Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / media / i2c / aptina-pll.c
diff --git a/kernel/drivers/media/i2c/aptina-pll.c b/kernel/drivers/media/i2c/aptina-pll.c
new file mode 100644 (file)
index 0000000..8153a44
--- /dev/null
@@ -0,0 +1,173 @@
+/*
+ * Aptina Sensor PLL Configuration
+ *
+ * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
+ * 02110-1301 USA
+ */
+
+#include <linux/device.h>
+#include <linux/gcd.h>
+#include <linux/kernel.h>
+#include <linux/lcm.h>
+#include <linux/module.h>
+
+#include "aptina-pll.h"
+
+int aptina_pll_calculate(struct device *dev,
+                        const struct aptina_pll_limits *limits,
+                        struct aptina_pll *pll)
+{
+       unsigned int mf_min;
+       unsigned int mf_max;
+       unsigned int p1_min;
+       unsigned int p1_max;
+       unsigned int p1;
+       unsigned int div;
+
+       dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
+               pll->ext_clock, pll->pix_clock);
+
+       if (pll->ext_clock < limits->ext_clock_min ||
+           pll->ext_clock > limits->ext_clock_max) {
+               dev_err(dev, "pll: invalid external clock frequency.\n");
+               return -EINVAL;
+       }
+
+       if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
+               dev_err(dev, "pll: invalid pixel clock frequency.\n");
+               return -EINVAL;
+       }
+
+       /* Compute the multiplier M and combined N*P1 divisor. */
+       div = gcd(pll->pix_clock, pll->ext_clock);
+       pll->m = pll->pix_clock / div;
+       div = pll->ext_clock / div;
+
+       /* We now have the smallest M and N*P1 values that will result in the
+        * desired pixel clock frequency, but they might be out of the valid
+        * range. Compute the factor by which we should multiply them given the
+        * following constraints:
+        *
+        * - minimum/maximum multiplier
+        * - minimum/maximum multiplier output clock frequency assuming the
+        *   minimum/maximum N value
+        * - minimum/maximum combined N*P1 divisor
+        */
+       mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
+       mf_min = max(mf_min, limits->out_clock_min /
+                    (pll->ext_clock / limits->n_min * pll->m));
+       mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
+       mf_max = limits->m_max / pll->m;
+       mf_max = min(mf_max, limits->out_clock_max /
+                   (pll->ext_clock / limits->n_max * pll->m));
+       mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
+
+       dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
+       if (mf_min > mf_max) {
+               dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
+               return -EINVAL;
+       }
+
+       /*
+        * We're looking for the highest acceptable P1 value for which a
+        * multiplier factor MF exists that fulfills the following conditions:
+        *
+        * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
+        *    even
+        * 2. mf is in the [mf_min, mf_max] range computed above
+        * 3. div * mf is a multiple of p1, in order to compute
+        *      n = div * mf / p1
+        *      m = pll->m * mf
+        * 4. the internal clock frequency, given by ext_clock / n, is in the
+        *    [int_clock_min, int_clock_max] range given by the limits
+        * 5. the output clock frequency, given by ext_clock / n * m, is in the
+        *    [out_clock_min, out_clock_max] range given by the limits
+        *
+        * The first naive approach is to iterate over all p1 values acceptable
+        * according to (1) and all mf values acceptable according to (2), and
+        * stop at the first combination that fulfills (3), (4) and (5). This
+        * has a O(n^2) complexity.
+        *
+        * Instead of iterating over all mf values in the [mf_min, mf_max] range
+        * we can compute the mf increment between two acceptable values
+        * according to (3) with
+        *
+        *      mf_inc = p1 / gcd(div, p1)                      (6)
+        *
+        * and round the minimum up to the nearest multiple of mf_inc. This will
+        * restrict the number of mf values to be checked.
+        *
+        * Furthermore, conditions (4) and (5) only restrict the range of
+        * acceptable p1 and mf values by modifying the minimum and maximum
+        * limits. (5) can be expressed as
+        *
+        *      ext_clock / (div * mf / p1) * m * mf >= out_clock_min
+        *      ext_clock / (div * mf / p1) * m * mf <= out_clock_max
+        *
+        * or
+        *
+        *      p1 >= out_clock_min * div / (ext_clock * m)     (7)
+        *      p1 <= out_clock_max * div / (ext_clock * m)
+        *
+        * Similarly, (4) can be expressed as
+        *
+        *      mf >= ext_clock * p1 / (int_clock_max * div)    (8)
+        *      mf <= ext_clock * p1 / (int_clock_min * div)
+        *
+        * We can thus iterate over the restricted p1 range defined by the
+        * combination of (1) and (7), and then compute the restricted mf range
+        * defined by the combination of (2), (6) and (8). If the resulting mf
+        * range is not empty, any value in the mf range is acceptable. We thus
+        * select the mf lwoer bound and the corresponding p1 value.
+        */
+       if (limits->p1_min == 0) {
+               dev_err(dev, "pll: P1 minimum value must be >0.\n");
+               return -EINVAL;
+       }
+
+       p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
+                    pll->ext_clock * pll->m));
+       p1_max = min(limits->p1_max, limits->out_clock_max * div /
+                    (pll->ext_clock * pll->m));
+
+       for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
+               unsigned int mf_inc = p1 / gcd(div, p1);
+               unsigned int mf_high;
+               unsigned int mf_low;
+
+               mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
+                                       limits->int_clock_max * div)), mf_inc);
+               mf_high = min(mf_max, pll->ext_clock * p1 /
+                             (limits->int_clock_min * div));
+
+               if (mf_low > mf_high)
+                       continue;
+
+               pll->n = div * mf_low / p1;
+               pll->m *= mf_low;
+               pll->p1 = p1;
+               dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
+               return 0;
+       }
+
+       dev_err(dev, "pll: no valid N and P1 divisors found.\n");
+       return -EINVAL;
+}
+EXPORT_SYMBOL_GPL(aptina_pll_calculate);
+
+MODULE_DESCRIPTION("Aptina PLL Helpers");
+MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
+MODULE_LICENSE("GPL v2");