device memory and
+ * always available, even without firmware.
+ *
+ * Note we specify we want to read only six bytes, but provide space
+ * for 16, as we always get it rounded up.
+ */
+int i2400m_read_mac_addr(struct i2400m *i2400m)
+{
+       int result;
+       struct device *dev = i2400m_dev(i2400m);
+       struct net_device *net_dev = i2400m->wimax_dev.net_dev;
+       struct i2400m_bootrom_header *cmd;
+       struct {
+               struct i2400m_bootrom_header ack;
+               u8 ack_pl[16];
+       } __packed ack_buf;
+
+       d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
+       cmd = i2400m->bm_cmd_buf;
+       cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
+       cmd->target_addr = cpu_to_le32(0x00203fe8);
+       cmd->data_size = cpu_to_le32(6);
+       result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
+                              &ack_buf.ack, sizeof(ack_buf), 0);
+       if (result < 0) {
+               dev_err(dev, "BM: read mac addr failed: %d\n", result);
+               goto error_read_mac;
+       }
+       d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
+       if (i2400m->bus_bm_mac_addr_impaired == 1) {
+               ack_buf.ack_pl[0] = 0x00;
+               ack_buf.ack_pl[1] = 0x16;
+               ack_buf.ack_pl[2] = 0xd3;
+               get_random_bytes(&ack_buf.ack_pl[3], 3);
+               dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
+                       "mac addr is %pM\n", ack_buf.ack_pl);
+               result = 0;
+       }
+       net_dev->addr_len = ETH_ALEN;
+       memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
+error_read_mac:
+       d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
+       return result;
+}
+
+
+/*
+ * Initialize a non signed boot
+ *
+ * This implies sending some magic values to the device's memory. Note
+ * we convert the values to little endian in the same array
+ * declaration.
+ */
+static
+int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
+{
+       unsigned i = 0;
+       int ret = 0;
+       struct device *dev = i2400m_dev(i2400m);
+       d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
+       if (i2400m->bus_bm_pokes_table) {
+               while (i2400m->bus_bm_pokes_table[i].address) {
+                       ret = i2400m_download_chunk(
+                               i2400m,
+                               &i2400m->bus_bm_pokes_table[i].data,
+                               sizeof(i2400m->bus_bm_pokes_table[i].data),
+                               i2400m->bus_bm_pokes_table[i].address, 1, 1);
+                       if (ret < 0)
+                               break;
+                       i++;
+               }
+       }
+       d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
+       return ret;
+}
+
+
+/*
+ * Initialize the signed boot process
+ *
+ * @i2400m: device descriptor
+ *
+ * @bcf_hdr: pointer to the firmware header; assumes it is fully in
+ *     memory (it has gone through basic validation).
+ *
+ * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
+ *     rebooted.
+ *
+ * This writes the firmware BCF header to the device using the
+ * HASH_PAYLOAD_ONLY command.
+ */
+static
+int i2400m_dnload_init_signed(struct i2400m *i2400m,
+                             const struct i2400m_bcf_hdr *bcf_hdr)
+{
+       int ret;
+       struct device *dev = i2400m_dev(i2400m);
+       struct {
+               struct i2400m_bootrom_header cmd;
+               struct i2400m_bcf_hdr cmd_pl;
+       } __packed *cmd_buf;
+       struct i2400m_bootrom_header ack;
+
+       d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
+       cmd_buf = i2400m->bm_cmd_buf;
+       cmd_buf->cmd.command =
+               i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
+       cmd_buf->cmd.target_addr = 0;
+       cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
+       memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
+       ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
+                           &ack, sizeof(ack), 0);
+       if (ret >= 0)
+               ret = 0;
+       d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
+       return ret;
+}
+
+
+/*
+ * Initialize the firmware download at the device size
+ *
+ * Multiplex to the one that matters based on the device's mode
+ * (signed or non-signed).
+ */
+static
+int i2400m_dnload_init(struct i2400m *i2400m,
+                      const struct i2400m_bcf_hdr *bcf_hdr)
+{
+       int result;
+       struct device *dev = i2400m_dev(i2400m);
+
+       if (i2400m_boot_is_signed(i2400m)) {
+               d_printf(1, dev, "signed boot\n");
+               result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
+               if (result == -ERESTARTSYS)
+                       return result;
+               if (result < 0)
+                       dev_err(dev, "firmware %s: signed boot download "
+                               "initialization failed: %d\n",
+                               i2400m->fw_name, result);
+       } else {
+               /* non-signed boot process without pokes */
+               d_printf(1, dev, "non-signed boot\n");
+               result = i2400m_dnload_init_nonsigned(i2400m);
+               if (result == -ERESTARTSYS)
+                       return result;
+               if (result < 0)
+                       dev_err(dev, "firmware %s: non-signed download "
+                               "initialization failed: %d\n",
+                               i2400m->fw_name, result);
+       }
+       return result;
+}
+
+
+/*
+ * Run consistency tests on the firmware file and load up headers
+ *
+ * Check for the firmware being made for the i2400m device,
+ * etc...These checks are mostly informative, as the device will make
+ * them too; but the driver's response is more informative on what
+ * went wrong.
+ *
+ * This will also look at all the headers present on the firmware
+ * file, and update i2400m->fw_bcf_hdr to point to them.
+ */
+static
+int i2400m_fw_hdr_check(struct i2400m *i2400m,
+                       const struct i2400m_bcf_hdr *bcf_hdr,
+                       size_t index, size_t offset)
+{
+       struct device *dev = i2400m_dev(i2400m);
+
+       unsigned module_type, header_len, major_version, minor_version,
+               module_id, module_vendor, date, size;
+
+       module_type = le32_to_cpu(bcf_hdr->module_type);
+       header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
+       major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
+               >> 16;
+       minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
+       module_id = le32_to_cpu(bcf_hdr->module_id);
+       module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
+       date = le32_to_cpu(bcf_hdr->date);
+       size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
+
+       d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
+                "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
+                i2400m->fw_name, index, offset,
+                module_type, module_vendor, module_id,
+                major_version, minor_version, header_len, size, date);
+
+       /* Hard errors */
+       if (major_version != 1) {
+               dev_err(dev, "firmware %s #%zd@%08zx: major header version "
+                       "v%u.%u not supported\n",
+                       i2400m->fw_name, index, offset,
+                       major_version, minor_version);
+               return -EBADF;
+       }
+
+       if (module_type != 6) {         /* built for the right hardware? */
+               dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
+                       "type 0x%x; aborting\n",
+                       i2400m->fw_name, index, offset,
+                       module_type);
+               return -EBADF;
+       }
+
+       if (module_vendor != 0x8086) {
+               dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
+                       "vendor 0x%x; aborting\n",
+                       i2400m->fw_name, index, offset, module_vendor);
+               return -EBADF;
+       }
+
+       if (date < 0x20080300)
+               dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
+                        "too old; unsupported\n",
+                        i2400m->fw_name, index, offset, date);
+       return 0;
+}
+
+
+/*
+ * Run consistency tests on the firmware file and load up headers
+ *
+ * Check for the firmware being made for the i2400m device,
+ * etc...These checks are mostly informative, as the device will make
+ * them too; but the driver's response is more informative on what
+ * went wrong.
+ *
+ * This will also look at all the headers present on the firmware
+ * file, and update i2400m->fw_hdrs to point to them.
+ */
+static
+int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
+{
+       int result;
+       struct device *dev = i2400m_dev(i2400m);
+       size_t headers = 0;
+       const struct i2400m_bcf_hdr *bcf_hdr;
+       const void *itr, *next, *top;
+       size_t slots = 0, used_slots = 0;
+
+       for (itr = bcf, top = itr + bcf_size;
+            itr < top;
+            headers++, itr = next) {
+               size_t leftover, offset, header_len, size;
+
+               leftover = top - itr;
+               offset = itr - bcf;
+               if (leftover <= sizeof(*bcf_hdr)) {
+                       dev_err(dev, "firmware %s: %zu B left at @%zx, "
+                               "not enough for BCF header\n",
+                               i2400m->fw_name, leftover, offset);
+                       break;
+               }
+               bcf_hdr = itr;
+               /* Only the first header is supposed to be followed by
+                * payload */
+               header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
+               size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
+               if (headers == 0)
+                       next = itr + size;
+               else
+                       next = itr + header_len;
+
+               result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
+               if (result < 0)
+                       continue;
+               if (used_slots + 1 >= slots) {
+                       /* +1 -> we need to account for the one we'll
+                        * occupy and at least an extra one for
+                        * always being NULL */
+                       result = i2400m_zrealloc_2x(
+                               (void **) &i2400m->fw_hdrs, &slots,
+                               sizeof(i2400m->fw_hdrs[0]),
+                               GFP_KERNEL);
+                       if (result < 0)
+                               goto error_zrealloc;
+               }
+               i2400m->fw_hdrs[used_slots] = bcf_hdr;
+               used_slots++;
+       }
+       if (headers == 0) {
+               dev_err(dev, "firmware %s: no usable headers found\n",
+                       i2400m->fw_name);
+               result = -EBADF;
+       } else
+               result = 0;
+error_zrealloc:
+       return result;
+}
+
+
+/*
+ * Match a barker to a BCF header module ID
+ *
+ * The device sends a barker which tells the firmware loader which
+ * header in the BCF file has to be used. This does the matching.
+ */
+static
+unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
+                             const struct i2400m_bcf_hdr *bcf_hdr)
+{
+       u32 barker = le32_to_cpu(i2400m->barker->data[0])
+               & 0x7fffffff;
+       u32 module_id = le32_to_cpu(bcf_hdr->module_id)
+               & 0x7fffffff;   /* high bit used for something else */
+
+       /* special case for 5x50 */
+       if (barker == I2400M_SBOOT_BARKER && module_id == 0)
+               return 1;
+       if (module_id == barker)
+               return 1;
+       return 0;
+}
+
+static
+const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
+{
+       struct device *dev = i2400m_dev(i2400m);
+       const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
+       unsigned i = 0;
+       u32 barker = le32_to_cpu(i2400m->barker->data[0]);
+
+       d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
+       if (barker == I2400M_NBOOT_BARKER) {
+               bcf_hdr = i2400m->fw_hdrs[0];
+               d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
+                        "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
+               return bcf_hdr;
+       }
+       for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
+               bcf_hdr = *bcf_itr;
+               if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
+                       d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
+                                i, le32_to_cpu(bcf_hdr->module_id));
+                       return bcf_hdr;
+               } else
+                       d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
+                                i, le32_to_cpu(bcf_hdr->module_id));
+       }
+       dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
+               barker);
+       return NULL;
+}
+
+
+/*
+ * Download the firmware to the device
+ *
+ * @i2400m: device descriptor
+ * @bcf: pointer to loaded (and minimally verified for consistency)
+ *    firmware
+ * @bcf_size: size of the @bcf buffer (header plus payloads)
+ *
+ * The process for doing this is described in this file's header.
+ *
+ * Note we only reinitialize boot-mode if the flags say so. Some hw
+ * iterations need it, some don't. In any case, if we loop, we always
+ * need to reinitialize the boot room, hence the flags modification.
+ */
+static
+int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
+                    size_t fw_size, enum i2400m_bri flags)
+{
+       int ret = 0;
+       struct device *dev = i2400m_dev(i2400m);
+       int count = i2400m->bus_bm_retries;
+       const struct i2400m_bcf_hdr *bcf_hdr;
+       size_t bcf_size;
+
+       d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
+                 i2400m, bcf, fw_size);
+       i2400m->boot_mode = 1;
+       wmb();          /* Make sure other readers see it */
+hw_reboot:
+       if (count-- == 0) {
+               ret = -ERESTARTSYS;
+               dev_err(dev, "device rebooted too many times, aborting\n");
+               goto error_too_many_reboots;
+       }
+       if (flags & I2400M_BRI_MAC_REINIT) {
+               ret = i2400m_bootrom_init(i2400m, flags);
+               if (ret < 0) {
+                       dev_err(dev, "bootrom init failed: %d\n", ret);
+                       goto error_bootrom_init;
+               }
+       }
+       flags |= I2400M_BRI_MAC_REINIT;
+
+       /*
+        * Initialize the download, push the bytes to the device and
+        * then jump to the new firmware. Note @ret is passed with the
+        * offset of the jump instruction to _dnload_finalize()
+        *
+        * Note we need to use the BCF header in the firmware image
+        * that matches the barker that the device sent when it
+        * rebooted, so it has to be passed along.
+        */
+       ret = -EBADF;
+       bcf_hdr = i2400m_bcf_hdr_find(i2400m);
+       if (bcf_hdr == NULL)
+               goto error_bcf_hdr_find;
+
+       ret = i2400m_dnload_init(i2400m, bcf_hdr);
+       if (ret == -ERESTARTSYS)
+               goto error_dev_rebooted;
+       if (ret < 0)
+               goto error_dnload_init;
+
+       /*
+        * bcf_size refers to one header size plus the fw sections size
+        * indicated by the header,ie. if there are other extended headers
+        * at the tail, they are not counted
+        */
+       bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
+       ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
+       if (ret == -ERESTARTSYS)
+               goto error_dev_rebooted;
+       if (ret < 0) {
+               dev_err(dev, "fw %s: download failed: %d\n",
+                       i2400m->fw_name, ret);
+               goto error_dnload_bcf;
+       }
+
+       ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
+       if (ret == -ERESTARTSYS)
+               goto error_dev_rebooted;
+       if (ret < 0) {
+               dev_err(dev, "fw %s: "
+                       "download finalization failed: %d\n",
+                       i2400m->fw_name, ret);
+               goto error_dnload_finalize;
+       }
+
+       d_printf(2, dev, "fw %s successfully uploaded\n",
+                i2400m->fw_name);
+       i2400m->boot_mode = 0;
+       wmb();          /* Make sure i2400m_msg_to_dev() sees boot_mode */
+error_dnload_finalize:
+error_dnload_bcf:
+error_dnload_init:
+error_bcf_hdr_find:
+error_bootrom_init:
+error_too_many_reboots:
+       d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
+               i2400m, bcf, fw_size, ret);
+       return ret;
+
+error_dev_rebooted:
+       dev_err(dev, "device rebooted, %d tries left\n", count);
+       /* we got the notification already, no need to wait for it again */
+       flags |= I2400M_BRI_SOFT;
+       goto hw_reboot;
+}
+
+static
+int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
+                       enum i2400m_bri flags)
+{
+       int ret;
+       struct device *dev = i2400m_dev(i2400m);
+       const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
+
+       d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
+       bcf = (void *) fw->data;
+       ret = i2400m_fw_check(i2400m, bcf, fw->size);
+       if (ret >= 0)
+               ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
+       if (ret < 0)
+               dev_err(dev, "%s: cannot use: %d, skipping\n",
+                       i2400m->fw_name, ret);
+       kfree(i2400m->fw_hdrs);
+       i2400m->fw_hdrs = NULL;
+       d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
+       return ret;
+}
+
+
+/* Refcounted container for firmware data */
+struct i2400m_fw {
+       struct kref kref;
+       const struct firmware *fw;
+};
+
+
+static
+void i2400m_fw_destroy(struct kref *kref)
+{
+       struct i2400m_fw *i2400m_fw =
+               container_of(kref, struct i2400m_fw, kref);
+       release_firmware(i2400m_fw->fw);
+       kfree(i2400m_fw);
+}
+
+
+static
+struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
+{
+       if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
+               kref_get(&i2400m_fw->kref);
+       return i2400m_fw;
+}
+
+
+static
+void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
+{
+       kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
+}
+
+
+/**
+ * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
+ *
+ * @i2400m: device descriptor
+ *
+ * Returns: >= 0 if ok, < 0 errno code on error.
+ *
+ * This sets up the firmware upload environment, loads the firmware
+ * file from disk, verifies and then calls the firmware upload process
+ * per se.
+ *
+ * Can be called either from probe, or after a warm reset.  Can not be
+ * called from within an interrupt.  All the flow in this code is
+ * single-threade; all I/Os are synchronous.
+ */
+int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
+{
+       int ret, itr;
+       struct device *dev = i2400m_dev(i2400m);
+       struct i2400m_fw *i2400m_fw;
+       const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
+       const struct firmware *fw;
+       const char *fw_name;
+
+       d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
+
+       ret = -ENODEV;
+       spin_lock(&i2400m->rx_lock);
+       i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
+       spin_unlock(&i2400m->rx_lock);
+       if (i2400m_fw == (void *) ~0) {
+               dev_err(dev, "can't load firmware now!");
+               goto out;
+       } else if (i2400m_fw != NULL) {
+               dev_info(dev, "firmware %s: loading from cache\n",
+                        i2400m->fw_name);
+               ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
+               i2400m_fw_put(i2400m_fw);
+               goto out;
+       }
+
+       /* Load firmware files to memory. */
+       for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
+               fw_name = i2400m->bus_fw_names[itr];
+               if (fw_name == NULL) {
+                       dev_err(dev, "Could not find a usable firmware image\n");
+                       break;
+               }
+               d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
+               ret = request_firmware(&fw, fw_name, dev);
+               if (ret < 0) {
+                       dev_err(dev, "fw %s: cannot load file: %d\n",
+                               fw_name, ret);
+                       continue;
+               }
+               i2400m->fw_name = fw_name;
+               ret = i2400m_fw_bootstrap(i2400m, fw, flags);
+               release_firmware(fw);
+               if (ret >= 0)   /* firmware loaded successfully */
+                       break;
+               i2400m->fw_name = NULL;
+       }
+out:
+       d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
+       return ret;
+}
+EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
+
+
+void i2400m_fw_cache(struct i2400m *i2400m)
+{
+       int result;
+       struct i2400m_fw *i2400m_fw;
+       struct device *dev = i2400m_dev(i2400m);
+
+       /* if there is anything there, free it -- now, this'd be weird */
+       spin_lock(&i2400m->rx_lock);
+       i2400m_fw = i2400m->fw_cached;
+       spin_unlock(&i2400m->rx_lock);
+       if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
+               i2400m_fw_put(i2400m_fw);
+               WARN(1, "%s:%u: still cached fw still present?\n",
+                    __func__, __LINE__);
+       }
+
+       if (i2400m->fw_name == NULL) {
+               dev_err(dev, "firmware n/a: can't cache\n");
+               i2400m_fw = (void *) ~0;
+               goto out;
+       }
+
+       i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
+       if (i2400m_fw == NULL)
+               goto out;
+       kref_init(&i2400m_fw->kref);
+       result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
+       if (result < 0) {
+               dev_err(dev, "firmware %s: failed to cache: %d\n",
+                       i2400m->fw_name, result);
+               kfree(i2400m_fw);
+               i2400m_fw = (void *) ~0;
+       } else
+               dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
+out:
+       spin_lock(&i2400m->rx_lock);
+       i2400m->fw_cached = i2400m_fw;
+       spin_unlock(&i2400m->rx_lock);
+}
+
+
+void i2400m_fw_uncache(struct i2400m *i2400m)
+{
+       struct i2400m_fw *i2400m_fw;
+
+       spin_lock(&i2400m->rx_lock);
+       i2400m_fw = i2400m->fw_cached;
+       i2400m->fw_cached = NULL;
+       spin_unlock(&i2400m->rx_lock);
+
+       if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
+               i2400m_fw_put(i2400m_fw);
+}
+