Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wan / z85230.c
diff --git a/kernel/drivers/net/wan/z85230.c b/kernel/drivers/net/wan/z85230.c
new file mode 100644 (file)
index 0000000..feacc3b
--- /dev/null
@@ -0,0 +1,1795 @@
+/*
+ *     This program is free software; you can redistribute it and/or
+ *     modify it under the terms of the GNU General Public License
+ *     as published by the Free Software Foundation; either version
+ *     2 of the License, or (at your option) any later version.
+ *
+ *     (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
+ *     (c) Copyright 2000, 2001 Red Hat Inc
+ *
+ *     Development of this driver was funded by Equiinet Ltd
+ *                     http://www.equiinet.com
+ *
+ *     ChangeLog:
+ *
+ *     Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
+ *     unification of all the Z85x30 asynchronous drivers for real.
+ *
+ *     DMA now uses get_free_page as kmalloc buffers may span a 64K 
+ *     boundary.
+ *
+ *     Modified for SMP safety and SMP locking by Alan Cox
+ *                                     <alan@lxorguk.ukuu.org.uk>
+ *
+ *     Performance
+ *
+ *     Z85230:
+ *     Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
+ *     X.25 is not unrealistic on all machines. DMA mode can in theory
+ *     handle T1/E1 quite nicely. In practice the limit seems to be about
+ *     512Kbit->1Mbit depending on motherboard.
+ *
+ *     Z85C30:
+ *     64K will take DMA, 9600 baud X.25 should be ok.
+ *
+ *     Z8530:
+ *     Synchronous mode without DMA is unlikely to pass about 2400 baud.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/net.h>
+#include <linux/skbuff.h>
+#include <linux/netdevice.h>
+#include <linux/if_arp.h>
+#include <linux/delay.h>
+#include <linux/hdlc.h>
+#include <linux/ioport.h>
+#include <linux/init.h>
+#include <linux/gfp.h>
+#include <asm/dma.h>
+#include <asm/io.h>
+#define RT_LOCK
+#define RT_UNLOCK
+#include <linux/spinlock.h>
+
+#include "z85230.h"
+
+
+/**
+ *     z8530_read_port - Architecture specific interface function
+ *     @p: port to read
+ *
+ *     Provided port access methods. The Comtrol SV11 requires no delays
+ *     between accesses and uses PC I/O. Some drivers may need a 5uS delay
+ *     
+ *     In the longer term this should become an architecture specific
+ *     section so that this can become a generic driver interface for all
+ *     platforms. For now we only handle PC I/O ports with or without the
+ *     dread 5uS sanity delay.
+ *
+ *     The caller must hold sufficient locks to avoid violating the horrible
+ *     5uS delay rule.
+ */
+
+static inline int z8530_read_port(unsigned long p)
+{
+       u8 r=inb(Z8530_PORT_OF(p));
+       if(p&Z8530_PORT_SLEEP)  /* gcc should figure this out efficiently ! */
+               udelay(5);
+       return r;
+}
+
+/**
+ *     z8530_write_port - Architecture specific interface function
+ *     @p: port to write
+ *     @d: value to write
+ *
+ *     Write a value to a port with delays if need be. Note that the
+ *     caller must hold locks to avoid read/writes from other contexts
+ *     violating the 5uS rule
+ *
+ *     In the longer term this should become an architecture specific
+ *     section so that this can become a generic driver interface for all
+ *     platforms. For now we only handle PC I/O ports with or without the
+ *     dread 5uS sanity delay.
+ */
+
+
+static inline void z8530_write_port(unsigned long p, u8 d)
+{
+       outb(d,Z8530_PORT_OF(p));
+       if(p&Z8530_PORT_SLEEP)
+               udelay(5);
+}
+
+
+
+static void z8530_rx_done(struct z8530_channel *c);
+static void z8530_tx_done(struct z8530_channel *c);
+
+
+/**
+ *     read_zsreg - Read a register from a Z85230 
+ *     @c: Z8530 channel to read from (2 per chip)
+ *     @reg: Register to read
+ *     FIXME: Use a spinlock.
+ *     
+ *     Most of the Z8530 registers are indexed off the control registers.
+ *     A read is done by writing to the control register and reading the
+ *     register back.  The caller must hold the lock
+ */
+static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
+{
+       if(reg)
+               z8530_write_port(c->ctrlio, reg);
+       return z8530_read_port(c->ctrlio);
+}
+
+/**
+ *     read_zsdata - Read the data port of a Z8530 channel
+ *     @c: The Z8530 channel to read the data port from
+ *
+ *     The data port provides fast access to some things. We still
+ *     have all the 5uS delays to worry about.
+ */
+
+static inline u8 read_zsdata(struct z8530_channel *c)
+{
+       u8 r;
+       r=z8530_read_port(c->dataio);
+       return r;
+}
+
+/**
+ *     write_zsreg - Write to a Z8530 channel register
+ *     @c: The Z8530 channel
+ *     @reg: Register number
+ *     @val: Value to write
+ *
+ *     Write a value to an indexed register. The caller must hold the lock
+ *     to honour the irritating delay rules. We know about register 0
+ *     being fast to access.
+ *
+ *      Assumes c->lock is held.
+ */
+static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
+{
+       if(reg)
+               z8530_write_port(c->ctrlio, reg);
+       z8530_write_port(c->ctrlio, val);
+
+}
+
+/**
+ *     write_zsctrl - Write to a Z8530 control register
+ *     @c: The Z8530 channel
+ *     @val: Value to write
+ *
+ *     Write directly to the control register on the Z8530
+ */
+
+static inline void write_zsctrl(struct z8530_channel *c, u8 val)
+{
+       z8530_write_port(c->ctrlio, val);
+}
+
+/**
+ *     write_zsdata - Write to a Z8530 control register
+ *     @c: The Z8530 channel
+ *     @val: Value to write
+ *
+ *     Write directly to the data register on the Z8530
+ */
+
+
+static inline void write_zsdata(struct z8530_channel *c, u8 val)
+{
+       z8530_write_port(c->dataio, val);
+}
+
+/*
+ *     Register loading parameters for a dead port
+ */
+u8 z8530_dead_port[]=
+{
+       255
+};
+
+EXPORT_SYMBOL(z8530_dead_port);
+
+/*
+ *     Register loading parameters for currently supported circuit types
+ */
+
+
+/*
+ *     Data clocked by telco end. This is the correct data for the UK
+ *     "kilostream" service, and most other similar services.
+ */
+u8 z8530_hdlc_kilostream[]=
+{
+       4,      SYNC_ENAB|SDLC|X1CLK,
+       2,      0,      /* No vector */
+       1,      0,
+       3,      ENT_HM|RxCRC_ENAB|Rx8,
+       5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
+       9,      0,              /* Disable interrupts */
+       6,      0xFF,
+       7,      FLAG,
+       10,     ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
+       11,     TCTRxCP,
+       14,     DISDPLL,
+       15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
+       1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
+       9,      NV|MIE|NORESET,
+       255
+};
+
+EXPORT_SYMBOL(z8530_hdlc_kilostream);
+
+/*
+ *     As above but for enhanced chips.
+ */
+u8 z8530_hdlc_kilostream_85230[]=
+{
+       4,      SYNC_ENAB|SDLC|X1CLK,
+       2,      0,      /* No vector */
+       1,      0,
+       3,      ENT_HM|RxCRC_ENAB|Rx8,
+       5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
+       9,      0,              /* Disable interrupts */
+       6,      0xFF,
+       7,      FLAG,
+       10,     ABUNDER|NRZ|CRCPS,      /* MARKIDLE?? */
+       11,     TCTRxCP,
+       14,     DISDPLL,
+       15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
+       1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
+       9,      NV|MIE|NORESET,
+       23,     3,              /* Extended mode AUTO TX and EOM*/
+       
+       255
+};
+
+EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
+
+/**
+ *     z8530_flush_fifo - Flush on chip RX FIFO
+ *     @c: Channel to flush
+ *
+ *     Flush the receive FIFO. There is no specific option for this, we 
+ *     blindly read bytes and discard them. Reading when there is no data
+ *     is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
+ *     
+ *     All locking is handled for the caller. On return data may still be
+ *     present if it arrived during the flush.
+ */
+static void z8530_flush_fifo(struct z8530_channel *c)
+{
+       read_zsreg(c, R1);
+       read_zsreg(c, R1);
+       read_zsreg(c, R1);
+       read_zsreg(c, R1);
+       if(c->dev->type==Z85230)
+       {
+               read_zsreg(c, R1);
+               read_zsreg(c, R1);
+               read_zsreg(c, R1);
+               read_zsreg(c, R1);
+       }
+}      
+
+/**
+ *     z8530_rtsdtr - Control the outgoing DTS/RTS line
+ *     @c: The Z8530 channel to control;
+ *     @set: 1 to set, 0 to clear
+ *
+ *     Sets or clears DTR/RTS on the requested line. All locking is handled
+ *     by the caller. For now we assume all boards use the actual RTS/DTR
+ *     on the chip. Apparently one or two don't. We'll scream about them
+ *     later.
+ */
+
+static void z8530_rtsdtr(struct z8530_channel *c, int set)
+{
+       if (set)
+               c->regs[5] |= (RTS | DTR);
+       else
+               c->regs[5] &= ~(RTS | DTR);
+       write_zsreg(c, R5, c->regs[5]);
+}
+
+/**
+ *     z8530_rx - Handle a PIO receive event
+ *     @c: Z8530 channel to process
+ *
+ *     Receive handler for receiving in PIO mode. This is much like the 
+ *     async one but not quite the same or as complex
+ *
+ *     Note: Its intended that this handler can easily be separated from
+ *     the main code to run realtime. That'll be needed for some machines
+ *     (eg to ever clock 64kbits on a sparc ;)).
+ *
+ *     The RT_LOCK macros don't do anything now. Keep the code covered
+ *     by them as short as possible in all circumstances - clocks cost
+ *     baud. The interrupt handler is assumed to be atomic w.r.t. to
+ *     other code - this is true in the RT case too.
+ *
+ *     We only cover the sync cases for this. If you want 2Mbit async
+ *     do it yourself but consider medical assistance first. This non DMA 
+ *     synchronous mode is portable code. The DMA mode assumes PCI like 
+ *     ISA DMA
+ *
+ *     Called with the device lock held
+ */
+static void z8530_rx(struct z8530_channel *c)
+{
+       u8 ch,stat;
+
+       while(1)
+       {
+               /* FIFO empty ? */
+               if(!(read_zsreg(c, R0)&1))
+                       break;
+               ch=read_zsdata(c);
+               stat=read_zsreg(c, R1);
+       
+               /*
+                *      Overrun ?
+                */
+               if(c->count < c->max)
+               {
+                       *c->dptr++=ch;
+                       c->count++;
+               }
+
+               if(stat&END_FR)
+               {
+               
+                       /*
+                        *      Error ?
+                        */
+                       if(stat&(Rx_OVR|CRC_ERR))
+                       {
+                               /* Rewind the buffer and return */
+                               if(c->skb)
+                                       c->dptr=c->skb->data;
+                               c->count=0;
+                               if(stat&Rx_OVR)
+                               {
+                                       pr_warn("%s: overrun\n", c->dev->name);
+                                       c->rx_overrun++;
+                               }
+                               if(stat&CRC_ERR)
+                               {
+                                       c->rx_crc_err++;
+                                       /* printk("crc error\n"); */
+                               }
+                               /* Shove the frame upstream */
+                       }
+                       else
+                       {
+                               /*
+                                *      Drop the lock for RX processing, or
+                                *      there are deadlocks
+                                */
+                               z8530_rx_done(c);
+                               write_zsctrl(c, RES_Rx_CRC);
+                       }
+               }
+       }
+       /*
+        *      Clear irq
+        */
+       write_zsctrl(c, ERR_RES);
+       write_zsctrl(c, RES_H_IUS);
+}
+
+
+/**
+ *     z8530_tx - Handle a PIO transmit event
+ *     @c: Z8530 channel to process
+ *
+ *     Z8530 transmit interrupt handler for the PIO mode. The basic
+ *     idea is to attempt to keep the FIFO fed. We fill as many bytes
+ *     in as possible, its quite possible that we won't keep up with the
+ *     data rate otherwise.
+ */
+static void z8530_tx(struct z8530_channel *c)
+{
+       while(c->txcount) {
+               /* FIFO full ? */
+               if(!(read_zsreg(c, R0)&4))
+                       return;
+               c->txcount--;
+               /*
+                *      Shovel out the byte
+                */
+               write_zsreg(c, R8, *c->tx_ptr++);
+               write_zsctrl(c, RES_H_IUS);
+               /* We are about to underflow */
+               if(c->txcount==0)
+               {
+                       write_zsctrl(c, RES_EOM_L);
+                       write_zsreg(c, R10, c->regs[10]&~ABUNDER);
+               }
+       }
+
+       
+       /*
+        *      End of frame TX - fire another one
+        */
+        
+       write_zsctrl(c, RES_Tx_P);
+
+       z8530_tx_done(c);        
+       write_zsctrl(c, RES_H_IUS);
+}
+
+/**
+ *     z8530_status - Handle a PIO status exception
+ *     @chan: Z8530 channel to process
+ *
+ *     A status event occurred in PIO synchronous mode. There are several
+ *     reasons the chip will bother us here. A transmit underrun means we
+ *     failed to feed the chip fast enough and just broke a packet. A DCD
+ *     change is a line up or down.
+ */
+
+static void z8530_status(struct z8530_channel *chan)
+{
+       u8 status, altered;
+
+       status = read_zsreg(chan, R0);
+       altered = chan->status ^ status;
+
+       chan->status = status;
+
+       if (status & TxEOM) {
+/*             printk("%s: Tx underrun.\n", chan->dev->name); */
+               chan->netdevice->stats.tx_fifo_errors++;
+               write_zsctrl(chan, ERR_RES);
+               z8530_tx_done(chan);
+       }
+
+       if (altered & chan->dcdcheck)
+       {
+               if (status & chan->dcdcheck) {
+                       pr_info("%s: DCD raised\n", chan->dev->name);
+                       write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
+                       if (chan->netdevice)
+                               netif_carrier_on(chan->netdevice);
+               } else {
+                       pr_info("%s: DCD lost\n", chan->dev->name);
+                       write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
+                       z8530_flush_fifo(chan);
+                       if (chan->netdevice)
+                               netif_carrier_off(chan->netdevice);
+               }
+
+       }
+       write_zsctrl(chan, RES_EXT_INT);
+       write_zsctrl(chan, RES_H_IUS);
+}
+
+struct z8530_irqhandler z8530_sync =
+{
+       z8530_rx,
+       z8530_tx,
+       z8530_status
+};
+
+EXPORT_SYMBOL(z8530_sync);
+
+/**
+ *     z8530_dma_rx - Handle a DMA RX event
+ *     @chan: Channel to handle
+ *
+ *     Non bus mastering DMA interfaces for the Z8x30 devices. This
+ *     is really pretty PC specific. The DMA mode means that most receive
+ *     events are handled by the DMA hardware. We get a kick here only if
+ *     a frame ended.
+ */
+static void z8530_dma_rx(struct z8530_channel *chan)
+{
+       if(chan->rxdma_on)
+       {
+               /* Special condition check only */
+               u8 status;
+       
+               read_zsreg(chan, R7);
+               read_zsreg(chan, R6);
+               
+               status=read_zsreg(chan, R1);
+       
+               if(status&END_FR)
+               {
+                       z8530_rx_done(chan);    /* Fire up the next one */
+               }               
+               write_zsctrl(chan, ERR_RES);
+               write_zsctrl(chan, RES_H_IUS);
+       }
+       else
+       {
+               /* DMA is off right now, drain the slow way */
+               z8530_rx(chan);
+       }       
+}
+
+/**
+ *     z8530_dma_tx - Handle a DMA TX event
+ *     @chan:  The Z8530 channel to handle
+ *
+ *     We have received an interrupt while doing DMA transmissions. It
+ *     shouldn't happen. Scream loudly if it does.
+ */
+static void z8530_dma_tx(struct z8530_channel *chan)
+{
+       if(!chan->dma_tx)
+       {
+               pr_warn("Hey who turned the DMA off?\n");
+               z8530_tx(chan);
+               return;
+       }
+       /* This shouldn't occur in DMA mode */
+       pr_err("DMA tx - bogus event!\n");
+       z8530_tx(chan);
+}
+
+/**
+ *     z8530_dma_status - Handle a DMA status exception
+ *     @chan: Z8530 channel to process
+ *     
+ *     A status event occurred on the Z8530. We receive these for two reasons
+ *     when in DMA mode. Firstly if we finished a packet transfer we get one
+ *     and kick the next packet out. Secondly we may see a DCD change.
+ *
+ */
+static void z8530_dma_status(struct z8530_channel *chan)
+{
+       u8 status, altered;
+
+       status=read_zsreg(chan, R0);
+       altered=chan->status^status;
+       
+       chan->status=status;
+
+
+       if(chan->dma_tx)
+       {
+               if(status&TxEOM)
+               {
+                       unsigned long flags;
+       
+                       flags=claim_dma_lock();
+                       disable_dma(chan->txdma);
+                       clear_dma_ff(chan->txdma);      
+                       chan->txdma_on=0;
+                       release_dma_lock(flags);
+                       z8530_tx_done(chan);
+               }
+       }
+
+       if (altered & chan->dcdcheck)
+       {
+               if (status & chan->dcdcheck) {
+                       pr_info("%s: DCD raised\n", chan->dev->name);
+                       write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
+                       if (chan->netdevice)
+                               netif_carrier_on(chan->netdevice);
+               } else {
+                       pr_info("%s: DCD lost\n", chan->dev->name);
+                       write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
+                       z8530_flush_fifo(chan);
+                       if (chan->netdevice)
+                               netif_carrier_off(chan->netdevice);
+               }
+       }
+
+       write_zsctrl(chan, RES_EXT_INT);
+       write_zsctrl(chan, RES_H_IUS);
+}
+
+static struct z8530_irqhandler z8530_dma_sync = {
+       z8530_dma_rx,
+       z8530_dma_tx,
+       z8530_dma_status
+};
+
+static struct z8530_irqhandler z8530_txdma_sync = {
+       z8530_rx,
+       z8530_dma_tx,
+       z8530_dma_status
+};
+
+/**
+ *     z8530_rx_clear - Handle RX events from a stopped chip
+ *     @c: Z8530 channel to shut up
+ *
+ *     Receive interrupt vectors for a Z8530 that is in 'parked' mode.
+ *     For machines with PCI Z85x30 cards, or level triggered interrupts
+ *     (eg the MacII) we must clear the interrupt cause or die.
+ */
+
+
+static void z8530_rx_clear(struct z8530_channel *c)
+{
+       /*
+        *      Data and status bytes
+        */
+       u8 stat;
+
+       read_zsdata(c);
+       stat=read_zsreg(c, R1);
+       
+       if(stat&END_FR)
+               write_zsctrl(c, RES_Rx_CRC);
+       /*
+        *      Clear irq
+        */
+       write_zsctrl(c, ERR_RES);
+       write_zsctrl(c, RES_H_IUS);
+}
+
+/**
+ *     z8530_tx_clear - Handle TX events from a stopped chip
+ *     @c: Z8530 channel to shut up
+ *
+ *     Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
+ *     For machines with PCI Z85x30 cards, or level triggered interrupts
+ *     (eg the MacII) we must clear the interrupt cause or die.
+ */
+
+static void z8530_tx_clear(struct z8530_channel *c)
+{
+       write_zsctrl(c, RES_Tx_P);
+       write_zsctrl(c, RES_H_IUS);
+}
+
+/**
+ *     z8530_status_clear - Handle status events from a stopped chip
+ *     @chan: Z8530 channel to shut up
+ *
+ *     Status interrupt vectors for a Z8530 that is in 'parked' mode.
+ *     For machines with PCI Z85x30 cards, or level triggered interrupts
+ *     (eg the MacII) we must clear the interrupt cause or die.
+ */
+
+static void z8530_status_clear(struct z8530_channel *chan)
+{
+       u8 status=read_zsreg(chan, R0);
+       if(status&TxEOM)
+               write_zsctrl(chan, ERR_RES);
+       write_zsctrl(chan, RES_EXT_INT);
+       write_zsctrl(chan, RES_H_IUS);
+}
+
+struct z8530_irqhandler z8530_nop=
+{
+       z8530_rx_clear,
+       z8530_tx_clear,
+       z8530_status_clear
+};
+
+
+EXPORT_SYMBOL(z8530_nop);
+
+/**
+ *     z8530_interrupt - Handle an interrupt from a Z8530
+ *     @irq:   Interrupt number
+ *     @dev_id: The Z8530 device that is interrupting.
+ *
+ *     A Z85[2]30 device has stuck its hand in the air for attention.
+ *     We scan both the channels on the chip for events and then call
+ *     the channel specific call backs for each channel that has events.
+ *     We have to use callback functions because the two channels can be
+ *     in different modes.
+ *
+ *     Locking is done for the handlers. Note that locking is done
+ *     at the chip level (the 5uS delay issue is per chip not per
+ *     channel). c->lock for both channels points to dev->lock
+ */
+
+irqreturn_t z8530_interrupt(int irq, void *dev_id)
+{
+       struct z8530_dev *dev=dev_id;
+       u8 uninitialized_var(intr);
+       static volatile int locker=0;
+       int work=0;
+       struct z8530_irqhandler *irqs;
+       
+       if(locker)
+       {
+               pr_err("IRQ re-enter\n");
+               return IRQ_NONE;
+       }
+       locker=1;
+
+       spin_lock(&dev->lock);
+
+       while(++work<5000)
+       {
+
+               intr = read_zsreg(&dev->chanA, R3);
+               if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
+                       break;
+       
+               /* This holds the IRQ status. On the 8530 you must read it from chan 
+                  A even though it applies to the whole chip */
+               
+               /* Now walk the chip and see what it is wanting - it may be
+                  an IRQ for someone else remember */
+                  
+               irqs=dev->chanA.irqs;
+
+               if(intr & (CHARxIP|CHATxIP|CHAEXT))
+               {
+                       if(intr&CHARxIP)
+                               irqs->rx(&dev->chanA);
+                       if(intr&CHATxIP)
+                               irqs->tx(&dev->chanA);
+                       if(intr&CHAEXT)
+                               irqs->status(&dev->chanA);
+               }
+
+               irqs=dev->chanB.irqs;
+
+               if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
+               {
+                       if(intr&CHBRxIP)
+                               irqs->rx(&dev->chanB);
+                       if(intr&CHBTxIP)
+                               irqs->tx(&dev->chanB);
+                       if(intr&CHBEXT)
+                               irqs->status(&dev->chanB);
+               }
+       }
+       spin_unlock(&dev->lock);
+       if(work==5000)
+               pr_err("%s: interrupt jammed - abort(0x%X)!\n",
+                      dev->name, intr);
+       /* Ok all done */
+       locker=0;
+       return IRQ_HANDLED;
+}
+
+EXPORT_SYMBOL(z8530_interrupt);
+
+static const u8 reg_init[16]=
+{
+       0,0,0,0,
+       0,0,0,0,
+       0,0,0,0,
+       0x55,0,0,0
+};
+
+
+/**
+ *     z8530_sync_open - Open a Z8530 channel for PIO
+ *     @dev:   The network interface we are using
+ *     @c:     The Z8530 channel to open in synchronous PIO mode
+ *
+ *     Switch a Z8530 into synchronous mode without DMA assist. We
+ *     raise the RTS/DTR and commence network operation.
+ */
+int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(c->lock, flags);
+
+       c->sync = 1;
+       c->mtu = dev->mtu+64;
+       c->count = 0;
+       c->skb = NULL;
+       c->skb2 = NULL;
+       c->irqs = &z8530_sync;
+
+       /* This loads the double buffer up */
+       z8530_rx_done(c);       /* Load the frame ring */
+       z8530_rx_done(c);       /* Load the backup frame */
+       z8530_rtsdtr(c,1);
+       c->dma_tx = 0;
+       c->regs[R1]|=TxINT_ENAB;
+       write_zsreg(c, R1, c->regs[R1]);
+       write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+
+       spin_unlock_irqrestore(c->lock, flags);
+       return 0;
+}
+
+
+EXPORT_SYMBOL(z8530_sync_open);
+
+/**
+ *     z8530_sync_close - Close a PIO Z8530 channel
+ *     @dev: Network device to close
+ *     @c: Z8530 channel to disassociate and move to idle
+ *
+ *     Close down a Z8530 interface and switch its interrupt handlers
+ *     to discard future events.
+ */
+int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
+{
+       u8 chk;
+       unsigned long flags;
+       
+       spin_lock_irqsave(c->lock, flags);
+       c->irqs = &z8530_nop;
+       c->max = 0;
+       c->sync = 0;
+       
+       chk=read_zsreg(c,R0);
+       write_zsreg(c, R3, c->regs[R3]);
+       z8530_rtsdtr(c,0);
+
+       spin_unlock_irqrestore(c->lock, flags);
+       return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_close);
+
+/**
+ *     z8530_sync_dma_open - Open a Z8530 for DMA I/O
+ *     @dev: The network device to attach
+ *     @c: The Z8530 channel to configure in sync DMA mode.
+ *
+ *     Set up a Z85x30 device for synchronous DMA in both directions. Two
+ *     ISA DMA channels must be available for this to work. We assume ISA
+ *     DMA driven I/O and PC limits on access.
+ */
+int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
+{
+       unsigned long cflags, dflags;
+       
+       c->sync = 1;
+       c->mtu = dev->mtu+64;
+       c->count = 0;
+       c->skb = NULL;
+       c->skb2 = NULL;
+       /*
+        *      Load the DMA interfaces up
+        */
+       c->rxdma_on = 0;
+       c->txdma_on = 0;
+       
+       /*
+        *      Allocate the DMA flip buffers. Limit by page size.
+        *      Everyone runs 1500 mtu or less on wan links so this
+        *      should be fine.
+        */
+        
+       if(c->mtu  > PAGE_SIZE/2)
+               return -EMSGSIZE;
+        
+       c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
+       if(c->rx_buf[0]==NULL)
+               return -ENOBUFS;
+       c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
+       
+       c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
+       if(c->tx_dma_buf[0]==NULL)
+       {
+               free_page((unsigned long)c->rx_buf[0]);
+               c->rx_buf[0]=NULL;
+               return -ENOBUFS;
+       }
+       c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
+
+       c->tx_dma_used=0;
+       c->dma_tx = 1;
+       c->dma_num=0;
+       c->dma_ready=1;
+       
+       /*
+        *      Enable DMA control mode
+        */
+
+       spin_lock_irqsave(c->lock, cflags);
+        
+       /*
+        *      TX DMA via DIR/REQ
+        */
+        
+       c->regs[R14]|= DTRREQ;
+       write_zsreg(c, R14, c->regs[R14]);     
+
+       c->regs[R1]&= ~TxINT_ENAB;
+       write_zsreg(c, R1, c->regs[R1]);
+       
+       /*
+        *      RX DMA via W/Req
+        */      
+
+       c->regs[R1]|= WT_FN_RDYFN;
+       c->regs[R1]|= WT_RDY_RT;
+       c->regs[R1]|= INT_ERR_Rx;
+       c->regs[R1]&= ~TxINT_ENAB;
+       write_zsreg(c, R1, c->regs[R1]);
+       c->regs[R1]|= WT_RDY_ENAB;
+       write_zsreg(c, R1, c->regs[R1]);            
+       
+       /*
+        *      DMA interrupts
+        */
+        
+       /*
+        *      Set up the DMA configuration
+        */     
+        
+       dflags=claim_dma_lock();
+        
+       disable_dma(c->rxdma);
+       clear_dma_ff(c->rxdma);
+       set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
+       set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
+       set_dma_count(c->rxdma, c->mtu);
+       enable_dma(c->rxdma);
+
+       disable_dma(c->txdma);
+       clear_dma_ff(c->txdma);
+       set_dma_mode(c->txdma, DMA_MODE_WRITE);
+       disable_dma(c->txdma);
+       
+       release_dma_lock(dflags);
+       
+       /*
+        *      Select the DMA interrupt handlers
+        */
+
+       c->rxdma_on = 1;
+       c->txdma_on = 1;
+       c->tx_dma_used = 1;
+        
+       c->irqs = &z8530_dma_sync;
+       z8530_rtsdtr(c,1);
+       write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+
+       spin_unlock_irqrestore(c->lock, cflags);
+       
+       return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_dma_open);
+
+/**
+ *     z8530_sync_dma_close - Close down DMA I/O
+ *     @dev: Network device to detach
+ *     @c: Z8530 channel to move into discard mode
+ *
+ *     Shut down a DMA mode synchronous interface. Halt the DMA, and
+ *     free the buffers.
+ */
+int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
+{
+       u8 chk;
+       unsigned long flags;
+       
+       c->irqs = &z8530_nop;
+       c->max = 0;
+       c->sync = 0;
+       
+       /*
+        *      Disable the PC DMA channels
+        */
+       
+       flags=claim_dma_lock(); 
+       disable_dma(c->rxdma);
+       clear_dma_ff(c->rxdma);
+       
+       c->rxdma_on = 0;
+       
+       disable_dma(c->txdma);
+       clear_dma_ff(c->txdma);
+       release_dma_lock(flags);
+       
+       c->txdma_on = 0;
+       c->tx_dma_used = 0;
+
+       spin_lock_irqsave(c->lock, flags);
+
+       /*
+        *      Disable DMA control mode
+        */
+        
+       c->regs[R1]&= ~WT_RDY_ENAB;
+       write_zsreg(c, R1, c->regs[R1]);            
+       c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
+       c->regs[R1]|= INT_ALL_Rx;
+       write_zsreg(c, R1, c->regs[R1]);
+       c->regs[R14]&= ~DTRREQ;
+       write_zsreg(c, R14, c->regs[R14]);   
+       
+       if(c->rx_buf[0])
+       {
+               free_page((unsigned long)c->rx_buf[0]);
+               c->rx_buf[0]=NULL;
+       }
+       if(c->tx_dma_buf[0])
+       {
+               free_page((unsigned  long)c->tx_dma_buf[0]);
+               c->tx_dma_buf[0]=NULL;
+       }
+       chk=read_zsreg(c,R0);
+       write_zsreg(c, R3, c->regs[R3]);
+       z8530_rtsdtr(c,0);
+
+       spin_unlock_irqrestore(c->lock, flags);
+
+       return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_dma_close);
+
+/**
+ *     z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
+ *     @dev: The network device to attach
+ *     @c: The Z8530 channel to configure in sync DMA mode.
+ *
+ *     Set up a Z85x30 device for synchronous DMA tranmission. One
+ *     ISA DMA channel must be available for this to work. The receive
+ *     side is run in PIO mode, but then it has the bigger FIFO.
+ */
+
+int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
+{
+       unsigned long cflags, dflags;
+
+       printk("Opening sync interface for TX-DMA\n");
+       c->sync = 1;
+       c->mtu = dev->mtu+64;
+       c->count = 0;
+       c->skb = NULL;
+       c->skb2 = NULL;
+       
+       /*
+        *      Allocate the DMA flip buffers. Limit by page size.
+        *      Everyone runs 1500 mtu or less on wan links so this
+        *      should be fine.
+        */
+        
+       if(c->mtu  > PAGE_SIZE/2)
+               return -EMSGSIZE;
+        
+       c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
+       if(c->tx_dma_buf[0]==NULL)
+               return -ENOBUFS;
+
+       c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
+
+
+       spin_lock_irqsave(c->lock, cflags);
+
+       /*
+        *      Load the PIO receive ring
+        */
+
+       z8530_rx_done(c);
+       z8530_rx_done(c);
+
+       /*
+        *      Load the DMA interfaces up
+        */
+
+       c->rxdma_on = 0;
+       c->txdma_on = 0;
+       
+       c->tx_dma_used=0;
+       c->dma_num=0;
+       c->dma_ready=1;
+       c->dma_tx = 1;
+
+       /*
+        *      Enable DMA control mode
+        */
+
+       /*
+        *      TX DMA via DIR/REQ
+        */
+       c->regs[R14]|= DTRREQ;
+       write_zsreg(c, R14, c->regs[R14]);     
+       
+       c->regs[R1]&= ~TxINT_ENAB;
+       write_zsreg(c, R1, c->regs[R1]);
+       
+       /*
+        *      Set up the DMA configuration
+        */     
+        
+       dflags = claim_dma_lock();
+
+       disable_dma(c->txdma);
+       clear_dma_ff(c->txdma);
+       set_dma_mode(c->txdma, DMA_MODE_WRITE);
+       disable_dma(c->txdma);
+
+       release_dma_lock(dflags);
+       
+       /*
+        *      Select the DMA interrupt handlers
+        */
+
+       c->rxdma_on = 0;
+       c->txdma_on = 1;
+       c->tx_dma_used = 1;
+        
+       c->irqs = &z8530_txdma_sync;
+       z8530_rtsdtr(c,1);
+       write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+       spin_unlock_irqrestore(c->lock, cflags);
+       
+       return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_txdma_open);
+
+/**
+ *     z8530_sync_txdma_close - Close down a TX driven DMA channel
+ *     @dev: Network device to detach
+ *     @c: Z8530 channel to move into discard mode
+ *
+ *     Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
+ *     and  free the buffers.
+ */
+
+int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
+{
+       unsigned long dflags, cflags;
+       u8 chk;
+
+       
+       spin_lock_irqsave(c->lock, cflags);
+       
+       c->irqs = &z8530_nop;
+       c->max = 0;
+       c->sync = 0;
+       
+       /*
+        *      Disable the PC DMA channels
+        */
+        
+       dflags = claim_dma_lock();
+
+       disable_dma(c->txdma);
+       clear_dma_ff(c->txdma);
+       c->txdma_on = 0;
+       c->tx_dma_used = 0;
+
+       release_dma_lock(dflags);
+
+       /*
+        *      Disable DMA control mode
+        */
+        
+       c->regs[R1]&= ~WT_RDY_ENAB;
+       write_zsreg(c, R1, c->regs[R1]);            
+       c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
+       c->regs[R1]|= INT_ALL_Rx;
+       write_zsreg(c, R1, c->regs[R1]);
+       c->regs[R14]&= ~DTRREQ;
+       write_zsreg(c, R14, c->regs[R14]);   
+       
+       if(c->tx_dma_buf[0])
+       {
+               free_page((unsigned long)c->tx_dma_buf[0]);
+               c->tx_dma_buf[0]=NULL;
+       }
+       chk=read_zsreg(c,R0);
+       write_zsreg(c, R3, c->regs[R3]);
+       z8530_rtsdtr(c,0);
+
+       spin_unlock_irqrestore(c->lock, cflags);
+       return 0;
+}
+
+
+EXPORT_SYMBOL(z8530_sync_txdma_close);
+
+
+/*
+ *     Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
+ *     it exists...
+ */
+static const char *z8530_type_name[]={
+       "Z8530",
+       "Z85C30",
+       "Z85230"
+};
+
+/**
+ *     z8530_describe - Uniformly describe a Z8530 port
+ *     @dev: Z8530 device to describe
+ *     @mapping: string holding mapping type (eg "I/O" or "Mem")
+ *     @io: the port value in question
+ *
+ *     Describe a Z8530 in a standard format. We must pass the I/O as
+ *     the port offset isn't predictable. The main reason for this function
+ *     is to try and get a common format of report.
+ */
+
+void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
+{
+       pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
+               dev->name, 
+               z8530_type_name[dev->type],
+               mapping,
+               Z8530_PORT_OF(io),
+               dev->irq);
+}
+
+EXPORT_SYMBOL(z8530_describe);
+
+/*
+ *     Locked operation part of the z8530 init code
+ */
+static inline int do_z8530_init(struct z8530_dev *dev)
+{
+       /* NOP the interrupt handlers first - we might get a
+          floating IRQ transition when we reset the chip */
+       dev->chanA.irqs=&z8530_nop;
+       dev->chanB.irqs=&z8530_nop;
+       dev->chanA.dcdcheck=DCD;
+       dev->chanB.dcdcheck=DCD;
+
+       /* Reset the chip */
+       write_zsreg(&dev->chanA, R9, 0xC0);
+       udelay(200);
+       /* Now check its valid */
+       write_zsreg(&dev->chanA, R12, 0xAA);
+       if(read_zsreg(&dev->chanA, R12)!=0xAA)
+               return -ENODEV;
+       write_zsreg(&dev->chanA, R12, 0x55);
+       if(read_zsreg(&dev->chanA, R12)!=0x55)
+               return -ENODEV;
+               
+       dev->type=Z8530;
+       
+       /*
+        *      See the application note.
+        */
+        
+       write_zsreg(&dev->chanA, R15, 0x01);
+       
+       /*
+        *      If we can set the low bit of R15 then
+        *      the chip is enhanced.
+        */
+        
+       if(read_zsreg(&dev->chanA, R15)==0x01)
+       {
+               /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
+               /* Put a char in the fifo */
+               write_zsreg(&dev->chanA, R8, 0);
+               if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
+                       dev->type = Z85230;     /* Has a FIFO */
+               else
+                       dev->type = Z85C30;     /* Z85C30, 1 byte FIFO */
+       }
+               
+       /*
+        *      The code assumes R7' and friends are
+        *      off. Use write_zsext() for these and keep
+        *      this bit clear.
+        */
+        
+       write_zsreg(&dev->chanA, R15, 0);
+               
+       /*
+        *      At this point it looks like the chip is behaving
+        */
+        
+       memcpy(dev->chanA.regs, reg_init, 16);
+       memcpy(dev->chanB.regs, reg_init ,16);
+       
+       return 0;
+}
+
+/**
+ *     z8530_init - Initialise a Z8530 device
+ *     @dev: Z8530 device to initialise.
+ *
+ *     Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
+ *     is present, identify the type and then program it to hopefully
+ *     keep quite and behave. This matters a lot, a Z8530 in the wrong
+ *     state will sometimes get into stupid modes generating 10Khz
+ *     interrupt streams and the like.
+ *
+ *     We set the interrupt handler up to discard any events, in case
+ *     we get them during reset or setp.
+ *
+ *     Return 0 for success, or a negative value indicating the problem
+ *     in errno form.
+ */
+
+int z8530_init(struct z8530_dev *dev)
+{
+       unsigned long flags;
+       int ret;
+
+       /* Set up the chip level lock */
+       spin_lock_init(&dev->lock);
+       dev->chanA.lock = &dev->lock;
+       dev->chanB.lock = &dev->lock;
+
+       spin_lock_irqsave(&dev->lock, flags);
+       ret = do_z8530_init(dev);
+       spin_unlock_irqrestore(&dev->lock, flags);
+
+       return ret;
+}
+
+
+EXPORT_SYMBOL(z8530_init);
+
+/**
+ *     z8530_shutdown - Shutdown a Z8530 device
+ *     @dev: The Z8530 chip to shutdown
+ *
+ *     We set the interrupt handlers to silence any interrupts. We then 
+ *     reset the chip and wait 100uS to be sure the reset completed. Just
+ *     in case the caller then tries to do stuff.
+ *
+ *     This is called without the lock held
+ */
+int z8530_shutdown(struct z8530_dev *dev)
+{
+       unsigned long flags;
+       /* Reset the chip */
+
+       spin_lock_irqsave(&dev->lock, flags);
+       dev->chanA.irqs=&z8530_nop;
+       dev->chanB.irqs=&z8530_nop;
+       write_zsreg(&dev->chanA, R9, 0xC0);
+       /* We must lock the udelay, the chip is offlimits here */
+       udelay(100);
+       spin_unlock_irqrestore(&dev->lock, flags);
+       return 0;
+}
+
+EXPORT_SYMBOL(z8530_shutdown);
+
+/**
+ *     z8530_channel_load - Load channel data
+ *     @c: Z8530 channel to configure
+ *     @rtable: table of register, value pairs
+ *     FIXME: ioctl to allow user uploaded tables
+ *
+ *     Load a Z8530 channel up from the system data. We use +16 to 
+ *     indicate the "prime" registers. The value 255 terminates the
+ *     table.
+ */
+
+int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(c->lock, flags);
+
+       while(*rtable!=255)
+       {
+               int reg=*rtable++;
+               if(reg>0x0F)
+                       write_zsreg(c, R15, c->regs[15]|1);
+               write_zsreg(c, reg&0x0F, *rtable);
+               if(reg>0x0F)
+                       write_zsreg(c, R15, c->regs[15]&~1);
+               c->regs[reg]=*rtable++;
+       }
+       c->rx_function=z8530_null_rx;
+       c->skb=NULL;
+       c->tx_skb=NULL;
+       c->tx_next_skb=NULL;
+       c->mtu=1500;
+       c->max=0;
+       c->count=0;
+       c->status=read_zsreg(c, R0);
+       c->sync=1;
+       write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+
+       spin_unlock_irqrestore(c->lock, flags);
+       return 0;
+}
+
+EXPORT_SYMBOL(z8530_channel_load);
+
+
+/**
+ *     z8530_tx_begin - Begin packet transmission
+ *     @c: The Z8530 channel to kick
+ *
+ *     This is the speed sensitive side of transmission. If we are called
+ *     and no buffer is being transmitted we commence the next buffer. If
+ *     nothing is queued we idle the sync. 
+ *
+ *     Note: We are handling this code path in the interrupt path, keep it
+ *     fast or bad things will happen.
+ *
+ *     Called with the lock held.
+ */
+
+static void z8530_tx_begin(struct z8530_channel *c)
+{
+       unsigned long flags;
+       if(c->tx_skb)
+               return;
+               
+       c->tx_skb=c->tx_next_skb;
+       c->tx_next_skb=NULL;
+       c->tx_ptr=c->tx_next_ptr;
+       
+       if(c->tx_skb==NULL)
+       {
+               /* Idle on */
+               if(c->dma_tx)
+               {
+                       flags=claim_dma_lock();
+                       disable_dma(c->txdma);
+                       /*
+                        *      Check if we crapped out.
+                        */
+                       if (get_dma_residue(c->txdma))
+                       {
+                               c->netdevice->stats.tx_dropped++;
+                               c->netdevice->stats.tx_fifo_errors++;
+                       }
+                       release_dma_lock(flags);
+               }
+               c->txcount=0;
+       }
+       else
+       {
+               c->txcount=c->tx_skb->len;
+               
+               
+               if(c->dma_tx)
+               {
+                       /*
+                        *      FIXME. DMA is broken for the original 8530,
+                        *      on the older parts we need to set a flag and
+                        *      wait for a further TX interrupt to fire this
+                        *      stage off       
+                        */
+                        
+                       flags=claim_dma_lock();
+                       disable_dma(c->txdma);
+
+                       /*
+                        *      These two are needed by the 8530/85C30
+                        *      and must be issued when idling.
+                        */
+                        
+                       if(c->dev->type!=Z85230)
+                       {
+                               write_zsctrl(c, RES_Tx_CRC);
+                               write_zsctrl(c, RES_EOM_L);
+                       }       
+                       write_zsreg(c, R10, c->regs[10]&~ABUNDER);
+                       clear_dma_ff(c->txdma);
+                       set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
+                       set_dma_count(c->txdma, c->txcount);
+                       enable_dma(c->txdma);
+                       release_dma_lock(flags);
+                       write_zsctrl(c, RES_EOM_L);
+                       write_zsreg(c, R5, c->regs[R5]|TxENAB);
+               }
+               else
+               {
+
+                       /* ABUNDER off */
+                       write_zsreg(c, R10, c->regs[10]);
+                       write_zsctrl(c, RES_Tx_CRC);
+       
+                       while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
+                       {               
+                               write_zsreg(c, R8, *c->tx_ptr++);
+                               c->txcount--;
+                       }
+
+               }
+       }
+       /*
+        *      Since we emptied tx_skb we can ask for more
+        */
+       netif_wake_queue(c->netdevice);
+}
+
+/**
+ *     z8530_tx_done - TX complete callback
+ *     @c: The channel that completed a transmit.
+ *
+ *     This is called when we complete a packet send. We wake the queue,
+ *     start the next packet going and then free the buffer of the existing
+ *     packet. This code is fairly timing sensitive.
+ *
+ *     Called with the register lock held.
+ */
+
+static void z8530_tx_done(struct z8530_channel *c)
+{
+       struct sk_buff *skb;
+
+       /* Actually this can happen.*/
+       if (c->tx_skb == NULL)
+               return;
+
+       skb = c->tx_skb;
+       c->tx_skb = NULL;
+       z8530_tx_begin(c);
+       c->netdevice->stats.tx_packets++;
+       c->netdevice->stats.tx_bytes += skb->len;
+       dev_kfree_skb_irq(skb);
+}
+
+/**
+ *     z8530_null_rx - Discard a packet
+ *     @c: The channel the packet arrived on
+ *     @skb: The buffer
+ *
+ *     We point the receive handler at this function when idle. Instead
+ *     of processing the frames we get to throw them away.
+ */
+void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
+{
+       dev_kfree_skb_any(skb);
+}
+
+EXPORT_SYMBOL(z8530_null_rx);
+
+/**
+ *     z8530_rx_done - Receive completion callback
+ *     @c: The channel that completed a receive
+ *
+ *     A new packet is complete. Our goal here is to get back into receive
+ *     mode as fast as possible. On the Z85230 we could change to using
+ *     ESCC mode, but on the older chips we have no choice. We flip to the
+ *     new buffer immediately in DMA mode so that the DMA of the next
+ *     frame can occur while we are copying the previous buffer to an sk_buff
+ *
+ *     Called with the lock held
+ */
+static void z8530_rx_done(struct z8530_channel *c)
+{
+       struct sk_buff *skb;
+       int ct;
+       
+       /*
+        *      Is our receive engine in DMA mode
+        */
+        
+       if(c->rxdma_on)
+       {
+               /*
+                *      Save the ready state and the buffer currently
+                *      being used as the DMA target
+                */
+                
+               int ready=c->dma_ready;
+               unsigned char *rxb=c->rx_buf[c->dma_num];
+               unsigned long flags;
+               
+               /*
+                *      Complete this DMA. Necessary to find the length
+                */             
+                
+               flags=claim_dma_lock();
+               
+               disable_dma(c->rxdma);
+               clear_dma_ff(c->rxdma);
+               c->rxdma_on=0;
+               ct=c->mtu-get_dma_residue(c->rxdma);
+               if(ct<0)
+                       ct=2;   /* Shit happens.. */
+               c->dma_ready=0;
+               
+               /*
+                *      Normal case: the other slot is free, start the next DMA
+                *      into it immediately.
+                */
+                
+               if(ready)
+               {
+                       c->dma_num^=1;
+                       set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
+                       set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
+                       set_dma_count(c->rxdma, c->mtu);
+                       c->rxdma_on = 1;
+                       enable_dma(c->rxdma);
+                       /* Stop any frames that we missed the head of 
+                          from passing */
+                       write_zsreg(c, R0, RES_Rx_CRC);
+               }
+               else
+                       /* Can't occur as we dont reenable the DMA irq until
+                          after the flip is done */
+                       netdev_warn(c->netdevice, "DMA flip overrun!\n");
+
+               release_dma_lock(flags);
+
+               /*
+                *      Shove the old buffer into an sk_buff. We can't DMA
+                *      directly into one on a PC - it might be above the 16Mb
+                *      boundary. Optimisation - we could check to see if we
+                *      can avoid the copy. Optimisation 2 - make the memcpy
+                *      a copychecksum.
+                */
+
+               skb = dev_alloc_skb(ct);
+               if (skb == NULL) {
+                       c->netdevice->stats.rx_dropped++;
+                       netdev_warn(c->netdevice, "Memory squeeze\n");
+               } else {
+                       skb_put(skb, ct);
+                       skb_copy_to_linear_data(skb, rxb, ct);
+                       c->netdevice->stats.rx_packets++;
+                       c->netdevice->stats.rx_bytes += ct;
+               }
+               c->dma_ready = 1;
+       } else {
+               RT_LOCK;
+               skb = c->skb;
+
+               /*
+                *      The game we play for non DMA is similar. We want to
+                *      get the controller set up for the next packet as fast
+                *      as possible. We potentially only have one byte + the
+                *      fifo length for this. Thus we want to flip to the new
+                *      buffer and then mess around copying and allocating
+                *      things. For the current case it doesn't matter but
+                *      if you build a system where the sync irq isn't blocked
+                *      by the kernel IRQ disable then you need only block the
+                *      sync IRQ for the RT_LOCK area.
+                *
+                */
+               ct=c->count;
+
+               c->skb = c->skb2;
+               c->count = 0;
+               c->max = c->mtu;
+               if (c->skb) {
+                       c->dptr = c->skb->data;
+                       c->max = c->mtu;
+               } else {
+                       c->count = 0;
+                       c->max = 0;
+               }
+               RT_UNLOCK;
+
+               c->skb2 = dev_alloc_skb(c->mtu);
+               if (c->skb2 == NULL)
+                       netdev_warn(c->netdevice, "memory squeeze\n");
+               else
+                       skb_put(c->skb2, c->mtu);
+               c->netdevice->stats.rx_packets++;
+               c->netdevice->stats.rx_bytes += ct;
+       }
+       /*
+        *      If we received a frame we must now process it.
+        */
+       if (skb) {
+               skb_trim(skb, ct);
+               c->rx_function(c, skb);
+       } else {
+               c->netdevice->stats.rx_dropped++;
+               netdev_err(c->netdevice, "Lost a frame\n");
+       }
+}
+
+/**
+ *     spans_boundary - Check a packet can be ISA DMA'd
+ *     @skb: The buffer to check
+ *
+ *     Returns true if the buffer cross a DMA boundary on a PC. The poor
+ *     thing can only DMA within a 64K block not across the edges of it.
+ */
+
+static inline int spans_boundary(struct sk_buff *skb)
+{
+       unsigned long a=(unsigned long)skb->data;
+       a^=(a+skb->len);
+       if(a&0x00010000)        /* If the 64K bit is different.. */
+               return 1;
+       return 0;
+}
+
+/**
+ *     z8530_queue_xmit - Queue a packet
+ *     @c: The channel to use
+ *     @skb: The packet to kick down the channel
+ *
+ *     Queue a packet for transmission. Because we have rather
+ *     hard to hit interrupt latencies for the Z85230 per packet 
+ *     even in DMA mode we do the flip to DMA buffer if needed here
+ *     not in the IRQ.
+ *
+ *     Called from the network code. The lock is not held at this 
+ *     point.
+ */
+
+netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
+{
+       unsigned long flags;
+       
+       netif_stop_queue(c->netdevice);
+       if(c->tx_next_skb)
+               return NETDEV_TX_BUSY;
+
+       
+       /* PC SPECIFIC - DMA limits */
+       
+       /*
+        *      If we will DMA the transmit and its gone over the ISA bus
+        *      limit, then copy to the flip buffer
+        */
+        
+       if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
+       {
+               /* 
+                *      Send the flip buffer, and flip the flippy bit.
+                *      We don't care which is used when just so long as
+                *      we never use the same buffer twice in a row. Since
+                *      only one buffer can be going out at a time the other
+                *      has to be safe.
+                */
+               c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
+               c->tx_dma_used^=1;      /* Flip temp buffer */
+               skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
+       }
+       else
+               c->tx_next_ptr=skb->data;       
+       RT_LOCK;
+       c->tx_next_skb=skb;
+       RT_UNLOCK;
+       
+       spin_lock_irqsave(c->lock, flags);
+       z8530_tx_begin(c);
+       spin_unlock_irqrestore(c->lock, flags);
+       
+       return NETDEV_TX_OK;
+}
+
+EXPORT_SYMBOL(z8530_queue_xmit);
+
+/*
+ *     Module support
+ */
+static const char banner[] __initconst =
+       KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
+
+static int __init z85230_init_driver(void)
+{
+       printk(banner);
+       return 0;
+}
+module_init(z85230_init_driver);
+
+static void __exit z85230_cleanup_driver(void)
+{
+}
+module_exit(z85230_cleanup_driver);
+
+MODULE_AUTHOR("Red Hat Inc.");
+MODULE_DESCRIPTION("Z85x30 synchronous driver core");
+MODULE_LICENSE("GPL");