Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / igb / e1000_i210.c
diff --git a/kernel/drivers/net/ethernet/intel/igb/e1000_i210.c b/kernel/drivers/net/ethernet/intel/igb/e1000_i210.c
new file mode 100644 (file)
index 0000000..65d9316
--- /dev/null
@@ -0,0 +1,902 @@
+/* Intel(R) Gigabit Ethernet Linux driver
+ * Copyright(c) 2007-2014 Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, see <http://www.gnu.org/licenses/>.
+ *
+ * The full GNU General Public License is included in this distribution in
+ * the file called "COPYING".
+ *
+ * Contact Information:
+ * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+ * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+ */
+
+/* e1000_i210
+ * e1000_i211
+ */
+
+#include <linux/types.h>
+#include <linux/if_ether.h>
+
+#include "e1000_hw.h"
+#include "e1000_i210.h"
+
+static s32 igb_update_flash_i210(struct e1000_hw *hw);
+
+/**
+ * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ */
+static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
+{
+       u32 swsm;
+       s32 timeout = hw->nvm.word_size + 1;
+       s32 i = 0;
+
+       /* Get the SW semaphore */
+       while (i < timeout) {
+               swsm = rd32(E1000_SWSM);
+               if (!(swsm & E1000_SWSM_SMBI))
+                       break;
+
+               udelay(50);
+               i++;
+       }
+
+       if (i == timeout) {
+               /* In rare circumstances, the SW semaphore may already be held
+                * unintentionally. Clear the semaphore once before giving up.
+                */
+               if (hw->dev_spec._82575.clear_semaphore_once) {
+                       hw->dev_spec._82575.clear_semaphore_once = false;
+                       igb_put_hw_semaphore(hw);
+                       for (i = 0; i < timeout; i++) {
+                               swsm = rd32(E1000_SWSM);
+                               if (!(swsm & E1000_SWSM_SMBI))
+                                       break;
+
+                               udelay(50);
+                       }
+               }
+
+               /* If we do not have the semaphore here, we have to give up. */
+               if (i == timeout) {
+                       hw_dbg("Driver can't access device - SMBI bit is set.\n");
+                       return -E1000_ERR_NVM;
+               }
+       }
+
+       /* Get the FW semaphore. */
+       for (i = 0; i < timeout; i++) {
+               swsm = rd32(E1000_SWSM);
+               wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+               /* Semaphore acquired if bit latched */
+               if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
+                       break;
+
+               udelay(50);
+       }
+
+       if (i == timeout) {
+               /* Release semaphores */
+               igb_put_hw_semaphore(hw);
+               hw_dbg("Driver can't access the NVM\n");
+               return -E1000_ERR_NVM;
+       }
+
+       return 0;
+}
+
+/**
+ *  igb_acquire_nvm_i210 - Request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the necessary semaphores for exclusive access to the EEPROM.
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
+{
+       return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  igb_release_nvm_i210 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ *  then release the semaphores acquired.
+ **/
+static void igb_release_nvm_i210(struct e1000_hw *hw)
+{
+       igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
+{
+       u32 swfw_sync;
+       u32 swmask = mask;
+       u32 fwmask = mask << 16;
+       s32 ret_val = 0;
+       s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+       while (i < timeout) {
+               if (igb_get_hw_semaphore_i210(hw)) {
+                       ret_val = -E1000_ERR_SWFW_SYNC;
+                       goto out;
+               }
+
+               swfw_sync = rd32(E1000_SW_FW_SYNC);
+               if (!(swfw_sync & (fwmask | swmask)))
+                       break;
+
+               /* Firmware currently using resource (fwmask) */
+               igb_put_hw_semaphore(hw);
+               mdelay(5);
+               i++;
+       }
+
+       if (i == timeout) {
+               hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
+               ret_val = -E1000_ERR_SWFW_SYNC;
+               goto out;
+       }
+
+       swfw_sync |= swmask;
+       wr32(E1000_SW_FW_SYNC, swfw_sync);
+
+       igb_put_hw_semaphore(hw);
+out:
+       return ret_val;
+}
+
+/**
+ *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
+{
+       u32 swfw_sync;
+
+       while (igb_get_hw_semaphore_i210(hw))
+               ; /* Empty */
+
+       swfw_sync = rd32(E1000_SW_FW_SYNC);
+       swfw_sync &= ~mask;
+       wr32(E1000_SW_FW_SYNC, swfw_sync);
+
+       igb_put_hw_semaphore(hw);
+}
+
+/**
+ *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the Shadow Ram to read
+ *  @words: number of words to read
+ *  @data: word read from the Shadow Ram
+ *
+ *  Reads a 16 bit word from the Shadow Ram using the EERD register.
+ *  Uses necessary synchronization semaphores.
+ **/
+static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
+                                 u16 *data)
+{
+       s32 status = 0;
+       u16 i, count;
+
+       /* We cannot hold synchronization semaphores for too long,
+        * because of forceful takeover procedure. However it is more efficient
+        * to read in bursts than synchronizing access for each word.
+        */
+       for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
+               count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
+                       E1000_EERD_EEWR_MAX_COUNT : (words - i);
+               if (!(hw->nvm.ops.acquire(hw))) {
+                       status = igb_read_nvm_eerd(hw, offset, count,
+                                                    data + i);
+                       hw->nvm.ops.release(hw);
+               } else {
+                       status = E1000_ERR_SWFW_SYNC;
+               }
+
+               if (status)
+                       break;
+       }
+
+       return status;
+}
+
+/**
+ *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the Shadow Ram to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the Shadow Ram
+ *
+ *  Writes data to Shadow Ram at offset using EEWR register.
+ *
+ *  If igb_update_nvm_checksum is not called after this function , the
+ *  Shadow Ram will most likely contain an invalid checksum.
+ **/
+static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
+                               u16 *data)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 i, k, eewr = 0;
+       u32 attempts = 100000;
+       s32 ret_val = 0;
+
+       /* A check for invalid values:  offset too large, too many words,
+        * too many words for the offset, and not enough words.
+        */
+       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+           (words == 0)) {
+               hw_dbg("nvm parameter(s) out of bounds\n");
+               ret_val = -E1000_ERR_NVM;
+               goto out;
+       }
+
+       for (i = 0; i < words; i++) {
+               eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+                       (data[i] << E1000_NVM_RW_REG_DATA) |
+                       E1000_NVM_RW_REG_START;
+
+               wr32(E1000_SRWR, eewr);
+
+               for (k = 0; k < attempts; k++) {
+                       if (E1000_NVM_RW_REG_DONE &
+                           rd32(E1000_SRWR)) {
+                               ret_val = 0;
+                               break;
+                       }
+                       udelay(5);
+       }
+
+               if (ret_val) {
+                       hw_dbg("Shadow RAM write EEWR timed out\n");
+                       break;
+               }
+       }
+
+out:
+       return ret_val;
+}
+
+/**
+ *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the Shadow RAM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the Shadow RAM
+ *
+ *  Writes data to Shadow RAM at offset using EEWR register.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  data will not be committed to FLASH and also Shadow RAM will most likely
+ *  contain an invalid checksum.
+ *
+ *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
+ *  partially written.
+ **/
+static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
+                                  u16 *data)
+{
+       s32 status = 0;
+       u16 i, count;
+
+       /* We cannot hold synchronization semaphores for too long,
+        * because of forceful takeover procedure. However it is more efficient
+        * to write in bursts than synchronizing access for each word.
+        */
+       for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
+               count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
+                       E1000_EERD_EEWR_MAX_COUNT : (words - i);
+               if (!(hw->nvm.ops.acquire(hw))) {
+                       status = igb_write_nvm_srwr(hw, offset, count,
+                                                     data + i);
+                       hw->nvm.ops.release(hw);
+               } else {
+                       status = E1000_ERR_SWFW_SYNC;
+               }
+
+               if (status)
+                       break;
+       }
+
+       return status;
+}
+
+/**
+ *  igb_read_invm_word_i210 - Reads OTP
+ *  @hw: pointer to the HW structure
+ *  @address: the word address (aka eeprom offset) to read
+ *  @data: pointer to the data read
+ *
+ *  Reads 16-bit words from the OTP. Return error when the word is not
+ *  stored in OTP.
+ **/
+static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
+{
+       s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
+       u32 invm_dword;
+       u16 i;
+       u8 record_type, word_address;
+
+       for (i = 0; i < E1000_INVM_SIZE; i++) {
+               invm_dword = rd32(E1000_INVM_DATA_REG(i));
+               /* Get record type */
+               record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
+               if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
+                       break;
+               if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
+                       i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
+               if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
+                       i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
+               if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
+                       word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
+                       if (word_address == address) {
+                               *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
+                               hw_dbg("Read INVM Word 0x%02x = %x\n",
+                                         address, *data);
+                               status = 0;
+                               break;
+                       }
+               }
+       }
+       if (status)
+               hw_dbg("Requested word 0x%02x not found in OTP\n", address);
+       return status;
+}
+
+/**
+ * igb_read_invm_i210 - Read invm wrapper function for I210/I211
+ *  @hw: pointer to the HW structure
+ *  @words: number of words to read
+ *  @data: pointer to the data read
+ *
+ *  Wrapper function to return data formerly found in the NVM.
+ **/
+static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
+                               u16 words __always_unused, u16 *data)
+{
+       s32 ret_val = 0;
+
+       /* Only the MAC addr is required to be present in the iNVM */
+       switch (offset) {
+       case NVM_MAC_ADDR:
+               ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
+               ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
+                                                    &data[1]);
+               ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
+                                                    &data[2]);
+               if (ret_val)
+                       hw_dbg("MAC Addr not found in iNVM\n");
+               break;
+       case NVM_INIT_CTRL_2:
+               ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
+               if (ret_val) {
+                       *data = NVM_INIT_CTRL_2_DEFAULT_I211;
+                       ret_val = 0;
+               }
+               break;
+       case NVM_INIT_CTRL_4:
+               ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
+               if (ret_val) {
+                       *data = NVM_INIT_CTRL_4_DEFAULT_I211;
+                       ret_val = 0;
+               }
+               break;
+       case NVM_LED_1_CFG:
+               ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
+               if (ret_val) {
+                       *data = NVM_LED_1_CFG_DEFAULT_I211;
+                       ret_val = 0;
+               }
+               break;
+       case NVM_LED_0_2_CFG:
+               ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
+               if (ret_val) {
+                       *data = NVM_LED_0_2_CFG_DEFAULT_I211;
+                       ret_val = 0;
+               }
+               break;
+       case NVM_ID_LED_SETTINGS:
+               ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
+               if (ret_val) {
+                       *data = ID_LED_RESERVED_FFFF;
+                       ret_val = 0;
+               }
+               break;
+       case NVM_SUB_DEV_ID:
+               *data = hw->subsystem_device_id;
+               break;
+       case NVM_SUB_VEN_ID:
+               *data = hw->subsystem_vendor_id;
+               break;
+       case NVM_DEV_ID:
+               *data = hw->device_id;
+               break;
+       case NVM_VEN_ID:
+               *data = hw->vendor_id;
+               break;
+       default:
+               hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
+               *data = NVM_RESERVED_WORD;
+               break;
+       }
+       return ret_val;
+}
+
+/**
+ *  igb_read_invm_version - Reads iNVM version and image type
+ *  @hw: pointer to the HW structure
+ *  @invm_ver: version structure for the version read
+ *
+ *  Reads iNVM version and image type.
+ **/
+s32 igb_read_invm_version(struct e1000_hw *hw,
+                         struct e1000_fw_version *invm_ver) {
+       u32 *record = NULL;
+       u32 *next_record = NULL;
+       u32 i = 0;
+       u32 invm_dword = 0;
+       u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
+                                            E1000_INVM_RECORD_SIZE_IN_BYTES);
+       u32 buffer[E1000_INVM_SIZE];
+       s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
+       u16 version = 0;
+
+       /* Read iNVM memory */
+       for (i = 0; i < E1000_INVM_SIZE; i++) {
+               invm_dword = rd32(E1000_INVM_DATA_REG(i));
+               buffer[i] = invm_dword;
+       }
+
+       /* Read version number */
+       for (i = 1; i < invm_blocks; i++) {
+               record = &buffer[invm_blocks - i];
+               next_record = &buffer[invm_blocks - i + 1];
+
+               /* Check if we have first version location used */
+               if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
+                       version = 0;
+                       status = 0;
+                       break;
+               }
+               /* Check if we have second version location used */
+               else if ((i == 1) &&
+                        ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
+                       version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
+                       status = 0;
+                       break;
+               }
+               /* Check if we have odd version location
+                * used and it is the last one used
+                */
+               else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
+                        ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
+                        (i != 1))) {
+                       version = (*next_record & E1000_INVM_VER_FIELD_TWO)
+                                 >> 13;
+                       status = 0;
+                       break;
+               }
+               /* Check if we have even version location
+                * used and it is the last one used
+                */
+               else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
+                        ((*record & 0x3) == 0)) {
+                       version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
+                       status = 0;
+                       break;
+               }
+       }
+
+       if (!status) {
+               invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
+                                       >> E1000_INVM_MAJOR_SHIFT;
+               invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
+       }
+       /* Read Image Type */
+       for (i = 1; i < invm_blocks; i++) {
+               record = &buffer[invm_blocks - i];
+               next_record = &buffer[invm_blocks - i + 1];
+
+               /* Check if we have image type in first location used */
+               if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
+                       invm_ver->invm_img_type = 0;
+                       status = 0;
+                       break;
+               }
+               /* Check if we have image type in first location used */
+               else if ((((*record & 0x3) == 0) &&
+                        ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
+                        ((((*record & 0x3) != 0) && (i != 1)))) {
+                       invm_ver->invm_img_type =
+                               (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
+                       status = 0;
+                       break;
+               }
+       }
+       return status;
+}
+
+/**
+ *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
+{
+       s32 status = 0;
+       s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
+
+       if (!(hw->nvm.ops.acquire(hw))) {
+
+               /* Replace the read function with semaphore grabbing with
+                * the one that skips this for a while.
+                * We have semaphore taken already here.
+                */
+               read_op_ptr = hw->nvm.ops.read;
+               hw->nvm.ops.read = igb_read_nvm_eerd;
+
+               status = igb_validate_nvm_checksum(hw);
+
+               /* Revert original read operation. */
+               hw->nvm.ops.read = read_op_ptr;
+
+               hw->nvm.ops.release(hw);
+       } else {
+               status = E1000_ERR_SWFW_SYNC;
+       }
+
+       return status;
+}
+
+/**
+ *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM. Next commit EEPROM data onto the Flash.
+ **/
+static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
+{
+       s32 ret_val = 0;
+       u16 checksum = 0;
+       u16 i, nvm_data;
+
+       /* Read the first word from the EEPROM. If this times out or fails, do
+        * not continue or we could be in for a very long wait while every
+        * EEPROM read fails
+        */
+       ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
+       if (ret_val) {
+               hw_dbg("EEPROM read failed\n");
+               goto out;
+       }
+
+       if (!(hw->nvm.ops.acquire(hw))) {
+               /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
+                * because we do not want to take the synchronization
+                * semaphores twice here.
+                */
+
+               for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+                       ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
+                       if (ret_val) {
+                               hw->nvm.ops.release(hw);
+                               hw_dbg("NVM Read Error while updating checksum.\n");
+                               goto out;
+                       }
+                       checksum += nvm_data;
+               }
+               checksum = (u16) NVM_SUM - checksum;
+               ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
+                                               &checksum);
+               if (ret_val) {
+                       hw->nvm.ops.release(hw);
+                       hw_dbg("NVM Write Error while updating checksum.\n");
+                       goto out;
+               }
+
+               hw->nvm.ops.release(hw);
+
+               ret_val = igb_update_flash_i210(hw);
+       } else {
+               ret_val = -E1000_ERR_SWFW_SYNC;
+       }
+out:
+       return ret_val;
+}
+
+/**
+ *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
+ *  @hw: pointer to the HW structure
+ *
+ **/
+static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
+{
+       s32 ret_val = -E1000_ERR_NVM;
+       u32 i, reg;
+
+       for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
+               reg = rd32(E1000_EECD);
+               if (reg & E1000_EECD_FLUDONE_I210) {
+                       ret_val = 0;
+                       break;
+               }
+               udelay(5);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  igb_get_flash_presence_i210 - Check if flash device is detected.
+ *  @hw: pointer to the HW structure
+ *
+ **/
+bool igb_get_flash_presence_i210(struct e1000_hw *hw)
+{
+       u32 eec = 0;
+       bool ret_val = false;
+
+       eec = rd32(E1000_EECD);
+       if (eec & E1000_EECD_FLASH_DETECTED_I210)
+               ret_val = true;
+
+       return ret_val;
+}
+
+/**
+ *  igb_update_flash_i210 - Commit EEPROM to the flash
+ *  @hw: pointer to the HW structure
+ *
+ **/
+static s32 igb_update_flash_i210(struct e1000_hw *hw)
+{
+       s32 ret_val = 0;
+       u32 flup;
+
+       ret_val = igb_pool_flash_update_done_i210(hw);
+       if (ret_val == -E1000_ERR_NVM) {
+               hw_dbg("Flash update time out\n");
+               goto out;
+       }
+
+       flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
+       wr32(E1000_EECD, flup);
+
+       ret_val = igb_pool_flash_update_done_i210(hw);
+       if (ret_val)
+               hw_dbg("Flash update complete\n");
+       else
+               hw_dbg("Flash update time out\n");
+
+out:
+       return ret_val;
+}
+
+/**
+ *  igb_valid_led_default_i210 - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
+{
+       s32 ret_val;
+
+       ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+       if (ret_val) {
+               hw_dbg("NVM Read Error\n");
+               goto out;
+       }
+
+       if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+               switch (hw->phy.media_type) {
+               case e1000_media_type_internal_serdes:
+                       *data = ID_LED_DEFAULT_I210_SERDES;
+                       break;
+               case e1000_media_type_copper:
+               default:
+                       *data = ID_LED_DEFAULT_I210;
+                       break;
+               }
+       }
+out:
+       return ret_val;
+}
+
+/**
+ *  __igb_access_xmdio_reg - Read/write XMDIO register
+ *  @hw: pointer to the HW structure
+ *  @address: XMDIO address to program
+ *  @dev_addr: device address to program
+ *  @data: pointer to value to read/write from/to the XMDIO address
+ *  @read: boolean flag to indicate read or write
+ **/
+static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
+                                 u8 dev_addr, u16 *data, bool read)
+{
+       s32 ret_val = 0;
+
+       ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
+                                                        dev_addr);
+       if (ret_val)
+               return ret_val;
+
+       if (read)
+               ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
+       else
+               ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
+       if (ret_val)
+               return ret_val;
+
+       /* Recalibrate the device back to 0 */
+       ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
+       if (ret_val)
+               return ret_val;
+
+       return ret_val;
+}
+
+/**
+ *  igb_read_xmdio_reg - Read XMDIO register
+ *  @hw: pointer to the HW structure
+ *  @addr: XMDIO address to program
+ *  @dev_addr: device address to program
+ *  @data: value to be read from the EMI address
+ **/
+s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
+{
+       return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
+}
+
+/**
+ *  igb_write_xmdio_reg - Write XMDIO register
+ *  @hw: pointer to the HW structure
+ *  @addr: XMDIO address to program
+ *  @dev_addr: device address to program
+ *  @data: value to be written to the XMDIO address
+ **/
+s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
+{
+       return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
+}
+
+/**
+ *  igb_init_nvm_params_i210 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
+{
+       s32 ret_val = 0;
+       struct e1000_nvm_info *nvm = &hw->nvm;
+
+       nvm->ops.acquire = igb_acquire_nvm_i210;
+       nvm->ops.release = igb_release_nvm_i210;
+       nvm->ops.valid_led_default = igb_valid_led_default_i210;
+
+       /* NVM Function Pointers */
+       if (igb_get_flash_presence_i210(hw)) {
+               hw->nvm.type = e1000_nvm_flash_hw;
+               nvm->ops.read    = igb_read_nvm_srrd_i210;
+               nvm->ops.write   = igb_write_nvm_srwr_i210;
+               nvm->ops.validate = igb_validate_nvm_checksum_i210;
+               nvm->ops.update   = igb_update_nvm_checksum_i210;
+       } else {
+               hw->nvm.type = e1000_nvm_invm;
+               nvm->ops.read     = igb_read_invm_i210;
+               nvm->ops.write    = NULL;
+               nvm->ops.validate = NULL;
+               nvm->ops.update   = NULL;
+       }
+       return ret_val;
+}
+
+/**
+ * igb_pll_workaround_i210
+ * @hw: pointer to the HW structure
+ *
+ * Works around an errata in the PLL circuit where it occasionally
+ * provides the wrong clock frequency after power up.
+ **/
+s32 igb_pll_workaround_i210(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
+       u16 nvm_word, phy_word, pci_word, tmp_nvm;
+       int i;
+
+       /* Get and set needed register values */
+       wuc = rd32(E1000_WUC);
+       mdicnfg = rd32(E1000_MDICNFG);
+       reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
+       wr32(E1000_MDICNFG, reg_val);
+
+       /* Get data from NVM, or set default */
+       ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
+                                         &nvm_word);
+       if (ret_val)
+               nvm_word = E1000_INVM_DEFAULT_AL;
+       tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
+       for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
+               /* check current state directly from internal PHY */
+               igb_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE |
+                                        E1000_PHY_PLL_FREQ_REG), &phy_word);
+               if ((phy_word & E1000_PHY_PLL_UNCONF)
+                   != E1000_PHY_PLL_UNCONF) {
+                       ret_val = 0;
+                       break;
+               } else {
+                       ret_val = -E1000_ERR_PHY;
+               }
+               /* directly reset the internal PHY */
+               ctrl = rd32(E1000_CTRL);
+               wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
+
+               ctrl_ext = rd32(E1000_CTRL_EXT);
+               ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
+               wr32(E1000_CTRL_EXT, ctrl_ext);
+
+               wr32(E1000_WUC, 0);
+               reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
+               wr32(E1000_EEARBC_I210, reg_val);
+
+               igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+               pci_word |= E1000_PCI_PMCSR_D3;
+               igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+               usleep_range(1000, 2000);
+               pci_word &= ~E1000_PCI_PMCSR_D3;
+               igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+               reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
+               wr32(E1000_EEARBC_I210, reg_val);
+
+               /* restore WUC register */
+               wr32(E1000_WUC, wuc);
+       }
+       /* restore MDICNFG setting */
+       wr32(E1000_MDICNFG, mdicnfg);
+       return ret_val;
+}