Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / chelsio / cxgb4 / sge.c
diff --git a/kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c b/kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c
new file mode 100644 (file)
index 0000000..0d2edda
--- /dev/null
@@ -0,0 +1,3078 @@
+/*
+ * This file is part of the Chelsio T4 Ethernet driver for Linux.
+ *
+ * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/skbuff.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/if_vlan.h>
+#include <linux/ip.h>
+#include <linux/dma-mapping.h>
+#include <linux/jiffies.h>
+#include <linux/prefetch.h>
+#include <linux/export.h>
+#include <net/ipv6.h>
+#include <net/tcp.h>
+#ifdef CONFIG_NET_RX_BUSY_POLL
+#include <net/busy_poll.h>
+#endif /* CONFIG_NET_RX_BUSY_POLL */
+#ifdef CONFIG_CHELSIO_T4_FCOE
+#include <scsi/fc/fc_fcoe.h>
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+#include "cxgb4.h"
+#include "t4_regs.h"
+#include "t4_values.h"
+#include "t4_msg.h"
+#include "t4fw_api.h"
+
+/*
+ * Rx buffer size.  We use largish buffers if possible but settle for single
+ * pages under memory shortage.
+ */
+#if PAGE_SHIFT >= 16
+# define FL_PG_ORDER 0
+#else
+# define FL_PG_ORDER (16 - PAGE_SHIFT)
+#endif
+
+/* RX_PULL_LEN should be <= RX_COPY_THRES */
+#define RX_COPY_THRES    256
+#define RX_PULL_LEN      128
+
+/*
+ * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
+ * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
+ */
+#define RX_PKT_SKB_LEN   512
+
+/*
+ * Max number of Tx descriptors we clean up at a time.  Should be modest as
+ * freeing skbs isn't cheap and it happens while holding locks.  We just need
+ * to free packets faster than they arrive, we eventually catch up and keep
+ * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
+ */
+#define MAX_TX_RECLAIM 16
+
+/*
+ * Max number of Rx buffers we replenish at a time.  Again keep this modest,
+ * allocating buffers isn't cheap either.
+ */
+#define MAX_RX_REFILL 16U
+
+/*
+ * Period of the Rx queue check timer.  This timer is infrequent as it has
+ * something to do only when the system experiences severe memory shortage.
+ */
+#define RX_QCHECK_PERIOD (HZ / 2)
+
+/*
+ * Period of the Tx queue check timer.
+ */
+#define TX_QCHECK_PERIOD (HZ / 2)
+
+/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
+ * (in RX_QCHECK_PERIOD multiples).  If we find one of the SGE Ingress DMA
+ * State Machines in the same state for this amount of time (in HZ) then we'll
+ * issue a warning about a potential hang.  We'll repeat the warning as the
+ * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
+ * the situation clears.  If the situation clears, we'll note that as well.
+ */
+#define SGE_IDMA_WARN_THRESH (1 * HZ)
+#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
+
+/*
+ * Max number of Tx descriptors to be reclaimed by the Tx timer.
+ */
+#define MAX_TIMER_TX_RECLAIM 100
+
+/*
+ * Timer index used when backing off due to memory shortage.
+ */
+#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
+
+/*
+ * Suspend an Ethernet Tx queue with fewer available descriptors than this.
+ * This is the same as calc_tx_descs() for a TSO packet with
+ * nr_frags == MAX_SKB_FRAGS.
+ */
+#define ETHTXQ_STOP_THRES \
+       (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
+
+/*
+ * Suspension threshold for non-Ethernet Tx queues.  We require enough room
+ * for a full sized WR.
+ */
+#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
+
+/*
+ * Max Tx descriptor space we allow for an Ethernet packet to be inlined
+ * into a WR.
+ */
+#define MAX_IMM_TX_PKT_LEN 256
+
+/*
+ * Max size of a WR sent through a control Tx queue.
+ */
+#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
+
+struct tx_sw_desc {                /* SW state per Tx descriptor */
+       struct sk_buff *skb;
+       struct ulptx_sgl *sgl;
+};
+
+struct rx_sw_desc {                /* SW state per Rx descriptor */
+       struct page *page;
+       dma_addr_t dma_addr;
+};
+
+/*
+ * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
+ * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
+ * We could easily support more but there doesn't seem to be much need for
+ * that ...
+ */
+#define FL_MTU_SMALL 1500
+#define FL_MTU_LARGE 9000
+
+static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
+                                         unsigned int mtu)
+{
+       struct sge *s = &adapter->sge;
+
+       return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
+}
+
+#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
+#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
+
+/*
+ * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
+ * these to specify the buffer size as an index into the SGE Free List Buffer
+ * Size register array.  We also use bit 4, when the buffer has been unmapped
+ * for DMA, but this is of course never sent to the hardware and is only used
+ * to prevent double unmappings.  All of the above requires that the Free List
+ * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
+ * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
+ * Free List Buffer alignment is 32 bytes, this works out for us ...
+ */
+enum {
+       RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
+       RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
+       RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
+
+       /*
+        * XXX We shouldn't depend on being able to use these indices.
+        * XXX Especially when some other Master PF has initialized the
+        * XXX adapter or we use the Firmware Configuration File.  We
+        * XXX should really search through the Host Buffer Size register
+        * XXX array for the appropriately sized buffer indices.
+        */
+       RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
+       RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
+
+       RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
+       RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
+};
+
+static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
+#define MIN_NAPI_WORK  1
+
+static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
+{
+       return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
+}
+
+static inline bool is_buf_mapped(const struct rx_sw_desc *d)
+{
+       return !(d->dma_addr & RX_UNMAPPED_BUF);
+}
+
+/**
+ *     txq_avail - return the number of available slots in a Tx queue
+ *     @q: the Tx queue
+ *
+ *     Returns the number of descriptors in a Tx queue available to write new
+ *     packets.
+ */
+static inline unsigned int txq_avail(const struct sge_txq *q)
+{
+       return q->size - 1 - q->in_use;
+}
+
+/**
+ *     fl_cap - return the capacity of a free-buffer list
+ *     @fl: the FL
+ *
+ *     Returns the capacity of a free-buffer list.  The capacity is less than
+ *     the size because one descriptor needs to be left unpopulated, otherwise
+ *     HW will think the FL is empty.
+ */
+static inline unsigned int fl_cap(const struct sge_fl *fl)
+{
+       return fl->size - 8;   /* 1 descriptor = 8 buffers */
+}
+
+/**
+ *     fl_starving - return whether a Free List is starving.
+ *     @adapter: pointer to the adapter
+ *     @fl: the Free List
+ *
+ *     Tests specified Free List to see whether the number of buffers
+ *     available to the hardware has falled below our "starvation"
+ *     threshold.
+ */
+static inline bool fl_starving(const struct adapter *adapter,
+                              const struct sge_fl *fl)
+{
+       const struct sge *s = &adapter->sge;
+
+       return fl->avail - fl->pend_cred <= s->fl_starve_thres;
+}
+
+static int map_skb(struct device *dev, const struct sk_buff *skb,
+                  dma_addr_t *addr)
+{
+       const skb_frag_t *fp, *end;
+       const struct skb_shared_info *si;
+
+       *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
+       if (dma_mapping_error(dev, *addr))
+               goto out_err;
+
+       si = skb_shinfo(skb);
+       end = &si->frags[si->nr_frags];
+
+       for (fp = si->frags; fp < end; fp++) {
+               *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
+                                          DMA_TO_DEVICE);
+               if (dma_mapping_error(dev, *addr))
+                       goto unwind;
+       }
+       return 0;
+
+unwind:
+       while (fp-- > si->frags)
+               dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
+
+       dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
+out_err:
+       return -ENOMEM;
+}
+
+#ifdef CONFIG_NEED_DMA_MAP_STATE
+static void unmap_skb(struct device *dev, const struct sk_buff *skb,
+                     const dma_addr_t *addr)
+{
+       const skb_frag_t *fp, *end;
+       const struct skb_shared_info *si;
+
+       dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
+
+       si = skb_shinfo(skb);
+       end = &si->frags[si->nr_frags];
+       for (fp = si->frags; fp < end; fp++)
+               dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
+}
+
+/**
+ *     deferred_unmap_destructor - unmap a packet when it is freed
+ *     @skb: the packet
+ *
+ *     This is the packet destructor used for Tx packets that need to remain
+ *     mapped until they are freed rather than until their Tx descriptors are
+ *     freed.
+ */
+static void deferred_unmap_destructor(struct sk_buff *skb)
+{
+       unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
+}
+#endif
+
+static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
+                     const struct ulptx_sgl *sgl, const struct sge_txq *q)
+{
+       const struct ulptx_sge_pair *p;
+       unsigned int nfrags = skb_shinfo(skb)->nr_frags;
+
+       if (likely(skb_headlen(skb)))
+               dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
+                                DMA_TO_DEVICE);
+       else {
+               dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
+                              DMA_TO_DEVICE);
+               nfrags--;
+       }
+
+       /*
+        * the complexity below is because of the possibility of a wrap-around
+        * in the middle of an SGL
+        */
+       for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
+               if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
+unmap:                 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
+                                      ntohl(p->len[0]), DMA_TO_DEVICE);
+                       dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
+                                      ntohl(p->len[1]), DMA_TO_DEVICE);
+                       p++;
+               } else if ((u8 *)p == (u8 *)q->stat) {
+                       p = (const struct ulptx_sge_pair *)q->desc;
+                       goto unmap;
+               } else if ((u8 *)p + 8 == (u8 *)q->stat) {
+                       const __be64 *addr = (const __be64 *)q->desc;
+
+                       dma_unmap_page(dev, be64_to_cpu(addr[0]),
+                                      ntohl(p->len[0]), DMA_TO_DEVICE);
+                       dma_unmap_page(dev, be64_to_cpu(addr[1]),
+                                      ntohl(p->len[1]), DMA_TO_DEVICE);
+                       p = (const struct ulptx_sge_pair *)&addr[2];
+               } else {
+                       const __be64 *addr = (const __be64 *)q->desc;
+
+                       dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
+                                      ntohl(p->len[0]), DMA_TO_DEVICE);
+                       dma_unmap_page(dev, be64_to_cpu(addr[0]),
+                                      ntohl(p->len[1]), DMA_TO_DEVICE);
+                       p = (const struct ulptx_sge_pair *)&addr[1];
+               }
+       }
+       if (nfrags) {
+               __be64 addr;
+
+               if ((u8 *)p == (u8 *)q->stat)
+                       p = (const struct ulptx_sge_pair *)q->desc;
+               addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
+                                                      *(const __be64 *)q->desc;
+               dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
+                              DMA_TO_DEVICE);
+       }
+}
+
+/**
+ *     free_tx_desc - reclaims Tx descriptors and their buffers
+ *     @adapter: the adapter
+ *     @q: the Tx queue to reclaim descriptors from
+ *     @n: the number of descriptors to reclaim
+ *     @unmap: whether the buffers should be unmapped for DMA
+ *
+ *     Reclaims Tx descriptors from an SGE Tx queue and frees the associated
+ *     Tx buffers.  Called with the Tx queue lock held.
+ */
+static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
+                        unsigned int n, bool unmap)
+{
+       struct tx_sw_desc *d;
+       unsigned int cidx = q->cidx;
+       struct device *dev = adap->pdev_dev;
+
+       d = &q->sdesc[cidx];
+       while (n--) {
+               if (d->skb) {                       /* an SGL is present */
+                       if (unmap)
+                               unmap_sgl(dev, d->skb, d->sgl, q);
+                       dev_consume_skb_any(d->skb);
+                       d->skb = NULL;
+               }
+               ++d;
+               if (++cidx == q->size) {
+                       cidx = 0;
+                       d = q->sdesc;
+               }
+       }
+       q->cidx = cidx;
+}
+
+/*
+ * Return the number of reclaimable descriptors in a Tx queue.
+ */
+static inline int reclaimable(const struct sge_txq *q)
+{
+       int hw_cidx = ntohs(q->stat->cidx);
+       hw_cidx -= q->cidx;
+       return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
+}
+
+/**
+ *     reclaim_completed_tx - reclaims completed Tx descriptors
+ *     @adap: the adapter
+ *     @q: the Tx queue to reclaim completed descriptors from
+ *     @unmap: whether the buffers should be unmapped for DMA
+ *
+ *     Reclaims Tx descriptors that the SGE has indicated it has processed,
+ *     and frees the associated buffers if possible.  Called with the Tx
+ *     queue locked.
+ */
+static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
+                                       bool unmap)
+{
+       int avail = reclaimable(q);
+
+       if (avail) {
+               /*
+                * Limit the amount of clean up work we do at a time to keep
+                * the Tx lock hold time O(1).
+                */
+               if (avail > MAX_TX_RECLAIM)
+                       avail = MAX_TX_RECLAIM;
+
+               free_tx_desc(adap, q, avail, unmap);
+               q->in_use -= avail;
+       }
+}
+
+static inline int get_buf_size(struct adapter *adapter,
+                              const struct rx_sw_desc *d)
+{
+       struct sge *s = &adapter->sge;
+       unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
+       int buf_size;
+
+       switch (rx_buf_size_idx) {
+       case RX_SMALL_PG_BUF:
+               buf_size = PAGE_SIZE;
+               break;
+
+       case RX_LARGE_PG_BUF:
+               buf_size = PAGE_SIZE << s->fl_pg_order;
+               break;
+
+       case RX_SMALL_MTU_BUF:
+               buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
+               break;
+
+       case RX_LARGE_MTU_BUF:
+               buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
+               break;
+
+       default:
+               BUG_ON(1);
+       }
+
+       return buf_size;
+}
+
+/**
+ *     free_rx_bufs - free the Rx buffers on an SGE free list
+ *     @adap: the adapter
+ *     @q: the SGE free list to free buffers from
+ *     @n: how many buffers to free
+ *
+ *     Release the next @n buffers on an SGE free-buffer Rx queue.   The
+ *     buffers must be made inaccessible to HW before calling this function.
+ */
+static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
+{
+       while (n--) {
+               struct rx_sw_desc *d = &q->sdesc[q->cidx];
+
+               if (is_buf_mapped(d))
+                       dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
+                                      get_buf_size(adap, d),
+                                      PCI_DMA_FROMDEVICE);
+               put_page(d->page);
+               d->page = NULL;
+               if (++q->cidx == q->size)
+                       q->cidx = 0;
+               q->avail--;
+       }
+}
+
+/**
+ *     unmap_rx_buf - unmap the current Rx buffer on an SGE free list
+ *     @adap: the adapter
+ *     @q: the SGE free list
+ *
+ *     Unmap the current buffer on an SGE free-buffer Rx queue.   The
+ *     buffer must be made inaccessible to HW before calling this function.
+ *
+ *     This is similar to @free_rx_bufs above but does not free the buffer.
+ *     Do note that the FL still loses any further access to the buffer.
+ */
+static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
+{
+       struct rx_sw_desc *d = &q->sdesc[q->cidx];
+
+       if (is_buf_mapped(d))
+               dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
+                              get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
+       d->page = NULL;
+       if (++q->cidx == q->size)
+               q->cidx = 0;
+       q->avail--;
+}
+
+static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
+{
+       u32 val;
+       if (q->pend_cred >= 8) {
+               if (is_t4(adap->params.chip))
+                       val = PIDX_V(q->pend_cred / 8);
+               else
+                       val = PIDX_T5_V(q->pend_cred / 8) |
+                               DBTYPE_F;
+               val |= DBPRIO_F;
+               wmb();
+
+               /* If we don't have access to the new User Doorbell (T5+), use
+                * the old doorbell mechanism; otherwise use the new BAR2
+                * mechanism.
+                */
+               if (unlikely(q->bar2_addr == NULL)) {
+                       t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
+                                    val | QID_V(q->cntxt_id));
+               } else {
+                       writel(val | QID_V(q->bar2_qid),
+                              q->bar2_addr + SGE_UDB_KDOORBELL);
+
+                       /* This Write memory Barrier will force the write to
+                        * the User Doorbell area to be flushed.
+                        */
+                       wmb();
+               }
+               q->pend_cred &= 7;
+       }
+}
+
+static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
+                                 dma_addr_t mapping)
+{
+       sd->page = pg;
+       sd->dma_addr = mapping;      /* includes size low bits */
+}
+
+/**
+ *     refill_fl - refill an SGE Rx buffer ring
+ *     @adap: the adapter
+ *     @q: the ring to refill
+ *     @n: the number of new buffers to allocate
+ *     @gfp: the gfp flags for the allocations
+ *
+ *     (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
+ *     allocated with the supplied gfp flags.  The caller must assure that
+ *     @n does not exceed the queue's capacity.  If afterwards the queue is
+ *     found critically low mark it as starving in the bitmap of starving FLs.
+ *
+ *     Returns the number of buffers allocated.
+ */
+static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
+                             gfp_t gfp)
+{
+       struct sge *s = &adap->sge;
+       struct page *pg;
+       dma_addr_t mapping;
+       unsigned int cred = q->avail;
+       __be64 *d = &q->desc[q->pidx];
+       struct rx_sw_desc *sd = &q->sdesc[q->pidx];
+       int node;
+
+       gfp |= __GFP_NOWARN;
+       node = dev_to_node(adap->pdev_dev);
+
+       if (s->fl_pg_order == 0)
+               goto alloc_small_pages;
+
+       /*
+        * Prefer large buffers
+        */
+       while (n) {
+               pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
+               if (unlikely(!pg)) {
+                       q->large_alloc_failed++;
+                       break;       /* fall back to single pages */
+               }
+
+               mapping = dma_map_page(adap->pdev_dev, pg, 0,
+                                      PAGE_SIZE << s->fl_pg_order,
+                                      PCI_DMA_FROMDEVICE);
+               if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
+                       __free_pages(pg, s->fl_pg_order);
+                       goto out;   /* do not try small pages for this error */
+               }
+               mapping |= RX_LARGE_PG_BUF;
+               *d++ = cpu_to_be64(mapping);
+
+               set_rx_sw_desc(sd, pg, mapping);
+               sd++;
+
+               q->avail++;
+               if (++q->pidx == q->size) {
+                       q->pidx = 0;
+                       sd = q->sdesc;
+                       d = q->desc;
+               }
+               n--;
+       }
+
+alloc_small_pages:
+       while (n--) {
+               pg = alloc_pages_node(node, gfp, 0);
+               if (unlikely(!pg)) {
+                       q->alloc_failed++;
+                       break;
+               }
+
+               mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
+                                      PCI_DMA_FROMDEVICE);
+               if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
+                       put_page(pg);
+                       goto out;
+               }
+               *d++ = cpu_to_be64(mapping);
+
+               set_rx_sw_desc(sd, pg, mapping);
+               sd++;
+
+               q->avail++;
+               if (++q->pidx == q->size) {
+                       q->pidx = 0;
+                       sd = q->sdesc;
+                       d = q->desc;
+               }
+       }
+
+out:   cred = q->avail - cred;
+       q->pend_cred += cred;
+       ring_fl_db(adap, q);
+
+       if (unlikely(fl_starving(adap, q))) {
+               smp_wmb();
+               set_bit(q->cntxt_id - adap->sge.egr_start,
+                       adap->sge.starving_fl);
+       }
+
+       return cred;
+}
+
+static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
+{
+       refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
+                 GFP_ATOMIC);
+}
+
+/**
+ *     alloc_ring - allocate resources for an SGE descriptor ring
+ *     @dev: the PCI device's core device
+ *     @nelem: the number of descriptors
+ *     @elem_size: the size of each descriptor
+ *     @sw_size: the size of the SW state associated with each ring element
+ *     @phys: the physical address of the allocated ring
+ *     @metadata: address of the array holding the SW state for the ring
+ *     @stat_size: extra space in HW ring for status information
+ *     @node: preferred node for memory allocations
+ *
+ *     Allocates resources for an SGE descriptor ring, such as Tx queues,
+ *     free buffer lists, or response queues.  Each SGE ring requires
+ *     space for its HW descriptors plus, optionally, space for the SW state
+ *     associated with each HW entry (the metadata).  The function returns
+ *     three values: the virtual address for the HW ring (the return value
+ *     of the function), the bus address of the HW ring, and the address
+ *     of the SW ring.
+ */
+static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
+                       size_t sw_size, dma_addr_t *phys, void *metadata,
+                       size_t stat_size, int node)
+{
+       size_t len = nelem * elem_size + stat_size;
+       void *s = NULL;
+       void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
+
+       if (!p)
+               return NULL;
+       if (sw_size) {
+               s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
+
+               if (!s) {
+                       dma_free_coherent(dev, len, p, *phys);
+                       return NULL;
+               }
+       }
+       if (metadata)
+               *(void **)metadata = s;
+       memset(p, 0, len);
+       return p;
+}
+
+/**
+ *     sgl_len - calculates the size of an SGL of the given capacity
+ *     @n: the number of SGL entries
+ *
+ *     Calculates the number of flits needed for a scatter/gather list that
+ *     can hold the given number of entries.
+ */
+static inline unsigned int sgl_len(unsigned int n)
+{
+       /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
+        * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
+        * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
+        * repeated sequences of { Length[i], Length[i+1], Address[i],
+        * Address[i+1] } (this ensures that all addresses are on 64-bit
+        * boundaries).  If N is even, then Length[N+1] should be set to 0 and
+        * Address[N+1] is omitted.
+        *
+        * The following calculation incorporates all of the above.  It's
+        * somewhat hard to follow but, briefly: the "+2" accounts for the
+        * first two flits which include the DSGL header, Length0 and
+        * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
+        * flits for every pair of the remaining N) +1 if (n-1) is odd; and
+        * finally the "+((n-1)&1)" adds the one remaining flit needed if
+        * (n-1) is odd ...
+        */
+       n--;
+       return (3 * n) / 2 + (n & 1) + 2;
+}
+
+/**
+ *     flits_to_desc - returns the num of Tx descriptors for the given flits
+ *     @n: the number of flits
+ *
+ *     Returns the number of Tx descriptors needed for the supplied number
+ *     of flits.
+ */
+static inline unsigned int flits_to_desc(unsigned int n)
+{
+       BUG_ON(n > SGE_MAX_WR_LEN / 8);
+       return DIV_ROUND_UP(n, 8);
+}
+
+/**
+ *     is_eth_imm - can an Ethernet packet be sent as immediate data?
+ *     @skb: the packet
+ *
+ *     Returns whether an Ethernet packet is small enough to fit as
+ *     immediate data. Return value corresponds to headroom required.
+ */
+static inline int is_eth_imm(const struct sk_buff *skb)
+{
+       int hdrlen = skb_shinfo(skb)->gso_size ?
+                       sizeof(struct cpl_tx_pkt_lso_core) : 0;
+
+       hdrlen += sizeof(struct cpl_tx_pkt);
+       if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
+               return hdrlen;
+       return 0;
+}
+
+/**
+ *     calc_tx_flits - calculate the number of flits for a packet Tx WR
+ *     @skb: the packet
+ *
+ *     Returns the number of flits needed for a Tx WR for the given Ethernet
+ *     packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
+{
+       unsigned int flits;
+       int hdrlen = is_eth_imm(skb);
+
+       /* If the skb is small enough, we can pump it out as a work request
+        * with only immediate data.  In that case we just have to have the
+        * TX Packet header plus the skb data in the Work Request.
+        */
+
+       if (hdrlen)
+               return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
+
+       /* Otherwise, we're going to have to construct a Scatter gather list
+        * of the skb body and fragments.  We also include the flits necessary
+        * for the TX Packet Work Request and CPL.  We always have a firmware
+        * Write Header (incorporated as part of the cpl_tx_pkt_lso and
+        * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
+        * message or, if we're doing a Large Send Offload, an LSO CPL message
+        * with an embedded TX Packet Write CPL message.
+        */
+       flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
+       if (skb_shinfo(skb)->gso_size)
+               flits += (sizeof(struct fw_eth_tx_pkt_wr) +
+                         sizeof(struct cpl_tx_pkt_lso_core) +
+                         sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
+       else
+               flits += (sizeof(struct fw_eth_tx_pkt_wr) +
+                         sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
+       return flits;
+}
+
+/**
+ *     calc_tx_descs - calculate the number of Tx descriptors for a packet
+ *     @skb: the packet
+ *
+ *     Returns the number of Tx descriptors needed for the given Ethernet
+ *     packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
+{
+       return flits_to_desc(calc_tx_flits(skb));
+}
+
+/**
+ *     write_sgl - populate a scatter/gather list for a packet
+ *     @skb: the packet
+ *     @q: the Tx queue we are writing into
+ *     @sgl: starting location for writing the SGL
+ *     @end: points right after the end of the SGL
+ *     @start: start offset into skb main-body data to include in the SGL
+ *     @addr: the list of bus addresses for the SGL elements
+ *
+ *     Generates a gather list for the buffers that make up a packet.
+ *     The caller must provide adequate space for the SGL that will be written.
+ *     The SGL includes all of the packet's page fragments and the data in its
+ *     main body except for the first @start bytes.  @sgl must be 16-byte
+ *     aligned and within a Tx descriptor with available space.  @end points
+ *     right after the end of the SGL but does not account for any potential
+ *     wrap around, i.e., @end > @sgl.
+ */
+static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
+                     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
+                     const dma_addr_t *addr)
+{
+       unsigned int i, len;
+       struct ulptx_sge_pair *to;
+       const struct skb_shared_info *si = skb_shinfo(skb);
+       unsigned int nfrags = si->nr_frags;
+       struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
+
+       len = skb_headlen(skb) - start;
+       if (likely(len)) {
+               sgl->len0 = htonl(len);
+               sgl->addr0 = cpu_to_be64(addr[0] + start);
+               nfrags++;
+       } else {
+               sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
+               sgl->addr0 = cpu_to_be64(addr[1]);
+       }
+
+       sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
+                             ULPTX_NSGE_V(nfrags));
+       if (likely(--nfrags == 0))
+               return;
+       /*
+        * Most of the complexity below deals with the possibility we hit the
+        * end of the queue in the middle of writing the SGL.  For this case
+        * only we create the SGL in a temporary buffer and then copy it.
+        */
+       to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
+
+       for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
+               to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
+               to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
+               to->addr[0] = cpu_to_be64(addr[i]);
+               to->addr[1] = cpu_to_be64(addr[++i]);
+       }
+       if (nfrags) {
+               to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
+               to->len[1] = cpu_to_be32(0);
+               to->addr[0] = cpu_to_be64(addr[i + 1]);
+       }
+       if (unlikely((u8 *)end > (u8 *)q->stat)) {
+               unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
+
+               if (likely(part0))
+                       memcpy(sgl->sge, buf, part0);
+               part1 = (u8 *)end - (u8 *)q->stat;
+               memcpy(q->desc, (u8 *)buf + part0, part1);
+               end = (void *)q->desc + part1;
+       }
+       if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
+               *end = 0;
+}
+
+/* This function copies 64 byte coalesced work request to
+ * memory mapped BAR2 space. For coalesced WR SGE fetches
+ * data from the FIFO instead of from Host.
+ */
+static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
+{
+       int count = 8;
+
+       while (count) {
+               writeq(*src, dst);
+               src++;
+               dst++;
+               count--;
+       }
+}
+
+/**
+ *     ring_tx_db - check and potentially ring a Tx queue's doorbell
+ *     @adap: the adapter
+ *     @q: the Tx queue
+ *     @n: number of new descriptors to give to HW
+ *
+ *     Ring the doorbel for a Tx queue.
+ */
+static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
+{
+       wmb();            /* write descriptors before telling HW */
+
+       /* If we don't have access to the new User Doorbell (T5+), use the old
+        * doorbell mechanism; otherwise use the new BAR2 mechanism.
+        */
+       if (unlikely(q->bar2_addr == NULL)) {
+               u32 val = PIDX_V(n);
+               unsigned long flags;
+
+               /* For T4 we need to participate in the Doorbell Recovery
+                * mechanism.
+                */
+               spin_lock_irqsave(&q->db_lock, flags);
+               if (!q->db_disabled)
+                       t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
+                                    QID_V(q->cntxt_id) | val);
+               else
+                       q->db_pidx_inc += n;
+               q->db_pidx = q->pidx;
+               spin_unlock_irqrestore(&q->db_lock, flags);
+       } else {
+               u32 val = PIDX_T5_V(n);
+
+               /* T4 and later chips share the same PIDX field offset within
+                * the doorbell, but T5 and later shrank the field in order to
+                * gain a bit for Doorbell Priority.  The field was absurdly
+                * large in the first place (14 bits) so we just use the T5
+                * and later limits and warn if a Queue ID is too large.
+                */
+               WARN_ON(val & DBPRIO_F);
+
+               /* If we're only writing a single TX Descriptor and we can use
+                * Inferred QID registers, we can use the Write Combining
+                * Gather Buffer; otherwise we use the simple doorbell.
+                */
+               if (n == 1 && q->bar2_qid == 0) {
+                       int index = (q->pidx
+                                    ? (q->pidx - 1)
+                                    : (q->size - 1));
+                       u64 *wr = (u64 *)&q->desc[index];
+
+                       cxgb_pio_copy((u64 __iomem *)
+                                     (q->bar2_addr + SGE_UDB_WCDOORBELL),
+                                     wr);
+               } else {
+                       writel(val | QID_V(q->bar2_qid),
+                              q->bar2_addr + SGE_UDB_KDOORBELL);
+               }
+
+               /* This Write Memory Barrier will force the write to the User
+                * Doorbell area to be flushed.  This is needed to prevent
+                * writes on different CPUs for the same queue from hitting
+                * the adapter out of order.  This is required when some Work
+                * Requests take the Write Combine Gather Buffer path (user
+                * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
+                * take the traditional path where we simply increment the
+                * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
+                * hardware DMA read the actual Work Request.
+                */
+               wmb();
+       }
+}
+
+/**
+ *     inline_tx_skb - inline a packet's data into Tx descriptors
+ *     @skb: the packet
+ *     @q: the Tx queue where the packet will be inlined
+ *     @pos: starting position in the Tx queue where to inline the packet
+ *
+ *     Inline a packet's contents directly into Tx descriptors, starting at
+ *     the given position within the Tx DMA ring.
+ *     Most of the complexity of this operation is dealing with wrap arounds
+ *     in the middle of the packet we want to inline.
+ */
+static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
+                         void *pos)
+{
+       u64 *p;
+       int left = (void *)q->stat - pos;
+
+       if (likely(skb->len <= left)) {
+               if (likely(!skb->data_len))
+                       skb_copy_from_linear_data(skb, pos, skb->len);
+               else
+                       skb_copy_bits(skb, 0, pos, skb->len);
+               pos += skb->len;
+       } else {
+               skb_copy_bits(skb, 0, pos, left);
+               skb_copy_bits(skb, left, q->desc, skb->len - left);
+               pos = (void *)q->desc + (skb->len - left);
+       }
+
+       /* 0-pad to multiple of 16 */
+       p = PTR_ALIGN(pos, 8);
+       if ((uintptr_t)p & 8)
+               *p = 0;
+}
+
+/*
+ * Figure out what HW csum a packet wants and return the appropriate control
+ * bits.
+ */
+static u64 hwcsum(const struct sk_buff *skb)
+{
+       int csum_type;
+       const struct iphdr *iph = ip_hdr(skb);
+
+       if (iph->version == 4) {
+               if (iph->protocol == IPPROTO_TCP)
+                       csum_type = TX_CSUM_TCPIP;
+               else if (iph->protocol == IPPROTO_UDP)
+                       csum_type = TX_CSUM_UDPIP;
+               else {
+nocsum:                        /*
+                        * unknown protocol, disable HW csum
+                        * and hope a bad packet is detected
+                        */
+                       return TXPKT_L4CSUM_DIS;
+               }
+       } else {
+               /*
+                * this doesn't work with extension headers
+                */
+               const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
+
+               if (ip6h->nexthdr == IPPROTO_TCP)
+                       csum_type = TX_CSUM_TCPIP6;
+               else if (ip6h->nexthdr == IPPROTO_UDP)
+                       csum_type = TX_CSUM_UDPIP6;
+               else
+                       goto nocsum;
+       }
+
+       if (likely(csum_type >= TX_CSUM_TCPIP))
+               return TXPKT_CSUM_TYPE(csum_type) |
+                       TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
+                       TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
+       else {
+               int start = skb_transport_offset(skb);
+
+               return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
+                       TXPKT_CSUM_LOC(start + skb->csum_offset);
+       }
+}
+
+static void eth_txq_stop(struct sge_eth_txq *q)
+{
+       netif_tx_stop_queue(q->txq);
+       q->q.stops++;
+}
+
+static inline void txq_advance(struct sge_txq *q, unsigned int n)
+{
+       q->in_use += n;
+       q->pidx += n;
+       if (q->pidx >= q->size)
+               q->pidx -= q->size;
+}
+
+#ifdef CONFIG_CHELSIO_T4_FCOE
+static inline int
+cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
+                 const struct port_info *pi, u64 *cntrl)
+{
+       const struct cxgb_fcoe *fcoe = &pi->fcoe;
+
+       if (!(fcoe->flags & CXGB_FCOE_ENABLED))
+               return 0;
+
+       if (skb->protocol != htons(ETH_P_FCOE))
+               return 0;
+
+       skb_reset_mac_header(skb);
+       skb->mac_len = sizeof(struct ethhdr);
+
+       skb_set_network_header(skb, skb->mac_len);
+       skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
+
+       if (!cxgb_fcoe_sof_eof_supported(adap, skb))
+               return -ENOTSUPP;
+
+       /* FC CRC offload */
+       *cntrl = TXPKT_CSUM_TYPE(TX_CSUM_FCOE) |
+                    TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS |
+                    TXPKT_CSUM_START(CXGB_FCOE_TXPKT_CSUM_START) |
+                    TXPKT_CSUM_END(CXGB_FCOE_TXPKT_CSUM_END) |
+                    TXPKT_CSUM_LOC(CXGB_FCOE_TXPKT_CSUM_END);
+       return 0;
+}
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+
+/**
+ *     t4_eth_xmit - add a packet to an Ethernet Tx queue
+ *     @skb: the packet
+ *     @dev: the egress net device
+ *
+ *     Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
+ */
+netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+       int len;
+       u32 wr_mid;
+       u64 cntrl, *end;
+       int qidx, credits;
+       unsigned int flits, ndesc;
+       struct adapter *adap;
+       struct sge_eth_txq *q;
+       const struct port_info *pi;
+       struct fw_eth_tx_pkt_wr *wr;
+       struct cpl_tx_pkt_core *cpl;
+       const struct skb_shared_info *ssi;
+       dma_addr_t addr[MAX_SKB_FRAGS + 1];
+       bool immediate = false;
+#ifdef CONFIG_CHELSIO_T4_FCOE
+       int err;
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+
+       /*
+        * The chip min packet length is 10 octets but play safe and reject
+        * anything shorter than an Ethernet header.
+        */
+       if (unlikely(skb->len < ETH_HLEN)) {
+out_free:      dev_kfree_skb_any(skb);
+               return NETDEV_TX_OK;
+       }
+
+       pi = netdev_priv(dev);
+       adap = pi->adapter;
+       qidx = skb_get_queue_mapping(skb);
+       q = &adap->sge.ethtxq[qidx + pi->first_qset];
+
+       reclaim_completed_tx(adap, &q->q, true);
+       cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
+
+#ifdef CONFIG_CHELSIO_T4_FCOE
+       err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
+       if (unlikely(err == -ENOTSUPP))
+               goto out_free;
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+
+       flits = calc_tx_flits(skb);
+       ndesc = flits_to_desc(flits);
+       credits = txq_avail(&q->q) - ndesc;
+
+       if (unlikely(credits < 0)) {
+               eth_txq_stop(q);
+               dev_err(adap->pdev_dev,
+                       "%s: Tx ring %u full while queue awake!\n",
+                       dev->name, qidx);
+               return NETDEV_TX_BUSY;
+       }
+
+       if (is_eth_imm(skb))
+               immediate = true;
+
+       if (!immediate &&
+           unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
+               q->mapping_err++;
+               goto out_free;
+       }
+
+       wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
+       if (unlikely(credits < ETHTXQ_STOP_THRES)) {
+               eth_txq_stop(q);
+               wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
+       }
+
+       wr = (void *)&q->q.desc[q->q.pidx];
+       wr->equiq_to_len16 = htonl(wr_mid);
+       wr->r3 = cpu_to_be64(0);
+       end = (u64 *)wr + flits;
+
+       len = immediate ? skb->len : 0;
+       ssi = skb_shinfo(skb);
+       if (ssi->gso_size) {
+               struct cpl_tx_pkt_lso *lso = (void *)wr;
+               bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
+               int l3hdr_len = skb_network_header_len(skb);
+               int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
+
+               len += sizeof(*lso);
+               wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
+                                      FW_WR_IMMDLEN_V(len));
+               lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
+                                       LSO_FIRST_SLICE | LSO_LAST_SLICE |
+                                       LSO_IPV6(v6) |
+                                       LSO_ETHHDR_LEN(eth_xtra_len / 4) |
+                                       LSO_IPHDR_LEN(l3hdr_len / 4) |
+                                       LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
+               lso->c.ipid_ofst = htons(0);
+               lso->c.mss = htons(ssi->gso_size);
+               lso->c.seqno_offset = htonl(0);
+               if (is_t4(adap->params.chip))
+                       lso->c.len = htonl(skb->len);
+               else
+                       lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
+               cpl = (void *)(lso + 1);
+               cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
+                       TXPKT_IPHDR_LEN(l3hdr_len) |
+                       TXPKT_ETHHDR_LEN(eth_xtra_len);
+               q->tso++;
+               q->tx_cso += ssi->gso_segs;
+       } else {
+               len += sizeof(*cpl);
+               wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
+                                      FW_WR_IMMDLEN_V(len));
+               cpl = (void *)(wr + 1);
+               if (skb->ip_summed == CHECKSUM_PARTIAL) {
+                       cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
+                       q->tx_cso++;
+               }
+       }
+
+       if (skb_vlan_tag_present(skb)) {
+               q->vlan_ins++;
+               cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
+#ifdef CONFIG_CHELSIO_T4_FCOE
+               if (skb->protocol == htons(ETH_P_FCOE))
+                       cntrl |= TXPKT_VLAN(
+                                ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+       }
+
+       cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
+                          TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
+       cpl->pack = htons(0);
+       cpl->len = htons(skb->len);
+       cpl->ctrl1 = cpu_to_be64(cntrl);
+
+       if (immediate) {
+               inline_tx_skb(skb, &q->q, cpl + 1);
+               dev_consume_skb_any(skb);
+       } else {
+               int last_desc;
+
+               write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
+                         addr);
+               skb_orphan(skb);
+
+               last_desc = q->q.pidx + ndesc - 1;
+               if (last_desc >= q->q.size)
+                       last_desc -= q->q.size;
+               q->q.sdesc[last_desc].skb = skb;
+               q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
+       }
+
+       txq_advance(&q->q, ndesc);
+
+       ring_tx_db(adap, &q->q, ndesc);
+       return NETDEV_TX_OK;
+}
+
+/**
+ *     reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
+ *     @q: the SGE control Tx queue
+ *
+ *     This is a variant of reclaim_completed_tx() that is used for Tx queues
+ *     that send only immediate data (presently just the control queues) and
+ *     thus do not have any sk_buffs to release.
+ */
+static inline void reclaim_completed_tx_imm(struct sge_txq *q)
+{
+       int hw_cidx = ntohs(q->stat->cidx);
+       int reclaim = hw_cidx - q->cidx;
+
+       if (reclaim < 0)
+               reclaim += q->size;
+
+       q->in_use -= reclaim;
+       q->cidx = hw_cidx;
+}
+
+/**
+ *     is_imm - check whether a packet can be sent as immediate data
+ *     @skb: the packet
+ *
+ *     Returns true if a packet can be sent as a WR with immediate data.
+ */
+static inline int is_imm(const struct sk_buff *skb)
+{
+       return skb->len <= MAX_CTRL_WR_LEN;
+}
+
+/**
+ *     ctrlq_check_stop - check if a control queue is full and should stop
+ *     @q: the queue
+ *     @wr: most recent WR written to the queue
+ *
+ *     Check if a control queue has become full and should be stopped.
+ *     We clean up control queue descriptors very lazily, only when we are out.
+ *     If the queue is still full after reclaiming any completed descriptors
+ *     we suspend it and have the last WR wake it up.
+ */
+static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
+{
+       reclaim_completed_tx_imm(&q->q);
+       if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
+               wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
+               q->q.stops++;
+               q->full = 1;
+       }
+}
+
+/**
+ *     ctrl_xmit - send a packet through an SGE control Tx queue
+ *     @q: the control queue
+ *     @skb: the packet
+ *
+ *     Send a packet through an SGE control Tx queue.  Packets sent through
+ *     a control queue must fit entirely as immediate data.
+ */
+static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
+{
+       unsigned int ndesc;
+       struct fw_wr_hdr *wr;
+
+       if (unlikely(!is_imm(skb))) {
+               WARN_ON(1);
+               dev_kfree_skb(skb);
+               return NET_XMIT_DROP;
+       }
+
+       ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
+       spin_lock(&q->sendq.lock);
+
+       if (unlikely(q->full)) {
+               skb->priority = ndesc;                  /* save for restart */
+               __skb_queue_tail(&q->sendq, skb);
+               spin_unlock(&q->sendq.lock);
+               return NET_XMIT_CN;
+       }
+
+       wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
+       inline_tx_skb(skb, &q->q, wr);
+
+       txq_advance(&q->q, ndesc);
+       if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
+               ctrlq_check_stop(q, wr);
+
+       ring_tx_db(q->adap, &q->q, ndesc);
+       spin_unlock(&q->sendq.lock);
+
+       kfree_skb(skb);
+       return NET_XMIT_SUCCESS;
+}
+
+/**
+ *     restart_ctrlq - restart a suspended control queue
+ *     @data: the control queue to restart
+ *
+ *     Resumes transmission on a suspended Tx control queue.
+ */
+static void restart_ctrlq(unsigned long data)
+{
+       struct sk_buff *skb;
+       unsigned int written = 0;
+       struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
+
+       spin_lock(&q->sendq.lock);
+       reclaim_completed_tx_imm(&q->q);
+       BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
+
+       while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
+               struct fw_wr_hdr *wr;
+               unsigned int ndesc = skb->priority;     /* previously saved */
+
+               /*
+                * Write descriptors and free skbs outside the lock to limit
+                * wait times.  q->full is still set so new skbs will be queued.
+                */
+               spin_unlock(&q->sendq.lock);
+
+               wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
+               inline_tx_skb(skb, &q->q, wr);
+               kfree_skb(skb);
+
+               written += ndesc;
+               txq_advance(&q->q, ndesc);
+               if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
+                       unsigned long old = q->q.stops;
+
+                       ctrlq_check_stop(q, wr);
+                       if (q->q.stops != old) {          /* suspended anew */
+                               spin_lock(&q->sendq.lock);
+                               goto ringdb;
+                       }
+               }
+               if (written > 16) {
+                       ring_tx_db(q->adap, &q->q, written);
+                       written = 0;
+               }
+               spin_lock(&q->sendq.lock);
+       }
+       q->full = 0;
+ringdb: if (written)
+               ring_tx_db(q->adap, &q->q, written);
+       spin_unlock(&q->sendq.lock);
+}
+
+/**
+ *     t4_mgmt_tx - send a management message
+ *     @adap: the adapter
+ *     @skb: the packet containing the management message
+ *
+ *     Send a management message through control queue 0.
+ */
+int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
+{
+       int ret;
+
+       local_bh_disable();
+       ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
+       local_bh_enable();
+       return ret;
+}
+
+/**
+ *     is_ofld_imm - check whether a packet can be sent as immediate data
+ *     @skb: the packet
+ *
+ *     Returns true if a packet can be sent as an offload WR with immediate
+ *     data.  We currently use the same limit as for Ethernet packets.
+ */
+static inline int is_ofld_imm(const struct sk_buff *skb)
+{
+       return skb->len <= MAX_IMM_TX_PKT_LEN;
+}
+
+/**
+ *     calc_tx_flits_ofld - calculate # of flits for an offload packet
+ *     @skb: the packet
+ *
+ *     Returns the number of flits needed for the given offload packet.
+ *     These packets are already fully constructed and no additional headers
+ *     will be added.
+ */
+static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
+{
+       unsigned int flits, cnt;
+
+       if (is_ofld_imm(skb))
+               return DIV_ROUND_UP(skb->len, 8);
+
+       flits = skb_transport_offset(skb) / 8U;   /* headers */
+       cnt = skb_shinfo(skb)->nr_frags;
+       if (skb_tail_pointer(skb) != skb_transport_header(skb))
+               cnt++;
+       return flits + sgl_len(cnt);
+}
+
+/**
+ *     txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
+ *     @adap: the adapter
+ *     @q: the queue to stop
+ *
+ *     Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
+ *     inability to map packets.  A periodic timer attempts to restart
+ *     queues so marked.
+ */
+static void txq_stop_maperr(struct sge_ofld_txq *q)
+{
+       q->mapping_err++;
+       q->q.stops++;
+       set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
+               q->adap->sge.txq_maperr);
+}
+
+/**
+ *     ofldtxq_stop - stop an offload Tx queue that has become full
+ *     @q: the queue to stop
+ *     @skb: the packet causing the queue to become full
+ *
+ *     Stops an offload Tx queue that has become full and modifies the packet
+ *     being written to request a wakeup.
+ */
+static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
+{
+       struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
+
+       wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
+       q->q.stops++;
+       q->full = 1;
+}
+
+/**
+ *     service_ofldq - restart a suspended offload queue
+ *     @q: the offload queue
+ *
+ *     Services an offload Tx queue by moving packets from its packet queue
+ *     to the HW Tx ring.  The function starts and ends with the queue locked.
+ */
+static void service_ofldq(struct sge_ofld_txq *q)
+{
+       u64 *pos;
+       int credits;
+       struct sk_buff *skb;
+       unsigned int written = 0;
+       unsigned int flits, ndesc;
+
+       while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
+               /*
+                * We drop the lock but leave skb on sendq, thus retaining
+                * exclusive access to the state of the queue.
+                */
+               spin_unlock(&q->sendq.lock);
+
+               reclaim_completed_tx(q->adap, &q->q, false);
+
+               flits = skb->priority;                /* previously saved */
+               ndesc = flits_to_desc(flits);
+               credits = txq_avail(&q->q) - ndesc;
+               BUG_ON(credits < 0);
+               if (unlikely(credits < TXQ_STOP_THRES))
+                       ofldtxq_stop(q, skb);
+
+               pos = (u64 *)&q->q.desc[q->q.pidx];
+               if (is_ofld_imm(skb))
+                       inline_tx_skb(skb, &q->q, pos);
+               else if (map_skb(q->adap->pdev_dev, skb,
+                                (dma_addr_t *)skb->head)) {
+                       txq_stop_maperr(q);
+                       spin_lock(&q->sendq.lock);
+                       break;
+               } else {
+                       int last_desc, hdr_len = skb_transport_offset(skb);
+
+                       memcpy(pos, skb->data, hdr_len);
+                       write_sgl(skb, &q->q, (void *)pos + hdr_len,
+                                 pos + flits, hdr_len,
+                                 (dma_addr_t *)skb->head);
+#ifdef CONFIG_NEED_DMA_MAP_STATE
+                       skb->dev = q->adap->port[0];
+                       skb->destructor = deferred_unmap_destructor;
+#endif
+                       last_desc = q->q.pidx + ndesc - 1;
+                       if (last_desc >= q->q.size)
+                               last_desc -= q->q.size;
+                       q->q.sdesc[last_desc].skb = skb;
+               }
+
+               txq_advance(&q->q, ndesc);
+               written += ndesc;
+               if (unlikely(written > 32)) {
+                       ring_tx_db(q->adap, &q->q, written);
+                       written = 0;
+               }
+
+               spin_lock(&q->sendq.lock);
+               __skb_unlink(skb, &q->sendq);
+               if (is_ofld_imm(skb))
+                       kfree_skb(skb);
+       }
+       if (likely(written))
+               ring_tx_db(q->adap, &q->q, written);
+}
+
+/**
+ *     ofld_xmit - send a packet through an offload queue
+ *     @q: the Tx offload queue
+ *     @skb: the packet
+ *
+ *     Send an offload packet through an SGE offload queue.
+ */
+static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
+{
+       skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
+       spin_lock(&q->sendq.lock);
+       __skb_queue_tail(&q->sendq, skb);
+       if (q->sendq.qlen == 1)
+               service_ofldq(q);
+       spin_unlock(&q->sendq.lock);
+       return NET_XMIT_SUCCESS;
+}
+
+/**
+ *     restart_ofldq - restart a suspended offload queue
+ *     @data: the offload queue to restart
+ *
+ *     Resumes transmission on a suspended Tx offload queue.
+ */
+static void restart_ofldq(unsigned long data)
+{
+       struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
+
+       spin_lock(&q->sendq.lock);
+       q->full = 0;            /* the queue actually is completely empty now */
+       service_ofldq(q);
+       spin_unlock(&q->sendq.lock);
+}
+
+/**
+ *     skb_txq - return the Tx queue an offload packet should use
+ *     @skb: the packet
+ *
+ *     Returns the Tx queue an offload packet should use as indicated by bits
+ *     1-15 in the packet's queue_mapping.
+ */
+static inline unsigned int skb_txq(const struct sk_buff *skb)
+{
+       return skb->queue_mapping >> 1;
+}
+
+/**
+ *     is_ctrl_pkt - return whether an offload packet is a control packet
+ *     @skb: the packet
+ *
+ *     Returns whether an offload packet should use an OFLD or a CTRL
+ *     Tx queue as indicated by bit 0 in the packet's queue_mapping.
+ */
+static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
+{
+       return skb->queue_mapping & 1;
+}
+
+static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
+{
+       unsigned int idx = skb_txq(skb);
+
+       if (unlikely(is_ctrl_pkt(skb))) {
+               /* Single ctrl queue is a requirement for LE workaround path */
+               if (adap->tids.nsftids)
+                       idx = 0;
+               return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
+       }
+       return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
+}
+
+/**
+ *     t4_ofld_send - send an offload packet
+ *     @adap: the adapter
+ *     @skb: the packet
+ *
+ *     Sends an offload packet.  We use the packet queue_mapping to select the
+ *     appropriate Tx queue as follows: bit 0 indicates whether the packet
+ *     should be sent as regular or control, bits 1-15 select the queue.
+ */
+int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
+{
+       int ret;
+
+       local_bh_disable();
+       ret = ofld_send(adap, skb);
+       local_bh_enable();
+       return ret;
+}
+
+/**
+ *     cxgb4_ofld_send - send an offload packet
+ *     @dev: the net device
+ *     @skb: the packet
+ *
+ *     Sends an offload packet.  This is an exported version of @t4_ofld_send,
+ *     intended for ULDs.
+ */
+int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
+{
+       return t4_ofld_send(netdev2adap(dev), skb);
+}
+EXPORT_SYMBOL(cxgb4_ofld_send);
+
+static inline void copy_frags(struct sk_buff *skb,
+                             const struct pkt_gl *gl, unsigned int offset)
+{
+       int i;
+
+       /* usually there's just one frag */
+       __skb_fill_page_desc(skb, 0, gl->frags[0].page,
+                            gl->frags[0].offset + offset,
+                            gl->frags[0].size - offset);
+       skb_shinfo(skb)->nr_frags = gl->nfrags;
+       for (i = 1; i < gl->nfrags; i++)
+               __skb_fill_page_desc(skb, i, gl->frags[i].page,
+                                    gl->frags[i].offset,
+                                    gl->frags[i].size);
+
+       /* get a reference to the last page, we don't own it */
+       get_page(gl->frags[gl->nfrags - 1].page);
+}
+
+/**
+ *     cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
+ *     @gl: the gather list
+ *     @skb_len: size of sk_buff main body if it carries fragments
+ *     @pull_len: amount of data to move to the sk_buff's main body
+ *
+ *     Builds an sk_buff from the given packet gather list.  Returns the
+ *     sk_buff or %NULL if sk_buff allocation failed.
+ */
+struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
+                                  unsigned int skb_len, unsigned int pull_len)
+{
+       struct sk_buff *skb;
+
+       /*
+        * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
+        * size, which is expected since buffers are at least PAGE_SIZEd.
+        * In this case packets up to RX_COPY_THRES have only one fragment.
+        */
+       if (gl->tot_len <= RX_COPY_THRES) {
+               skb = dev_alloc_skb(gl->tot_len);
+               if (unlikely(!skb))
+                       goto out;
+               __skb_put(skb, gl->tot_len);
+               skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
+       } else {
+               skb = dev_alloc_skb(skb_len);
+               if (unlikely(!skb))
+                       goto out;
+               __skb_put(skb, pull_len);
+               skb_copy_to_linear_data(skb, gl->va, pull_len);
+
+               copy_frags(skb, gl, pull_len);
+               skb->len = gl->tot_len;
+               skb->data_len = skb->len - pull_len;
+               skb->truesize += skb->data_len;
+       }
+out:   return skb;
+}
+EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
+
+/**
+ *     t4_pktgl_free - free a packet gather list
+ *     @gl: the gather list
+ *
+ *     Releases the pages of a packet gather list.  We do not own the last
+ *     page on the list and do not free it.
+ */
+static void t4_pktgl_free(const struct pkt_gl *gl)
+{
+       int n;
+       const struct page_frag *p;
+
+       for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
+               put_page(p->page);
+}
+
+/*
+ * Process an MPS trace packet.  Give it an unused protocol number so it won't
+ * be delivered to anyone and send it to the stack for capture.
+ */
+static noinline int handle_trace_pkt(struct adapter *adap,
+                                    const struct pkt_gl *gl)
+{
+       struct sk_buff *skb;
+
+       skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
+       if (unlikely(!skb)) {
+               t4_pktgl_free(gl);
+               return 0;
+       }
+
+       if (is_t4(adap->params.chip))
+               __skb_pull(skb, sizeof(struct cpl_trace_pkt));
+       else
+               __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
+
+       skb_reset_mac_header(skb);
+       skb->protocol = htons(0xffff);
+       skb->dev = adap->port[0];
+       netif_receive_skb(skb);
+       return 0;
+}
+
+static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
+                  const struct cpl_rx_pkt *pkt)
+{
+       struct adapter *adapter = rxq->rspq.adap;
+       struct sge *s = &adapter->sge;
+       int ret;
+       struct sk_buff *skb;
+
+       skb = napi_get_frags(&rxq->rspq.napi);
+       if (unlikely(!skb)) {
+               t4_pktgl_free(gl);
+               rxq->stats.rx_drops++;
+               return;
+       }
+
+       copy_frags(skb, gl, s->pktshift);
+       skb->len = gl->tot_len - s->pktshift;
+       skb->data_len = skb->len;
+       skb->truesize += skb->data_len;
+       skb->ip_summed = CHECKSUM_UNNECESSARY;
+       skb_record_rx_queue(skb, rxq->rspq.idx);
+       skb_mark_napi_id(skb, &rxq->rspq.napi);
+       if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
+               skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
+                            PKT_HASH_TYPE_L3);
+
+       if (unlikely(pkt->vlan_ex)) {
+               __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
+               rxq->stats.vlan_ex++;
+       }
+       ret = napi_gro_frags(&rxq->rspq.napi);
+       if (ret == GRO_HELD)
+               rxq->stats.lro_pkts++;
+       else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
+               rxq->stats.lro_merged++;
+       rxq->stats.pkts++;
+       rxq->stats.rx_cso++;
+}
+
+/**
+ *     t4_ethrx_handler - process an ingress ethernet packet
+ *     @q: the response queue that received the packet
+ *     @rsp: the response queue descriptor holding the RX_PKT message
+ *     @si: the gather list of packet fragments
+ *
+ *     Process an ingress ethernet packet and deliver it to the stack.
+ */
+int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
+                    const struct pkt_gl *si)
+{
+       bool csum_ok;
+       struct sk_buff *skb;
+       const struct cpl_rx_pkt *pkt;
+       struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
+       struct sge *s = &q->adap->sge;
+       int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
+                           CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
+#ifdef CONFIG_CHELSIO_T4_FCOE
+       struct port_info *pi;
+#endif
+
+       if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
+               return handle_trace_pkt(q->adap, si);
+
+       pkt = (const struct cpl_rx_pkt *)rsp;
+       csum_ok = pkt->csum_calc && !pkt->err_vec &&
+                 (q->netdev->features & NETIF_F_RXCSUM);
+       if ((pkt->l2info & htonl(RXF_TCP_F)) &&
+           !(cxgb_poll_busy_polling(q)) &&
+           (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
+               do_gro(rxq, si, pkt);
+               return 0;
+       }
+
+       skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
+       if (unlikely(!skb)) {
+               t4_pktgl_free(si);
+               rxq->stats.rx_drops++;
+               return 0;
+       }
+
+       __skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
+       skb->protocol = eth_type_trans(skb, q->netdev);
+       skb_record_rx_queue(skb, q->idx);
+       if (skb->dev->features & NETIF_F_RXHASH)
+               skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
+                            PKT_HASH_TYPE_L3);
+
+       rxq->stats.pkts++;
+
+       if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
+               if (!pkt->ip_frag) {
+                       skb->ip_summed = CHECKSUM_UNNECESSARY;
+                       rxq->stats.rx_cso++;
+               } else if (pkt->l2info & htonl(RXF_IP_F)) {
+                       __sum16 c = (__force __sum16)pkt->csum;
+                       skb->csum = csum_unfold(c);
+                       skb->ip_summed = CHECKSUM_COMPLETE;
+                       rxq->stats.rx_cso++;
+               }
+       } else {
+               skb_checksum_none_assert(skb);
+#ifdef CONFIG_CHELSIO_T4_FCOE
+#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
+                         RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
+
+               pi = netdev_priv(skb->dev);
+               if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
+                       if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
+                           (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
+                               if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
+                                       skb->ip_summed = CHECKSUM_UNNECESSARY;
+                       }
+               }
+
+#undef CPL_RX_PKT_FLAGS
+#endif /* CONFIG_CHELSIO_T4_FCOE */
+       }
+
+       if (unlikely(pkt->vlan_ex)) {
+               __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
+               rxq->stats.vlan_ex++;
+       }
+       skb_mark_napi_id(skb, &q->napi);
+       netif_receive_skb(skb);
+       return 0;
+}
+
+/**
+ *     restore_rx_bufs - put back a packet's Rx buffers
+ *     @si: the packet gather list
+ *     @q: the SGE free list
+ *     @frags: number of FL buffers to restore
+ *
+ *     Puts back on an FL the Rx buffers associated with @si.  The buffers
+ *     have already been unmapped and are left unmapped, we mark them so to
+ *     prevent further unmapping attempts.
+ *
+ *     This function undoes a series of @unmap_rx_buf calls when we find out
+ *     that the current packet can't be processed right away afterall and we
+ *     need to come back to it later.  This is a very rare event and there's
+ *     no effort to make this particularly efficient.
+ */
+static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
+                           int frags)
+{
+       struct rx_sw_desc *d;
+
+       while (frags--) {
+               if (q->cidx == 0)
+                       q->cidx = q->size - 1;
+               else
+                       q->cidx--;
+               d = &q->sdesc[q->cidx];
+               d->page = si->frags[frags].page;
+               d->dma_addr |= RX_UNMAPPED_BUF;
+               q->avail++;
+       }
+}
+
+/**
+ *     is_new_response - check if a response is newly written
+ *     @r: the response descriptor
+ *     @q: the response queue
+ *
+ *     Returns true if a response descriptor contains a yet unprocessed
+ *     response.
+ */
+static inline bool is_new_response(const struct rsp_ctrl *r,
+                                  const struct sge_rspq *q)
+{
+       return RSPD_GEN(r->type_gen) == q->gen;
+}
+
+/**
+ *     rspq_next - advance to the next entry in a response queue
+ *     @q: the queue
+ *
+ *     Updates the state of a response queue to advance it to the next entry.
+ */
+static inline void rspq_next(struct sge_rspq *q)
+{
+       q->cur_desc = (void *)q->cur_desc + q->iqe_len;
+       if (unlikely(++q->cidx == q->size)) {
+               q->cidx = 0;
+               q->gen ^= 1;
+               q->cur_desc = q->desc;
+       }
+}
+
+/**
+ *     process_responses - process responses from an SGE response queue
+ *     @q: the ingress queue to process
+ *     @budget: how many responses can be processed in this round
+ *
+ *     Process responses from an SGE response queue up to the supplied budget.
+ *     Responses include received packets as well as control messages from FW
+ *     or HW.
+ *
+ *     Additionally choose the interrupt holdoff time for the next interrupt
+ *     on this queue.  If the system is under memory shortage use a fairly
+ *     long delay to help recovery.
+ */
+static int process_responses(struct sge_rspq *q, int budget)
+{
+       int ret, rsp_type;
+       int budget_left = budget;
+       const struct rsp_ctrl *rc;
+       struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
+       struct adapter *adapter = q->adap;
+       struct sge *s = &adapter->sge;
+
+       while (likely(budget_left)) {
+               rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
+               if (!is_new_response(rc, q))
+                       break;
+
+               dma_rmb();
+               rsp_type = RSPD_TYPE(rc->type_gen);
+               if (likely(rsp_type == RSP_TYPE_FLBUF)) {
+                       struct page_frag *fp;
+                       struct pkt_gl si;
+                       const struct rx_sw_desc *rsd;
+                       u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
+
+                       if (len & RSPD_NEWBUF) {
+                               if (likely(q->offset > 0)) {
+                                       free_rx_bufs(q->adap, &rxq->fl, 1);
+                                       q->offset = 0;
+                               }
+                               len = RSPD_LEN(len);
+                       }
+                       si.tot_len = len;
+
+                       /* gather packet fragments */
+                       for (frags = 0, fp = si.frags; ; frags++, fp++) {
+                               rsd = &rxq->fl.sdesc[rxq->fl.cidx];
+                               bufsz = get_buf_size(adapter, rsd);
+                               fp->page = rsd->page;
+                               fp->offset = q->offset;
+                               fp->size = min(bufsz, len);
+                               len -= fp->size;
+                               if (!len)
+                                       break;
+                               unmap_rx_buf(q->adap, &rxq->fl);
+                       }
+
+                       /*
+                        * Last buffer remains mapped so explicitly make it
+                        * coherent for CPU access.
+                        */
+                       dma_sync_single_for_cpu(q->adap->pdev_dev,
+                                               get_buf_addr(rsd),
+                                               fp->size, DMA_FROM_DEVICE);
+
+                       si.va = page_address(si.frags[0].page) +
+                               si.frags[0].offset;
+                       prefetch(si.va);
+
+                       si.nfrags = frags + 1;
+                       ret = q->handler(q, q->cur_desc, &si);
+                       if (likely(ret == 0))
+                               q->offset += ALIGN(fp->size, s->fl_align);
+                       else
+                               restore_rx_bufs(&si, &rxq->fl, frags);
+               } else if (likely(rsp_type == RSP_TYPE_CPL)) {
+                       ret = q->handler(q, q->cur_desc, NULL);
+               } else {
+                       ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
+               }
+
+               if (unlikely(ret)) {
+                       /* couldn't process descriptor, back off for recovery */
+                       q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
+                       break;
+               }
+
+               rspq_next(q);
+               budget_left--;
+       }
+
+       if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
+               __refill_fl(q->adap, &rxq->fl);
+       return budget - budget_left;
+}
+
+#ifdef CONFIG_NET_RX_BUSY_POLL
+int cxgb_busy_poll(struct napi_struct *napi)
+{
+       struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
+       unsigned int params, work_done;
+       u32 val;
+
+       if (!cxgb_poll_lock_poll(q))
+               return LL_FLUSH_BUSY;
+
+       work_done = process_responses(q, 4);
+       params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN;
+       q->next_intr_params = params;
+       val = CIDXINC_V(work_done) | SEINTARM_V(params);
+
+       /* If we don't have access to the new User GTS (T5+), use the old
+        * doorbell mechanism; otherwise use the new BAR2 mechanism.
+        */
+       if (unlikely(!q->bar2_addr))
+               t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
+                            val | INGRESSQID_V((u32)q->cntxt_id));
+       else {
+               writel(val | INGRESSQID_V(q->bar2_qid),
+                      q->bar2_addr + SGE_UDB_GTS);
+               wmb();
+       }
+
+       cxgb_poll_unlock_poll(q);
+       return work_done;
+}
+#endif /* CONFIG_NET_RX_BUSY_POLL */
+
+/**
+ *     napi_rx_handler - the NAPI handler for Rx processing
+ *     @napi: the napi instance
+ *     @budget: how many packets we can process in this round
+ *
+ *     Handler for new data events when using NAPI.  This does not need any
+ *     locking or protection from interrupts as data interrupts are off at
+ *     this point and other adapter interrupts do not interfere (the latter
+ *     in not a concern at all with MSI-X as non-data interrupts then have
+ *     a separate handler).
+ */
+static int napi_rx_handler(struct napi_struct *napi, int budget)
+{
+       unsigned int params;
+       struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
+       int work_done;
+       u32 val;
+
+       if (!cxgb_poll_lock_napi(q))
+               return budget;
+
+       work_done = process_responses(q, budget);
+       if (likely(work_done < budget)) {
+               int timer_index;
+
+               napi_complete(napi);
+               timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
+
+               if (q->adaptive_rx) {
+                       if (work_done > max(timer_pkt_quota[timer_index],
+                                           MIN_NAPI_WORK))
+                               timer_index = (timer_index + 1);
+                       else
+                               timer_index = timer_index - 1;
+
+                       timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
+                       q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
+                                                             V_QINTR_CNT_EN;
+                       params = q->next_intr_params;
+               } else {
+                       params = q->next_intr_params;
+                       q->next_intr_params = q->intr_params;
+               }
+       } else
+               params = QINTR_TIMER_IDX(7);
+
+       val = CIDXINC_V(work_done) | SEINTARM_V(params);
+
+       /* If we don't have access to the new User GTS (T5+), use the old
+        * doorbell mechanism; otherwise use the new BAR2 mechanism.
+        */
+       if (unlikely(q->bar2_addr == NULL)) {
+               t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
+                            val | INGRESSQID_V((u32)q->cntxt_id));
+       } else {
+               writel(val | INGRESSQID_V(q->bar2_qid),
+                      q->bar2_addr + SGE_UDB_GTS);
+               wmb();
+       }
+       cxgb_poll_unlock_napi(q);
+       return work_done;
+}
+
+/*
+ * The MSI-X interrupt handler for an SGE response queue.
+ */
+irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
+{
+       struct sge_rspq *q = cookie;
+
+       napi_schedule(&q->napi);
+       return IRQ_HANDLED;
+}
+
+/*
+ * Process the indirect interrupt entries in the interrupt queue and kick off
+ * NAPI for each queue that has generated an entry.
+ */
+static unsigned int process_intrq(struct adapter *adap)
+{
+       unsigned int credits;
+       const struct rsp_ctrl *rc;
+       struct sge_rspq *q = &adap->sge.intrq;
+       u32 val;
+
+       spin_lock(&adap->sge.intrq_lock);
+       for (credits = 0; ; credits++) {
+               rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
+               if (!is_new_response(rc, q))
+                       break;
+
+               dma_rmb();
+               if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
+                       unsigned int qid = ntohl(rc->pldbuflen_qid);
+
+                       qid -= adap->sge.ingr_start;
+                       napi_schedule(&adap->sge.ingr_map[qid]->napi);
+               }
+
+               rspq_next(q);
+       }
+
+       val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
+
+       /* If we don't have access to the new User GTS (T5+), use the old
+        * doorbell mechanism; otherwise use the new BAR2 mechanism.
+        */
+       if (unlikely(q->bar2_addr == NULL)) {
+               t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
+                            val | INGRESSQID_V(q->cntxt_id));
+       } else {
+               writel(val | INGRESSQID_V(q->bar2_qid),
+                      q->bar2_addr + SGE_UDB_GTS);
+               wmb();
+       }
+       spin_unlock(&adap->sge.intrq_lock);
+       return credits;
+}
+
+/*
+ * The MSI interrupt handler, which handles data events from SGE response queues
+ * as well as error and other async events as they all use the same MSI vector.
+ */
+static irqreturn_t t4_intr_msi(int irq, void *cookie)
+{
+       struct adapter *adap = cookie;
+
+       if (adap->flags & MASTER_PF)
+               t4_slow_intr_handler(adap);
+       process_intrq(adap);
+       return IRQ_HANDLED;
+}
+
+/*
+ * Interrupt handler for legacy INTx interrupts.
+ * Handles data events from SGE response queues as well as error and other
+ * async events as they all use the same interrupt line.
+ */
+static irqreturn_t t4_intr_intx(int irq, void *cookie)
+{
+       struct adapter *adap = cookie;
+
+       t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
+       if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
+           process_intrq(adap))
+               return IRQ_HANDLED;
+       return IRQ_NONE;             /* probably shared interrupt */
+}
+
+/**
+ *     t4_intr_handler - select the top-level interrupt handler
+ *     @adap: the adapter
+ *
+ *     Selects the top-level interrupt handler based on the type of interrupts
+ *     (MSI-X, MSI, or INTx).
+ */
+irq_handler_t t4_intr_handler(struct adapter *adap)
+{
+       if (adap->flags & USING_MSIX)
+               return t4_sge_intr_msix;
+       if (adap->flags & USING_MSI)
+               return t4_intr_msi;
+       return t4_intr_intx;
+}
+
+static void sge_rx_timer_cb(unsigned long data)
+{
+       unsigned long m;
+       unsigned int i, idma_same_state_cnt[2];
+       struct adapter *adap = (struct adapter *)data;
+       struct sge *s = &adap->sge;
+
+       for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
+               for (m = s->starving_fl[i]; m; m &= m - 1) {
+                       struct sge_eth_rxq *rxq;
+                       unsigned int id = __ffs(m) + i * BITS_PER_LONG;
+                       struct sge_fl *fl = s->egr_map[id];
+
+                       clear_bit(id, s->starving_fl);
+                       smp_mb__after_atomic();
+
+                       if (fl_starving(adap, fl)) {
+                               rxq = container_of(fl, struct sge_eth_rxq, fl);
+                               if (napi_reschedule(&rxq->rspq.napi))
+                                       fl->starving++;
+                               else
+                                       set_bit(id, s->starving_fl);
+                       }
+               }
+
+       t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13);
+       idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A);
+       idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
+
+       for (i = 0; i < 2; i++) {
+               u32 debug0, debug11;
+
+               /* If the Ingress DMA Same State Counter ("timer") is less
+                * than 1s, then we can reset our synthesized Stall Timer and
+                * continue.  If we have previously emitted warnings about a
+                * potential stalled Ingress Queue, issue a note indicating
+                * that the Ingress Queue has resumed forward progress.
+                */
+               if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
+                       if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
+                               CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
+                                       i, s->idma_qid[i],
+                                       s->idma_stalled[i]/HZ);
+                       s->idma_stalled[i] = 0;
+                       continue;
+               }
+
+               /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
+                * domain.  The first time we get here it'll be because we
+                * passed the 1s Threshold; each additional time it'll be
+                * because the RX Timer Callback is being fired on its regular
+                * schedule.
+                *
+                * If the stall is below our Potential Hung Ingress Queue
+                * Warning Threshold, continue.
+                */
+               if (s->idma_stalled[i] == 0)
+                       s->idma_stalled[i] = HZ;
+               else
+                       s->idma_stalled[i] += RX_QCHECK_PERIOD;
+
+               if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
+                       continue;
+
+               /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
+               if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
+                       continue;
+
+               /* Read and save the SGE IDMA State and Queue ID information.
+                * We do this every time in case it changes across time ...
+                */
+               t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0);
+               debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
+               s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
+
+               t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11);
+               debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
+               s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
+
+               CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
+                       i, s->idma_qid[i], s->idma_state[i],
+                       s->idma_stalled[i]/HZ, debug0, debug11);
+               t4_sge_decode_idma_state(adap, s->idma_state[i]);
+       }
+
+       mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
+}
+
+static void sge_tx_timer_cb(unsigned long data)
+{
+       unsigned long m;
+       unsigned int i, budget;
+       struct adapter *adap = (struct adapter *)data;
+       struct sge *s = &adap->sge;
+
+       for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
+               for (m = s->txq_maperr[i]; m; m &= m - 1) {
+                       unsigned long id = __ffs(m) + i * BITS_PER_LONG;
+                       struct sge_ofld_txq *txq = s->egr_map[id];
+
+                       clear_bit(id, s->txq_maperr);
+                       tasklet_schedule(&txq->qresume_tsk);
+               }
+
+       budget = MAX_TIMER_TX_RECLAIM;
+       i = s->ethtxq_rover;
+       do {
+               struct sge_eth_txq *q = &s->ethtxq[i];
+
+               if (q->q.in_use &&
+                   time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
+                   __netif_tx_trylock(q->txq)) {
+                       int avail = reclaimable(&q->q);
+
+                       if (avail) {
+                               if (avail > budget)
+                                       avail = budget;
+
+                               free_tx_desc(adap, &q->q, avail, true);
+                               q->q.in_use -= avail;
+                               budget -= avail;
+                       }
+                       __netif_tx_unlock(q->txq);
+               }
+
+               if (++i >= s->ethqsets)
+                       i = 0;
+       } while (budget && i != s->ethtxq_rover);
+       s->ethtxq_rover = i;
+       mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
+}
+
+/**
+ *     bar2_address - return the BAR2 address for an SGE Queue's Registers
+ *     @adapter: the adapter
+ *     @qid: the SGE Queue ID
+ *     @qtype: the SGE Queue Type (Egress or Ingress)
+ *     @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
+ *
+ *     Returns the BAR2 address for the SGE Queue Registers associated with
+ *     @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
+ *     returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
+ *     Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
+ *     Registers are supported (e.g. the Write Combining Doorbell Buffer).
+ */
+static void __iomem *bar2_address(struct adapter *adapter,
+                                 unsigned int qid,
+                                 enum t4_bar2_qtype qtype,
+                                 unsigned int *pbar2_qid)
+{
+       u64 bar2_qoffset;
+       int ret;
+
+       ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype,
+                               &bar2_qoffset, pbar2_qid);
+       if (ret)
+               return NULL;
+
+       return adapter->bar2 + bar2_qoffset;
+}
+
+int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
+                    struct net_device *dev, int intr_idx,
+                    struct sge_fl *fl, rspq_handler_t hnd)
+{
+       int ret, flsz = 0;
+       struct fw_iq_cmd c;
+       struct sge *s = &adap->sge;
+       struct port_info *pi = netdev_priv(dev);
+
+       /* Size needs to be multiple of 16, including status entry. */
+       iq->size = roundup(iq->size, 16);
+
+       iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
+                             &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
+       if (!iq->desc)
+               return -ENOMEM;
+
+       memset(&c, 0, sizeof(c));
+       c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
+                           FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+                           FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0));
+       c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
+                                FW_LEN16(c));
+       c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
+               FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
+               FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) |
+               FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
+                                                       -intr_idx - 1));
+       c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
+               FW_IQ_CMD_IQGTSMODE_F |
+               FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
+               FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
+       c.iqsize = htons(iq->size);
+       c.iqaddr = cpu_to_be64(iq->phys_addr);
+
+       if (fl) {
+               fl->size = roundup(fl->size, 8);
+               fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
+                                     sizeof(struct rx_sw_desc), &fl->addr,
+                                     &fl->sdesc, s->stat_len, NUMA_NO_NODE);
+               if (!fl->desc)
+                       goto fl_nomem;
+
+               flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
+               c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F |
+                                           FW_IQ_CMD_FL0FETCHRO_F |
+                                           FW_IQ_CMD_FL0DATARO_F |
+                                           FW_IQ_CMD_FL0PADEN_F);
+               c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) |
+                               FW_IQ_CMD_FL0FBMAX_V(3));
+               c.fl0size = htons(flsz);
+               c.fl0addr = cpu_to_be64(fl->addr);
+       }
+
+       ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
+       if (ret)
+               goto err;
+
+       netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
+       napi_hash_add(&iq->napi);
+       iq->cur_desc = iq->desc;
+       iq->cidx = 0;
+       iq->gen = 1;
+       iq->next_intr_params = iq->intr_params;
+       iq->cntxt_id = ntohs(c.iqid);
+       iq->abs_id = ntohs(c.physiqid);
+       iq->bar2_addr = bar2_address(adap,
+                                    iq->cntxt_id,
+                                    T4_BAR2_QTYPE_INGRESS,
+                                    &iq->bar2_qid);
+       iq->size--;                           /* subtract status entry */
+       iq->netdev = dev;
+       iq->handler = hnd;
+
+       /* set offset to -1 to distinguish ingress queues without FL */
+       iq->offset = fl ? 0 : -1;
+
+       adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
+
+       if (fl) {
+               fl->cntxt_id = ntohs(c.fl0id);
+               fl->avail = fl->pend_cred = 0;
+               fl->pidx = fl->cidx = 0;
+               fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
+               adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
+
+               /* Note, we must initialize the BAR2 Free List User Doorbell
+                * information before refilling the Free List!
+                */
+               fl->bar2_addr = bar2_address(adap,
+                                            fl->cntxt_id,
+                                            T4_BAR2_QTYPE_EGRESS,
+                                            &fl->bar2_qid);
+               refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
+       }
+       return 0;
+
+fl_nomem:
+       ret = -ENOMEM;
+err:
+       if (iq->desc) {
+               dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
+                                 iq->desc, iq->phys_addr);
+               iq->desc = NULL;
+       }
+       if (fl && fl->desc) {
+               kfree(fl->sdesc);
+               fl->sdesc = NULL;
+               dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
+                                 fl->desc, fl->addr);
+               fl->desc = NULL;
+       }
+       return ret;
+}
+
+static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
+{
+       q->cntxt_id = id;
+       q->bar2_addr = bar2_address(adap,
+                                   q->cntxt_id,
+                                   T4_BAR2_QTYPE_EGRESS,
+                                   &q->bar2_qid);
+       q->in_use = 0;
+       q->cidx = q->pidx = 0;
+       q->stops = q->restarts = 0;
+       q->stat = (void *)&q->desc[q->size];
+       spin_lock_init(&q->db_lock);
+       adap->sge.egr_map[id - adap->sge.egr_start] = q;
+}
+
+int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
+                        struct net_device *dev, struct netdev_queue *netdevq,
+                        unsigned int iqid)
+{
+       int ret, nentries;
+       struct fw_eq_eth_cmd c;
+       struct sge *s = &adap->sge;
+       struct port_info *pi = netdev_priv(dev);
+
+       /* Add status entries */
+       nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
+
+       txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
+                       sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
+                       &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
+                       netdev_queue_numa_node_read(netdevq));
+       if (!txq->q.desc)
+               return -ENOMEM;
+
+       memset(&c, 0, sizeof(c));
+       c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
+                           FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+                           FW_EQ_ETH_CMD_PFN_V(adap->fn) |
+                           FW_EQ_ETH_CMD_VFN_V(0));
+       c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
+                                FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
+       c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
+                          FW_EQ_ETH_CMD_VIID_V(pi->viid));
+       c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) |
+                                  FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
+                                  FW_EQ_ETH_CMD_FETCHRO_V(1) |
+                                  FW_EQ_ETH_CMD_IQID_V(iqid));
+       c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) |
+                                 FW_EQ_ETH_CMD_FBMAX_V(3) |
+                                 FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) |
+                                 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
+       c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+       ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
+       if (ret) {
+               kfree(txq->q.sdesc);
+               txq->q.sdesc = NULL;
+               dma_free_coherent(adap->pdev_dev,
+                                 nentries * sizeof(struct tx_desc),
+                                 txq->q.desc, txq->q.phys_addr);
+               txq->q.desc = NULL;
+               return ret;
+       }
+
+       init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
+       txq->txq = netdevq;
+       txq->tso = txq->tx_cso = txq->vlan_ins = 0;
+       txq->mapping_err = 0;
+       return 0;
+}
+
+int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
+                         struct net_device *dev, unsigned int iqid,
+                         unsigned int cmplqid)
+{
+       int ret, nentries;
+       struct fw_eq_ctrl_cmd c;
+       struct sge *s = &adap->sge;
+       struct port_info *pi = netdev_priv(dev);
+
+       /* Add status entries */
+       nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
+
+       txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
+                                sizeof(struct tx_desc), 0, &txq->q.phys_addr,
+                                NULL, 0, NUMA_NO_NODE);
+       if (!txq->q.desc)
+               return -ENOMEM;
+
+       c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
+                           FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+                           FW_EQ_CTRL_CMD_PFN_V(adap->fn) |
+                           FW_EQ_CTRL_CMD_VFN_V(0));
+       c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
+                                FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
+       c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
+       c.physeqid_pkd = htonl(0);
+       c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) |
+                                  FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
+                                  FW_EQ_CTRL_CMD_FETCHRO_F |
+                                  FW_EQ_CTRL_CMD_IQID_V(iqid));
+       c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) |
+                                 FW_EQ_CTRL_CMD_FBMAX_V(3) |
+                                 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) |
+                                 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
+       c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+       ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
+       if (ret) {
+               dma_free_coherent(adap->pdev_dev,
+                                 nentries * sizeof(struct tx_desc),
+                                 txq->q.desc, txq->q.phys_addr);
+               txq->q.desc = NULL;
+               return ret;
+       }
+
+       init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
+       txq->adap = adap;
+       skb_queue_head_init(&txq->sendq);
+       tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
+       txq->full = 0;
+       return 0;
+}
+
+int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
+                         struct net_device *dev, unsigned int iqid)
+{
+       int ret, nentries;
+       struct fw_eq_ofld_cmd c;
+       struct sge *s = &adap->sge;
+       struct port_info *pi = netdev_priv(dev);
+
+       /* Add status entries */
+       nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
+
+       txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
+                       sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
+                       &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
+                       NUMA_NO_NODE);
+       if (!txq->q.desc)
+               return -ENOMEM;
+
+       memset(&c, 0, sizeof(c));
+       c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
+                           FW_CMD_WRITE_F | FW_CMD_EXEC_F |
+                           FW_EQ_OFLD_CMD_PFN_V(adap->fn) |
+                           FW_EQ_OFLD_CMD_VFN_V(0));
+       c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
+                                FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
+       c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) |
+                                  FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
+                                  FW_EQ_OFLD_CMD_FETCHRO_F |
+                                  FW_EQ_OFLD_CMD_IQID_V(iqid));
+       c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) |
+                                 FW_EQ_OFLD_CMD_FBMAX_V(3) |
+                                 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) |
+                                 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
+       c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+       ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
+       if (ret) {
+               kfree(txq->q.sdesc);
+               txq->q.sdesc = NULL;
+               dma_free_coherent(adap->pdev_dev,
+                                 nentries * sizeof(struct tx_desc),
+                                 txq->q.desc, txq->q.phys_addr);
+               txq->q.desc = NULL;
+               return ret;
+       }
+
+       init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
+       txq->adap = adap;
+       skb_queue_head_init(&txq->sendq);
+       tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
+       txq->full = 0;
+       txq->mapping_err = 0;
+       return 0;
+}
+
+static void free_txq(struct adapter *adap, struct sge_txq *q)
+{
+       struct sge *s = &adap->sge;
+
+       dma_free_coherent(adap->pdev_dev,
+                         q->size * sizeof(struct tx_desc) + s->stat_len,
+                         q->desc, q->phys_addr);
+       q->cntxt_id = 0;
+       q->sdesc = NULL;
+       q->desc = NULL;
+}
+
+static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
+                        struct sge_fl *fl)
+{
+       struct sge *s = &adap->sge;
+       unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
+
+       adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
+       t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
+                  rq->cntxt_id, fl_id, 0xffff);
+       dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
+                         rq->desc, rq->phys_addr);
+       napi_hash_del(&rq->napi);
+       netif_napi_del(&rq->napi);
+       rq->netdev = NULL;
+       rq->cntxt_id = rq->abs_id = 0;
+       rq->desc = NULL;
+
+       if (fl) {
+               free_rx_bufs(adap, fl, fl->avail);
+               dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
+                                 fl->desc, fl->addr);
+               kfree(fl->sdesc);
+               fl->sdesc = NULL;
+               fl->cntxt_id = 0;
+               fl->desc = NULL;
+       }
+}
+
+/**
+ *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
+ *      @adap: the adapter
+ *      @n: number of queues
+ *      @q: pointer to first queue
+ *
+ *      Release the resources of a consecutive block of offload Rx queues.
+ */
+void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
+{
+       for ( ; n; n--, q++)
+               if (q->rspq.desc)
+                       free_rspq_fl(adap, &q->rspq,
+                                    q->fl.size ? &q->fl : NULL);
+}
+
+/**
+ *     t4_free_sge_resources - free SGE resources
+ *     @adap: the adapter
+ *
+ *     Frees resources used by the SGE queue sets.
+ */
+void t4_free_sge_resources(struct adapter *adap)
+{
+       int i;
+       struct sge_eth_rxq *eq = adap->sge.ethrxq;
+       struct sge_eth_txq *etq = adap->sge.ethtxq;
+
+       /* clean up Ethernet Tx/Rx queues */
+       for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
+               if (eq->rspq.desc)
+                       free_rspq_fl(adap, &eq->rspq,
+                                    eq->fl.size ? &eq->fl : NULL);
+               if (etq->q.desc) {
+                       t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
+                                      etq->q.cntxt_id);
+                       free_tx_desc(adap, &etq->q, etq->q.in_use, true);
+                       kfree(etq->q.sdesc);
+                       free_txq(adap, &etq->q);
+               }
+       }
+
+       /* clean up RDMA and iSCSI Rx queues */
+       t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
+       t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
+       t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
+
+       /* clean up offload Tx queues */
+       for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
+               struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
+
+               if (q->q.desc) {
+                       tasklet_kill(&q->qresume_tsk);
+                       t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
+                                       q->q.cntxt_id);
+                       free_tx_desc(adap, &q->q, q->q.in_use, false);
+                       kfree(q->q.sdesc);
+                       __skb_queue_purge(&q->sendq);
+                       free_txq(adap, &q->q);
+               }
+       }
+
+       /* clean up control Tx queues */
+       for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
+               struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
+
+               if (cq->q.desc) {
+                       tasklet_kill(&cq->qresume_tsk);
+                       t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
+                                       cq->q.cntxt_id);
+                       __skb_queue_purge(&cq->sendq);
+                       free_txq(adap, &cq->q);
+               }
+       }
+
+       if (adap->sge.fw_evtq.desc)
+               free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
+
+       if (adap->sge.intrq.desc)
+               free_rspq_fl(adap, &adap->sge.intrq, NULL);
+
+       /* clear the reverse egress queue map */
+       memset(adap->sge.egr_map, 0,
+              adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
+}
+
+void t4_sge_start(struct adapter *adap)
+{
+       adap->sge.ethtxq_rover = 0;
+       mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
+       mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
+}
+
+/**
+ *     t4_sge_stop - disable SGE operation
+ *     @adap: the adapter
+ *
+ *     Stop tasklets and timers associated with the DMA engine.  Note that
+ *     this is effective only if measures have been taken to disable any HW
+ *     events that may restart them.
+ */
+void t4_sge_stop(struct adapter *adap)
+{
+       int i;
+       struct sge *s = &adap->sge;
+
+       if (in_interrupt())  /* actions below require waiting */
+               return;
+
+       if (s->rx_timer.function)
+               del_timer_sync(&s->rx_timer);
+       if (s->tx_timer.function)
+               del_timer_sync(&s->tx_timer);
+
+       for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
+               struct sge_ofld_txq *q = &s->ofldtxq[i];
+
+               if (q->q.desc)
+                       tasklet_kill(&q->qresume_tsk);
+       }
+       for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
+               struct sge_ctrl_txq *cq = &s->ctrlq[i];
+
+               if (cq->q.desc)
+                       tasklet_kill(&cq->qresume_tsk);
+       }
+}
+
+/**
+ *     t4_sge_init_soft - grab core SGE values needed by SGE code
+ *     @adap: the adapter
+ *
+ *     We need to grab the SGE operating parameters that we need to have
+ *     in order to do our job and make sure we can live with them.
+ */
+
+static int t4_sge_init_soft(struct adapter *adap)
+{
+       struct sge *s = &adap->sge;
+       u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
+       u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
+       u32 ingress_rx_threshold;
+
+       /*
+        * Verify that CPL messages are going to the Ingress Queue for
+        * process_responses() and that only packet data is going to the
+        * Free Lists.
+        */
+       if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
+           RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
+               dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
+               return -EINVAL;
+       }
+
+       /*
+        * Validate the Host Buffer Register Array indices that we want to
+        * use ...
+        *
+        * XXX Note that we should really read through the Host Buffer Size
+        * XXX register array and find the indices of the Buffer Sizes which
+        * XXX meet our needs!
+        */
+       #define READ_FL_BUF(x) \
+               t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
+
+       fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
+       fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
+       fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
+       fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
+
+       /* We only bother using the Large Page logic if the Large Page Buffer
+        * is larger than our Page Size Buffer.
+        */
+       if (fl_large_pg <= fl_small_pg)
+               fl_large_pg = 0;
+
+       #undef READ_FL_BUF
+
+       /* The Page Size Buffer must be exactly equal to our Page Size and the
+        * Large Page Size Buffer should be 0 (per above) or a power of 2.
+        */
+       if (fl_small_pg != PAGE_SIZE ||
+           (fl_large_pg & (fl_large_pg-1)) != 0) {
+               dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
+                       fl_small_pg, fl_large_pg);
+               return -EINVAL;
+       }
+       if (fl_large_pg)
+               s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
+
+       if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
+           fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
+               dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
+                       fl_small_mtu, fl_large_mtu);
+               return -EINVAL;
+       }
+
+       /*
+        * Retrieve our RX interrupt holdoff timer values and counter
+        * threshold values from the SGE parameters.
+        */
+       timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
+       timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
+       timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
+       s->timer_val[0] = core_ticks_to_us(adap,
+               TIMERVALUE0_G(timer_value_0_and_1));
+       s->timer_val[1] = core_ticks_to_us(adap,
+               TIMERVALUE1_G(timer_value_0_and_1));
+       s->timer_val[2] = core_ticks_to_us(adap,
+               TIMERVALUE2_G(timer_value_2_and_3));
+       s->timer_val[3] = core_ticks_to_us(adap,
+               TIMERVALUE3_G(timer_value_2_and_3));
+       s->timer_val[4] = core_ticks_to_us(adap,
+               TIMERVALUE4_G(timer_value_4_and_5));
+       s->timer_val[5] = core_ticks_to_us(adap,
+               TIMERVALUE5_G(timer_value_4_and_5));
+
+       ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
+       s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
+       s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
+       s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
+       s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
+
+       return 0;
+}
+
+/**
+ *     t4_sge_init - initialize SGE
+ *     @adap: the adapter
+ *
+ *     Perform low-level SGE code initialization needed every time after a
+ *     chip reset.
+ */
+int t4_sge_init(struct adapter *adap)
+{
+       struct sge *s = &adap->sge;
+       u32 sge_control, sge_control2, sge_conm_ctrl;
+       unsigned int ingpadboundary, ingpackboundary;
+       int ret, egress_threshold;
+
+       /*
+        * Ingress Padding Boundary and Egress Status Page Size are set up by
+        * t4_fixup_host_params().
+        */
+       sge_control = t4_read_reg(adap, SGE_CONTROL_A);
+       s->pktshift = PKTSHIFT_G(sge_control);
+       s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
+
+       /* T4 uses a single control field to specify both the PCIe Padding and
+        * Packing Boundary.  T5 introduced the ability to specify these
+        * separately.  The actual Ingress Packet Data alignment boundary
+        * within Packed Buffer Mode is the maximum of these two
+        * specifications.
+        */
+       ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
+                              INGPADBOUNDARY_SHIFT_X);
+       if (is_t4(adap->params.chip)) {
+               s->fl_align = ingpadboundary;
+       } else {
+               /* T5 has a different interpretation of one of the PCIe Packing
+                * Boundary values.
+                */
+               sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
+               ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
+               if (ingpackboundary == INGPACKBOUNDARY_16B_X)
+                       ingpackboundary = 16;
+               else
+                       ingpackboundary = 1 << (ingpackboundary +
+                                               INGPACKBOUNDARY_SHIFT_X);
+
+               s->fl_align = max(ingpadboundary, ingpackboundary);
+       }
+
+       ret = t4_sge_init_soft(adap);
+       if (ret < 0)
+               return ret;
+
+       /*
+        * A FL with <= fl_starve_thres buffers is starving and a periodic
+        * timer will attempt to refill it.  This needs to be larger than the
+        * SGE's Egress Congestion Threshold.  If it isn't, then we can get
+        * stuck waiting for new packets while the SGE is waiting for us to
+        * give it more Free List entries.  (Note that the SGE's Egress
+        * Congestion Threshold is in units of 2 Free List pointers.) For T4,
+        * there was only a single field to control this.  For T5 there's the
+        * original field which now only applies to Unpacked Mode Free List
+        * buffers and a new field which only applies to Packed Mode Free List
+        * buffers.
+        */
+       sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
+       if (is_t4(adap->params.chip))
+               egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
+       else
+               egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
+       s->fl_starve_thres = 2*egress_threshold + 1;
+
+       setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
+       setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
+       s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
+       s->idma_stalled[0] = 0;
+       s->idma_stalled[1] = 0;
+       spin_lock_init(&s->intrq_lock);
+
+       return 0;
+}