These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / mtd / nand / vf610_nfc.c
diff --git a/kernel/drivers/mtd/nand/vf610_nfc.c b/kernel/drivers/mtd/nand/vf610_nfc.c
new file mode 100644 (file)
index 0000000..8805d63
--- /dev/null
@@ -0,0 +1,878 @@
+/*
+ * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
+ *
+ * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
+ * Jason ported to M54418TWR and MVFA5 (VF610).
+ * Authors: Stefan Agner <stefan.agner@toradex.com>
+ *          Bill Pringlemeir <bpringlemeir@nbsps.com>
+ *          Shaohui Xie <b21989@freescale.com>
+ *          Jason Jin <Jason.jin@freescale.com>
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Limitations:
+ * - Untested on MPC5125 and M54418.
+ * - DMA and pipelining not used.
+ * - 2K pages or less.
+ * - HW ECC: Only 2K page with 64+ OOB.
+ * - HW ECC: Only 24 and 32-bit error correction implemented.
+ */
+
+#include <linux/module.h>
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_mtd.h>
+#include <linux/of_device.h>
+#include <linux/pinctrl/consumer.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#define        DRV_NAME                "vf610_nfc"
+
+/* Register Offsets */
+#define NFC_FLASH_CMD1                 0x3F00
+#define NFC_FLASH_CMD2                 0x3F04
+#define NFC_COL_ADDR                   0x3F08
+#define NFC_ROW_ADDR                   0x3F0c
+#define NFC_ROW_ADDR_INC               0x3F14
+#define NFC_FLASH_STATUS1              0x3F18
+#define NFC_FLASH_STATUS2              0x3F1c
+#define NFC_CACHE_SWAP                 0x3F28
+#define NFC_SECTOR_SIZE                        0x3F2c
+#define NFC_FLASH_CONFIG               0x3F30
+#define NFC_IRQ_STATUS                 0x3F38
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n)               ((n) *  0x1000)
+
+#define PAGE_2K                                0x0800
+#define OOB_64                         0x0040
+#define OOB_MAX                                0x0100
+
+/*
+ * NFC_CMD2[CODE] values. See section:
+ *  - 31.4.7 Flash Command Code Description, Vybrid manual
+ *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
+ *
+ * Briefly these are bitmasks of controller cycles.
+ */
+#define READ_PAGE_CMD_CODE             0x7EE0
+#define READ_ONFI_PARAM_CMD_CODE       0x4860
+#define PROGRAM_PAGE_CMD_CODE          0x7FC0
+#define ERASE_CMD_CODE                 0x4EC0
+#define READ_ID_CMD_CODE               0x4804
+#define RESET_CMD_CODE                 0x4040
+#define STATUS_READ_CMD_CODE           0x4068
+
+/* NFC ECC mode define */
+#define ECC_BYPASS                     0
+#define ECC_45_BYTE                    6
+#define ECC_60_BYTE                    7
+
+/*** Register Mask and bit definitions */
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD_BYTE2_MASK                         0xFF000000
+#define CMD_BYTE2_SHIFT                                24
+
+/* NFC_FLASH_CM2 Field */
+#define CMD_BYTE1_MASK                         0xFF000000
+#define CMD_BYTE1_SHIFT                                24
+#define CMD_CODE_MASK                          0x00FFFF00
+#define CMD_CODE_SHIFT                         8
+#define BUFNO_MASK                             0x00000006
+#define BUFNO_SHIFT                            1
+#define START_BIT                              BIT(0)
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK                          0x0000FFFF
+#define COL_ADDR_SHIFT                         0
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK                          0x00FFFFFF
+#define ROW_ADDR_SHIFT                         0
+#define ROW_ADDR_CHIP_SEL_RB_MASK              0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT             28
+#define ROW_ADDR_CHIP_SEL_MASK                 0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT                        24
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS_BYTE1_MASK                      0x000000FF
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_ECC_SRAM_ADDR_MASK              0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT             22
+#define CONFIG_ECC_SRAM_REQ_BIT                        BIT(21)
+#define CONFIG_DMA_REQ_BIT                     BIT(20)
+#define CONFIG_ECC_MODE_MASK                   0x000E0000
+#define CONFIG_ECC_MODE_SHIFT                  17
+#define CONFIG_FAST_FLASH_BIT                  BIT(16)
+#define CONFIG_16BIT                           BIT(7)
+#define CONFIG_BOOT_MODE_BIT                   BIT(6)
+#define CONFIG_ADDR_AUTO_INCR_BIT              BIT(5)
+#define CONFIG_BUFNO_AUTO_INCR_BIT             BIT(4)
+#define CONFIG_PAGE_CNT_MASK                   0xF
+#define CONFIG_PAGE_CNT_SHIFT                  0
+
+/* NFC_IRQ_STATUS Field */
+#define IDLE_IRQ_BIT                           BIT(29)
+#define IDLE_EN_BIT                            BIT(20)
+#define CMD_DONE_CLEAR_BIT                     BIT(18)
+#define IDLE_CLEAR_BIT                         BIT(17)
+
+/*
+ * ECC status - seems to consume 8 bytes (double word). The documented
+ * status byte is located in the lowest byte of the second word (which is
+ * the 4th or 7th byte depending on endianness).
+ * Calculate an offset to store the ECC status at the end of the buffer.
+ */
+#define ECC_SRAM_ADDR          (PAGE_2K + OOB_MAX - 8)
+
+#define ECC_STATUS             0x4
+#define ECC_STATUS_MASK                0x80
+#define ECC_STATUS_ERR_COUNT   0x3F
+
+enum vf610_nfc_alt_buf {
+       ALT_BUF_DATA = 0,
+       ALT_BUF_ID = 1,
+       ALT_BUF_STAT = 2,
+       ALT_BUF_ONFI = 3,
+};
+
+enum vf610_nfc_variant {
+       NFC_VFC610 = 1,
+};
+
+struct vf610_nfc {
+       struct mtd_info mtd;
+       struct nand_chip chip;
+       struct device *dev;
+       void __iomem *regs;
+       struct completion cmd_done;
+       uint buf_offset;
+       int write_sz;
+       /* Status and ID are in alternate locations. */
+       enum vf610_nfc_alt_buf alt_buf;
+       enum vf610_nfc_variant variant;
+       struct clk *clk;
+       bool use_hw_ecc;
+       u32 ecc_mode;
+};
+
+#define mtd_to_nfc(_mtd) container_of(_mtd, struct vf610_nfc, mtd)
+
+static struct nand_ecclayout vf610_nfc_ecc45 = {
+       .eccbytes = 45,
+       .eccpos = {19, 20, 21, 22, 23,
+                  24, 25, 26, 27, 28, 29, 30, 31,
+                  32, 33, 34, 35, 36, 37, 38, 39,
+                  40, 41, 42, 43, 44, 45, 46, 47,
+                  48, 49, 50, 51, 52, 53, 54, 55,
+                  56, 57, 58, 59, 60, 61, 62, 63},
+       .oobfree = {
+               {.offset = 2,
+                .length = 17} }
+};
+
+static struct nand_ecclayout vf610_nfc_ecc60 = {
+       .eccbytes = 60,
+       .eccpos = { 4,  5,  6,  7,  8,  9, 10, 11,
+                  12, 13, 14, 15, 16, 17, 18, 19,
+                  20, 21, 22, 23, 24, 25, 26, 27,
+                  28, 29, 30, 31, 32, 33, 34, 35,
+                  36, 37, 38, 39, 40, 41, 42, 43,
+                  44, 45, 46, 47, 48, 49, 50, 51,
+                  52, 53, 54, 55, 56, 57, 58, 59,
+                  60, 61, 62, 63 },
+       .oobfree = {
+               {.offset = 2,
+                .length = 2} }
+};
+
+static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
+{
+       return readl(nfc->regs + reg);
+}
+
+static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
+{
+       writel(val, nfc->regs + reg);
+}
+
+static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+       vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
+}
+
+static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+       vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
+}
+
+static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
+                                      u32 mask, u32 shift, u32 val)
+{
+       vf610_nfc_write(nfc, reg,
+                       (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
+}
+
+static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src,
+                                   size_t n)
+{
+       /*
+        * Use this accessor for the internal SRAM buffers. On the ARM
+        * Freescale Vybrid SoC it's known that the driver can treat
+        * the SRAM buffer as if it's memory. Other platform might need
+        * to treat the buffers differently.
+        *
+        * For the time being, use memcpy
+        */
+       memcpy(dst, src, n);
+}
+
+/* Clear flags for upcoming command */
+static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
+{
+       u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
+
+       tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
+       vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
+}
+
+static void vf610_nfc_done(struct vf610_nfc *nfc)
+{
+       unsigned long timeout = msecs_to_jiffies(100);
+
+       /*
+        * Barrier is needed after this write. This write need
+        * to be done before reading the next register the first
+        * time.
+        * vf610_nfc_set implicates such a barrier by using writel
+        * to write to the register.
+        */
+       vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+       vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
+
+       if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
+               dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
+
+       vf610_nfc_clear_status(nfc);
+}
+
+static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col)
+{
+       u32 flash_id;
+
+       if (col < 4) {
+               flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1);
+               flash_id >>= (3 - col) * 8;
+       } else {
+               flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2);
+               flash_id >>= 24;
+       }
+
+       return flash_id & 0xff;
+}
+
+static u8 vf610_nfc_get_status(struct vf610_nfc *nfc)
+{
+       return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
+}
+
+static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1,
+                                  u32 cmd_code)
+{
+       u32 tmp;
+
+       vf610_nfc_clear_status(nfc);
+
+       tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2);
+       tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
+       tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
+       tmp |= cmd_code << CMD_CODE_SHIFT;
+       vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp);
+}
+
+static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1,
+                                   u32 cmd_byte2, u32 cmd_code)
+{
+       u32 tmp;
+
+       vf610_nfc_send_command(nfc, cmd_byte1, cmd_code);
+
+       tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1);
+       tmp &= ~CMD_BYTE2_MASK;
+       tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
+       vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp);
+}
+
+static irqreturn_t vf610_nfc_irq(int irq, void *data)
+{
+       struct mtd_info *mtd = data;
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+       vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+       complete(&nfc->cmd_done);
+
+       return IRQ_HANDLED;
+}
+
+static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page)
+{
+       if (column != -1) {
+               if (nfc->chip.options & NAND_BUSWIDTH_16)
+                       column = column / 2;
+               vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
+                                   COL_ADDR_SHIFT, column);
+       }
+       if (page != -1)
+               vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
+                                   ROW_ADDR_SHIFT, page);
+}
+
+static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
+{
+       vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+                           CONFIG_ECC_MODE_MASK,
+                           CONFIG_ECC_MODE_SHIFT, ecc_mode);
+}
+
+static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
+{
+       vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
+}
+
+static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
+                             int column, int page)
+{
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+       int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
+
+       nfc->buf_offset = max(column, 0);
+       nfc->alt_buf = ALT_BUF_DATA;
+
+       switch (command) {
+       case NAND_CMD_SEQIN:
+               /* Use valid column/page from preread... */
+               vf610_nfc_addr_cycle(nfc, column, page);
+               nfc->buf_offset = 0;
+
+               /*
+                * SEQIN => data => PAGEPROG sequence is done by the controller
+                * hence we do not need to issue the command here...
+                */
+               return;
+       case NAND_CMD_PAGEPROG:
+               trfr_sz += nfc->write_sz;
+               vf610_nfc_transfer_size(nfc, trfr_sz);
+               vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN,
+                                       command, PROGRAM_PAGE_CMD_CODE);
+               if (nfc->use_hw_ecc)
+                       vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+               else
+                       vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+               break;
+
+       case NAND_CMD_RESET:
+               vf610_nfc_transfer_size(nfc, 0);
+               vf610_nfc_send_command(nfc, command, RESET_CMD_CODE);
+               break;
+
+       case NAND_CMD_READOOB:
+               trfr_sz += mtd->oobsize;
+               column = mtd->writesize;
+               vf610_nfc_transfer_size(nfc, trfr_sz);
+               vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
+                                       NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
+               vf610_nfc_addr_cycle(nfc, column, page);
+               vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+               break;
+
+       case NAND_CMD_READ0:
+               trfr_sz += mtd->writesize + mtd->oobsize;
+               vf610_nfc_transfer_size(nfc, trfr_sz);
+               vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
+                                       NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
+               vf610_nfc_addr_cycle(nfc, column, page);
+               vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+               break;
+
+       case NAND_CMD_PARAM:
+               nfc->alt_buf = ALT_BUF_ONFI;
+               trfr_sz = 3 * sizeof(struct nand_onfi_params);
+               vf610_nfc_transfer_size(nfc, trfr_sz);
+               vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE);
+               vf610_nfc_addr_cycle(nfc, -1, column);
+               vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+               break;
+
+       case NAND_CMD_ERASE1:
+               vf610_nfc_transfer_size(nfc, 0);
+               vf610_nfc_send_commands(nfc, command,
+                                       NAND_CMD_ERASE2, ERASE_CMD_CODE);
+               vf610_nfc_addr_cycle(nfc, column, page);
+               break;
+
+       case NAND_CMD_READID:
+               nfc->alt_buf = ALT_BUF_ID;
+               nfc->buf_offset = 0;
+               vf610_nfc_transfer_size(nfc, 0);
+               vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE);
+               vf610_nfc_addr_cycle(nfc, -1, column);
+               break;
+
+       case NAND_CMD_STATUS:
+               nfc->alt_buf = ALT_BUF_STAT;
+               vf610_nfc_transfer_size(nfc, 0);
+               vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE);
+               break;
+       default:
+               return;
+       }
+
+       vf610_nfc_done(nfc);
+
+       nfc->use_hw_ecc = false;
+       nfc->write_sz = 0;
+}
+
+static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+       uint c = nfc->buf_offset;
+
+       /* Alternate buffers are only supported through read_byte */
+       WARN_ON(nfc->alt_buf);
+
+       vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
+
+       nfc->buf_offset += len;
+}
+
+static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+                               int len)
+{
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+       uint c = nfc->buf_offset;
+       uint l;
+
+       l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
+       vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
+
+       nfc->write_sz += l;
+       nfc->buf_offset += l;
+}
+
+static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
+{
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+       u8 tmp;
+       uint c = nfc->buf_offset;
+
+       switch (nfc->alt_buf) {
+       case ALT_BUF_ID:
+               tmp = vf610_nfc_get_id(nfc, c);
+               break;
+       case ALT_BUF_STAT:
+               tmp = vf610_nfc_get_status(nfc);
+               break;
+#ifdef __LITTLE_ENDIAN
+       case ALT_BUF_ONFI:
+               /* Reverse byte since the controller uses big endianness */
+               c = nfc->buf_offset ^ 0x3;
+               /* fall-through */
+#endif
+       default:
+               tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
+               break;
+       }
+       nfc->buf_offset++;
+       return tmp;
+}
+
+static u16 vf610_nfc_read_word(struct mtd_info *mtd)
+{
+       u16 tmp;
+
+       vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
+       return tmp;
+}
+
+/* If not provided, upper layers apply a fixed delay. */
+static int vf610_nfc_dev_ready(struct mtd_info *mtd)
+{
+       /* NFC handles R/B internally; always ready.  */
+       return 1;
+}
+
+/*
+ * This function supports Vybrid only (MPC5125 would have full RB and four CS)
+ */
+static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+       u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
+
+       /* Vybrid only (MPC5125 would have full RB and four CS) */
+       if (nfc->variant != NFC_VFC610)
+               return;
+
+       tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
+
+       if (chip >= 0) {
+               tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+               tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
+       }
+
+       vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
+}
+
+/* Count the number of 0's in buff up to max_bits */
+static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
+{
+       uint32_t *buff32 = (uint32_t *)buff;
+       int k, written_bits = 0;
+
+       for (k = 0; k < (size / 4); k++) {
+               written_bits += hweight32(~buff32[k]);
+               if (unlikely(written_bits > max_bits))
+                       break;
+       }
+
+       return written_bits;
+}
+
+static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
+                                        uint8_t *oob, int page)
+{
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+       u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
+       u8 ecc_status;
+       u8 ecc_count;
+       int flips_threshold = nfc->chip.ecc.strength / 2;
+
+       ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
+       ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
+
+       if (!(ecc_status & ECC_STATUS_MASK))
+               return ecc_count;
+
+       /* Read OOB without ECC unit enabled */
+       vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
+       vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
+
+       /*
+        * On an erased page, bit count (including OOB) should be zero or
+        * at least less then half of the ECC strength.
+        */
+       return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
+                                          mtd->oobsize, NULL, 0,
+                                          flips_threshold);
+}
+
+static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+                               uint8_t *buf, int oob_required, int page)
+{
+       int eccsize = chip->ecc.size;
+       int stat;
+
+       vf610_nfc_read_buf(mtd, buf, eccsize);
+       if (oob_required)
+               vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
+
+       if (stat < 0) {
+               mtd->ecc_stats.failed++;
+               return 0;
+       } else {
+               mtd->ecc_stats.corrected += stat;
+               return stat;
+       }
+}
+
+static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+                               const uint8_t *buf, int oob_required, int page)
+{
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+       vf610_nfc_write_buf(mtd, buf, mtd->writesize);
+       if (oob_required)
+               vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       /* Always write whole page including OOB due to HW ECC */
+       nfc->use_hw_ecc = true;
+       nfc->write_sz = mtd->writesize + mtd->oobsize;
+
+       return 0;
+}
+
+static const struct of_device_id vf610_nfc_dt_ids[] = {
+       { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
+       { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
+
+static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
+{
+       vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+       vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
+       vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
+       vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
+       vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
+       vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+
+       /* Disable virtual pages, only one elementary transfer unit */
+       vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+                           CONFIG_PAGE_CNT_SHIFT, 1);
+}
+
+static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
+{
+       if (nfc->chip.options & NAND_BUSWIDTH_16)
+               vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+       else
+               vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+       if (nfc->chip.ecc.mode == NAND_ECC_HW) {
+               /* Set ECC status offset in SRAM */
+               vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+                                   CONFIG_ECC_SRAM_ADDR_MASK,
+                                   CONFIG_ECC_SRAM_ADDR_SHIFT,
+                                   ECC_SRAM_ADDR >> 3);
+
+               /* Enable ECC status in SRAM */
+               vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
+       }
+}
+
+static int vf610_nfc_probe(struct platform_device *pdev)
+{
+       struct vf610_nfc *nfc;
+       struct resource *res;
+       struct mtd_info *mtd;
+       struct nand_chip *chip;
+       struct device_node *child;
+       const struct of_device_id *of_id;
+       int err;
+       int irq;
+
+       nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+       if (!nfc)
+               return -ENOMEM;
+
+       nfc->dev = &pdev->dev;
+       mtd = &nfc->mtd;
+       chip = &nfc->chip;
+
+       mtd->priv = chip;
+       mtd->owner = THIS_MODULE;
+       mtd->dev.parent = nfc->dev;
+       mtd->name = DRV_NAME;
+
+       irq = platform_get_irq(pdev, 0);
+       if (irq <= 0)
+               return -EINVAL;
+
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       nfc->regs = devm_ioremap_resource(nfc->dev, res);
+       if (IS_ERR(nfc->regs))
+               return PTR_ERR(nfc->regs);
+
+       nfc->clk = devm_clk_get(&pdev->dev, NULL);
+       if (IS_ERR(nfc->clk))
+               return PTR_ERR(nfc->clk);
+
+       err = clk_prepare_enable(nfc->clk);
+       if (err) {
+               dev_err(nfc->dev, "Unable to enable clock!\n");
+               return err;
+       }
+
+       of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
+       nfc->variant = (enum vf610_nfc_variant)of_id->data;
+
+       for_each_available_child_of_node(nfc->dev->of_node, child) {
+               if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
+
+                       if (chip->flash_node) {
+                               dev_err(nfc->dev,
+                                       "Only one NAND chip supported!\n");
+                               err = -EINVAL;
+                               goto error;
+                       }
+
+                       chip->flash_node = child;
+               }
+       }
+
+       if (!chip->flash_node) {
+               dev_err(nfc->dev, "NAND chip sub-node missing!\n");
+               err = -ENODEV;
+               goto err_clk;
+       }
+
+       chip->dev_ready = vf610_nfc_dev_ready;
+       chip->cmdfunc = vf610_nfc_command;
+       chip->read_byte = vf610_nfc_read_byte;
+       chip->read_word = vf610_nfc_read_word;
+       chip->read_buf = vf610_nfc_read_buf;
+       chip->write_buf = vf610_nfc_write_buf;
+       chip->select_chip = vf610_nfc_select_chip;
+
+       chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+       init_completion(&nfc->cmd_done);
+
+       err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
+       if (err) {
+               dev_err(nfc->dev, "Error requesting IRQ!\n");
+               goto error;
+       }
+
+       vf610_nfc_preinit_controller(nfc);
+
+       /* first scan to find the device and get the page size */
+       if (nand_scan_ident(mtd, 1, NULL)) {
+               err = -ENXIO;
+               goto error;
+       }
+
+       vf610_nfc_init_controller(nfc);
+
+       /* Bad block options. */
+       if (chip->bbt_options & NAND_BBT_USE_FLASH)
+               chip->bbt_options |= NAND_BBT_NO_OOB;
+
+       /* Single buffer only, max 256 OOB minus ECC status */
+       if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
+               dev_err(nfc->dev, "Unsupported flash page size\n");
+               err = -ENXIO;
+               goto error;
+       }
+
+       if (chip->ecc.mode == NAND_ECC_HW) {
+               if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
+                       dev_err(nfc->dev, "Unsupported flash with hwecc\n");
+                       err = -ENXIO;
+                       goto error;
+               }
+
+               if (chip->ecc.size != mtd->writesize) {
+                       dev_err(nfc->dev, "Step size needs to be page size\n");
+                       err = -ENXIO;
+                       goto error;
+               }
+
+               /* Only 64 byte ECC layouts known */
+               if (mtd->oobsize > 64)
+                       mtd->oobsize = 64;
+
+               if (chip->ecc.strength == 32) {
+                       nfc->ecc_mode = ECC_60_BYTE;
+                       chip->ecc.bytes = 60;
+                       chip->ecc.layout = &vf610_nfc_ecc60;
+               } else if (chip->ecc.strength == 24) {
+                       nfc->ecc_mode = ECC_45_BYTE;
+                       chip->ecc.bytes = 45;
+                       chip->ecc.layout = &vf610_nfc_ecc45;
+               } else {
+                       dev_err(nfc->dev, "Unsupported ECC strength\n");
+                       err = -ENXIO;
+                       goto error;
+               }
+
+               /* propagate ecc.layout to mtd_info */
+               mtd->ecclayout = chip->ecc.layout;
+               chip->ecc.read_page = vf610_nfc_read_page;
+               chip->ecc.write_page = vf610_nfc_write_page;
+
+               chip->ecc.size = PAGE_2K;
+       }
+
+       /* second phase scan */
+       if (nand_scan_tail(mtd)) {
+               err = -ENXIO;
+               goto error;
+       }
+
+       platform_set_drvdata(pdev, mtd);
+
+       /* Register device in MTD */
+       return mtd_device_parse_register(mtd, NULL,
+               &(struct mtd_part_parser_data){
+                       .of_node = chip->flash_node,
+               },
+               NULL, 0);
+
+error:
+       of_node_put(chip->flash_node);
+err_clk:
+       clk_disable_unprepare(nfc->clk);
+       return err;
+}
+
+static int vf610_nfc_remove(struct platform_device *pdev)
+{
+       struct mtd_info *mtd = platform_get_drvdata(pdev);
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+       nand_release(mtd);
+       clk_disable_unprepare(nfc->clk);
+       return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int vf610_nfc_suspend(struct device *dev)
+{
+       struct mtd_info *mtd = dev_get_drvdata(dev);
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+       clk_disable_unprepare(nfc->clk);
+       return 0;
+}
+
+static int vf610_nfc_resume(struct device *dev)
+{
+       struct mtd_info *mtd = dev_get_drvdata(dev);
+       struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+       pinctrl_pm_select_default_state(dev);
+
+       clk_prepare_enable(nfc->clk);
+
+       vf610_nfc_preinit_controller(nfc);
+       vf610_nfc_init_controller(nfc);
+       return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
+
+static struct platform_driver vf610_nfc_driver = {
+       .driver         = {
+               .name   = DRV_NAME,
+               .of_match_table = vf610_nfc_dt_ids,
+               .pm     = &vf610_nfc_pm_ops,
+       },
+       .probe          = vf610_nfc_probe,
+       .remove         = vf610_nfc_remove,
+};
+
+module_platform_driver(vf610_nfc_driver);
+
+MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
+MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
+MODULE_LICENSE("GPL");