Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / media / dvb-frontends / tda18271c2dd.c
diff --git a/kernel/drivers/media/dvb-frontends/tda18271c2dd.c b/kernel/drivers/media/dvb-frontends/tda18271c2dd.c
new file mode 100644 (file)
index 0000000..de0a1c1
--- /dev/null
@@ -0,0 +1,1257 @@
+/*
+ * tda18271c2dd: Driver for the TDA18271C2 tuner
+ *
+ * Copyright (C) 2010 Digital Devices GmbH
+ *
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 only, as published by the Free Software Foundation.
+ *
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA
+ * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/firmware.h>
+#include <linux/i2c.h>
+#include <asm/div64.h>
+
+#include "dvb_frontend.h"
+#include "tda18271c2dd.h"
+
+/* Max transfer size done by I2C transfer functions */
+#define MAX_XFER_SIZE  64
+
+struct SStandardParam {
+       s32   m_IFFrequency;
+       u32   m_BandWidth;
+       u8    m_EP3_4_0;
+       u8    m_EB22;
+};
+
+struct SMap {
+       u32   m_Frequency;
+       u8    m_Param;
+};
+
+struct SMapI {
+       u32   m_Frequency;
+       s32    m_Param;
+};
+
+struct SMap2 {
+       u32   m_Frequency;
+       u8    m_Param1;
+       u8    m_Param2;
+};
+
+struct SRFBandMap {
+       u32   m_RF_max;
+       u32   m_RF1_Default;
+       u32   m_RF2_Default;
+       u32   m_RF3_Default;
+};
+
+enum ERegister {
+       ID = 0,
+       TM,
+       PL,
+       EP1, EP2, EP3, EP4, EP5,
+       CPD, CD1, CD2, CD3,
+       MPD, MD1, MD2, MD3,
+       EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10,
+       EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20,
+       EB21, EB22, EB23,
+       NUM_REGS
+};
+
+struct tda_state {
+       struct i2c_adapter *i2c;
+       u8 adr;
+
+       u32   m_Frequency;
+       u32   IF;
+
+       u8    m_IFLevelAnalog;
+       u8    m_IFLevelDigital;
+       u8    m_IFLevelDVBC;
+       u8    m_IFLevelDVBT;
+
+       u8    m_EP4;
+       u8    m_EP3_Standby;
+
+       bool  m_bMaster;
+
+       s32   m_SettlingTime;
+
+       u8    m_Regs[NUM_REGS];
+
+       /* Tracking filter settings for band 0..6 */
+       u32   m_RF1[7];
+       s32   m_RF_A1[7];
+       s32   m_RF_B1[7];
+       u32   m_RF2[7];
+       s32   m_RF_A2[7];
+       s32   m_RF_B2[7];
+       u32   m_RF3[7];
+
+       u8    m_TMValue_RFCal;    /* Calibration temperatur */
+
+       bool  m_bFMInput;         /* true to use Pin 8 for FM Radio */
+
+};
+
+static int PowerScan(struct tda_state *state,
+                    u8 RFBand, u32 RF_in,
+                    u32 *pRF_Out, bool *pbcal);
+
+static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len)
+{
+       struct i2c_msg msgs[1] = {{.addr = adr,  .flags = I2C_M_RD,
+                                  .buf  = data, .len   = len} };
+       return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
+}
+
+static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
+{
+       struct i2c_msg msg = {.addr = adr, .flags = 0,
+                             .buf = data, .len = len};
+
+       if (i2c_transfer(adap, &msg, 1) != 1) {
+               printk(KERN_ERR "tda18271c2dd: i2c write error at addr %i\n", adr);
+               return -1;
+       }
+       return 0;
+}
+
+static int WriteRegs(struct tda_state *state,
+                    u8 SubAddr, u8 *Regs, u16 nRegs)
+{
+       u8 data[MAX_XFER_SIZE];
+
+       if (1 + nRegs > sizeof(data)) {
+               printk(KERN_WARNING
+                      "%s: i2c wr: len=%d is too big!\n",
+                      KBUILD_MODNAME, nRegs);
+               return -EINVAL;
+       }
+
+       data[0] = SubAddr;
+       memcpy(data + 1, Regs, nRegs);
+       return i2c_write(state->i2c, state->adr, data, nRegs + 1);
+}
+
+static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg)
+{
+       u8 msg[2] = {SubAddr, Reg};
+
+       return i2c_write(state->i2c, state->adr, msg, 2);
+}
+
+static int Read(struct tda_state *state, u8 * Regs)
+{
+       return i2c_readn(state->i2c, state->adr, Regs, 16);
+}
+
+static int ReadExtented(struct tda_state *state, u8 * Regs)
+{
+       return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS);
+}
+
+static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo)
+{
+       return WriteRegs(state, RegFrom,
+                        &state->m_Regs[RegFrom], RegTo-RegFrom+1);
+}
+static int UpdateReg(struct tda_state *state, u8 Reg)
+{
+       return WriteReg(state, Reg, state->m_Regs[Reg]);
+}
+
+#include "tda18271c2dd_maps.h"
+
+static void reset(struct tda_state *state)
+{
+       u32   ulIFLevelAnalog = 0;
+       u32   ulIFLevelDigital = 2;
+       u32   ulIFLevelDVBC = 7;
+       u32   ulIFLevelDVBT = 6;
+       u32   ulXTOut = 0;
+       u32   ulStandbyMode = 0x06;    /* Send in stdb, but leave osc on */
+       u32   ulSlave = 0;
+       u32   ulFMInput = 0;
+       u32   ulSettlingTime = 100;
+
+       state->m_Frequency         = 0;
+       state->m_SettlingTime = 100;
+       state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2;
+       state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2;
+       state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2;
+       state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2;
+
+       state->m_EP4 = 0x20;
+       if (ulXTOut != 0)
+               state->m_EP4 |= 0x40;
+
+       state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F;
+       state->m_bMaster = (ulSlave == 0);
+
+       state->m_SettlingTime = ulSettlingTime;
+
+       state->m_bFMInput = (ulFMInput == 2);
+}
+
+static bool SearchMap1(struct SMap Map[],
+                      u32 Frequency, u8 *pParam)
+{
+       int i = 0;
+
+       while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency))
+               i += 1;
+       if (Map[i].m_Frequency == 0)
+               return false;
+       *pParam = Map[i].m_Param;
+       return true;
+}
+
+static bool SearchMap2(struct SMapI Map[],
+                      u32 Frequency, s32 *pParam)
+{
+       int i = 0;
+
+       while ((Map[i].m_Frequency != 0) &&
+              (Frequency > Map[i].m_Frequency))
+               i += 1;
+       if (Map[i].m_Frequency == 0)
+               return false;
+       *pParam = Map[i].m_Param;
+       return true;
+}
+
+static bool SearchMap3(struct SMap2 Map[], u32 Frequency,
+                      u8 *pParam1, u8 *pParam2)
+{
+       int i = 0;
+
+       while ((Map[i].m_Frequency != 0) &&
+              (Frequency > Map[i].m_Frequency))
+               i += 1;
+       if (Map[i].m_Frequency == 0)
+               return false;
+       *pParam1 = Map[i].m_Param1;
+       *pParam2 = Map[i].m_Param2;
+       return true;
+}
+
+static bool SearchMap4(struct SRFBandMap Map[],
+                      u32 Frequency, u8 *pRFBand)
+{
+       int i = 0;
+
+       while (i < 7 && (Frequency > Map[i].m_RF_max))
+               i += 1;
+       if (i == 7)
+               return false;
+       *pRFBand = i;
+       return true;
+}
+
+static int ThermometerRead(struct tda_state *state, u8 *pTM_Value)
+{
+       int status = 0;
+
+       do {
+               u8 Regs[16];
+               state->m_Regs[TM] |= 0x10;
+               status = UpdateReg(state, TM);
+               if (status < 0)
+                       break;
+               status = Read(state, Regs);
+               if (status < 0)
+                       break;
+               if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) ||
+                   ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) {
+                       state->m_Regs[TM] ^= 0x20;
+                       status = UpdateReg(state, TM);
+                       if (status < 0)
+                               break;
+                       msleep(10);
+                       status = Read(state, Regs);
+                       if (status < 0)
+                               break;
+               }
+               *pTM_Value = (Regs[TM] & 0x20)
+                               ? m_Thermometer_Map_2[Regs[TM] & 0x0F]
+                               : m_Thermometer_Map_1[Regs[TM] & 0x0F] ;
+               state->m_Regs[TM] &= ~0x10;        /* Thermometer off */
+               status = UpdateReg(state, TM);
+               if (status < 0)
+                       break;
+               state->m_Regs[EP4] &= ~0x03;       /* CAL_mode = 0 ????????? */
+               status = UpdateReg(state, EP4);
+               if (status < 0)
+                       break;
+       } while (0);
+
+       return status;
+}
+
+static int StandBy(struct tda_state *state)
+{
+       int status = 0;
+       do {
+               state->m_Regs[EB12] &= ~0x20;  /* PD_AGC1_Det = 0 */
+               status = UpdateReg(state, EB12);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB18] &= ~0x83;  /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */
+               status = UpdateReg(state, EB18);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */
+               state->m_Regs[EP3] = state->m_EP3_Standby;
+               status = UpdateReg(state, EP3);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */
+               status = UpdateRegs(state, EB21, EB23);
+               if (status < 0)
+                       break;
+       } while (0);
+       return status;
+}
+
+static int CalcMainPLL(struct tda_state *state, u32 freq)
+{
+
+       u8  PostDiv;
+       u8  Div;
+       u64 OscFreq;
+       u32 MainDiv;
+
+       if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div))
+               return -EINVAL;
+
+       OscFreq = (u64) freq * (u64) Div;
+       OscFreq *= (u64) 16384;
+       do_div(OscFreq, (u64)16000000);
+       MainDiv = OscFreq;
+
+       state->m_Regs[MPD] = PostDiv & 0x77;
+       state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F);
+       state->m_Regs[MD2] = ((MainDiv >>  8) & 0xFF);
+       state->m_Regs[MD3] = (MainDiv & 0xFF);
+
+       return UpdateRegs(state, MPD, MD3);
+}
+
+static int CalcCalPLL(struct tda_state *state, u32 freq)
+{
+       u8 PostDiv;
+       u8 Div;
+       u64 OscFreq;
+       u32 CalDiv;
+
+       if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div))
+               return -EINVAL;
+
+       OscFreq = (u64)freq * (u64)Div;
+       /* CalDiv = u32( OscFreq * 16384 / 16000000 ); */
+       OscFreq *= (u64)16384;
+       do_div(OscFreq, (u64)16000000);
+       CalDiv = OscFreq;
+
+       state->m_Regs[CPD] = PostDiv;
+       state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF);
+       state->m_Regs[CD2] = ((CalDiv >>  8) & 0xFF);
+       state->m_Regs[CD3] = (CalDiv & 0xFF);
+
+       return UpdateRegs(state, CPD, CD3);
+}
+
+static int CalibrateRF(struct tda_state *state,
+                      u8 RFBand, u32 freq, s32 *pCprog)
+{
+       int status = 0;
+       u8 Regs[NUM_REGS];
+       do {
+               u8 BP_Filter = 0;
+               u8 GainTaper = 0;
+               u8 RFC_K = 0;
+               u8 RFC_M = 0;
+
+               state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */
+               status = UpdateReg(state, EP4);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB18] |= 0x03;  /* AGC1_Gain = 3 */
+               status = UpdateReg(state, EB18);
+               if (status < 0)
+                       break;
+
+               /* Switching off LT (as datasheet says) causes calibration on C1 to fail */
+               /* (Readout of Cprog is allways 255) */
+               if (state->m_Regs[ID] != 0x83)    /* C1: ID == 83, C2: ID == 84 */
+                       state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */
+
+               if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) &&
+                       SearchMap1(m_GainTaper_Map, freq, &GainTaper) &&
+                       SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M)))
+                       return -EINVAL;
+
+               state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter;
+               state->m_Regs[EP2] = (RFBand << 5) | GainTaper;
+
+               state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2);
+
+               status = UpdateRegs(state, EP1, EP3);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EB13);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EB4] |= 0x20;    /* LO_ForceSrce = 1 */
+               status = UpdateReg(state, EB4);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EB7] |= 0x20;    /* CAL_ForceSrce = 1 */
+               status = UpdateReg(state, EB7);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */
+               status = UpdateReg(state, EB14);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EB20] &= ~0x20;  /* ForceLock = 0; */
+               status = UpdateReg(state, EB20);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EP4] |= 0x03;  /* CAL_Mode = 3 */
+               status = UpdateRegs(state, EP4, EP5);
+               if (status < 0)
+                       break;
+
+               status = CalcCalPLL(state, freq);
+               if (status < 0)
+                       break;
+               status = CalcMainPLL(state, freq + 1000000);
+               if (status < 0)
+                       break;
+
+               msleep(5);
+               status = UpdateReg(state, EP2);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EP1);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EP2);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EP1);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EB4] &= ~0x20;    /* LO_ForceSrce = 0 */
+               status = UpdateReg(state, EB4);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EB7] &= ~0x20;    /* CAL_ForceSrce = 0 */
+               status = UpdateReg(state, EB7);
+               if (status < 0)
+                       break;
+               msleep(10);
+
+               state->m_Regs[EB20] |= 0x20;  /* ForceLock = 1; */
+               status = UpdateReg(state, EB20);
+               if (status < 0)
+                       break;
+               msleep(60);
+
+               state->m_Regs[EP4] &= ~0x03;  /* CAL_Mode = 0 */
+               state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */
+               state->m_Regs[EB18] &= ~0x03;  /* AGC1_Gain = 0 */
+               status = UpdateReg(state, EB18);
+               if (status < 0)
+                       break;
+               status = UpdateRegs(state, EP3, EP4);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EP1);
+               if (status < 0)
+                       break;
+
+               status = ReadExtented(state, Regs);
+               if (status < 0)
+                       break;
+
+               *pCprog = Regs[EB14];
+
+       } while (0);
+       return status;
+}
+
+static int RFTrackingFiltersInit(struct tda_state *state,
+                                u8 RFBand)
+{
+       int status = 0;
+
+       u32   RF1 = m_RF_Band_Map[RFBand].m_RF1_Default;
+       u32   RF2 = m_RF_Band_Map[RFBand].m_RF2_Default;
+       u32   RF3 = m_RF_Band_Map[RFBand].m_RF3_Default;
+       bool    bcal = false;
+
+       s32    Cprog_cal1 = 0;
+       s32    Cprog_table1 = 0;
+       s32    Cprog_cal2 = 0;
+       s32    Cprog_table2 = 0;
+       s32    Cprog_cal3 = 0;
+       s32    Cprog_table3 = 0;
+
+       state->m_RF_A1[RFBand] = 0;
+       state->m_RF_B1[RFBand] = 0;
+       state->m_RF_A2[RFBand] = 0;
+       state->m_RF_B2[RFBand] = 0;
+
+       do {
+               status = PowerScan(state, RFBand, RF1, &RF1, &bcal);
+               if (status < 0)
+                       break;
+               if (bcal) {
+                       status = CalibrateRF(state, RFBand, RF1, &Cprog_cal1);
+                       if (status < 0)
+                               break;
+               }
+               SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1);
+               if (!bcal)
+                       Cprog_cal1 = Cprog_table1;
+               state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1;
+               /* state->m_RF_A1[RF_Band] = ???? */
+
+               if (RF2 == 0)
+                       break;
+
+               status = PowerScan(state, RFBand, RF2, &RF2, &bcal);
+               if (status < 0)
+                       break;
+               if (bcal) {
+                       status = CalibrateRF(state, RFBand, RF2, &Cprog_cal2);
+                       if (status < 0)
+                               break;
+               }
+               SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2);
+               if (!bcal)
+                       Cprog_cal2 = Cprog_table2;
+
+               state->m_RF_A1[RFBand] =
+                       (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) /
+                       ((s32)(RF2) - (s32)(RF1));
+
+               if (RF3 == 0)
+                       break;
+
+               status = PowerScan(state, RFBand, RF3, &RF3, &bcal);
+               if (status < 0)
+                       break;
+               if (bcal) {
+                       status = CalibrateRF(state, RFBand, RF3, &Cprog_cal3);
+                       if (status < 0)
+                               break;
+               }
+               SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3);
+               if (!bcal)
+                       Cprog_cal3 = Cprog_table3;
+               state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2));
+               state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2;
+
+       } while (0);
+
+       state->m_RF1[RFBand] = RF1;
+       state->m_RF2[RFBand] = RF2;
+       state->m_RF3[RFBand] = RF3;
+
+#if 0
+       printk(KERN_ERR "tda18271c2dd: %s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__,
+              RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2,
+              state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3);
+#endif
+
+       return status;
+}
+
+static int PowerScan(struct tda_state *state,
+                    u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal)
+{
+       int status = 0;
+       do {
+               u8   Gain_Taper = 0;
+               s32  RFC_Cprog = 0;
+               u8   CID_Target = 0;
+               u8   CountLimit = 0;
+               u32  freq_MainPLL;
+               u8   Regs[NUM_REGS];
+               u8   CID_Gain;
+               s32  Count = 0;
+               int  sign  = 1;
+               bool wait = false;
+
+               if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) &&
+                     SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) &&
+                     SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) {
+
+                       printk(KERN_ERR "tda18271c2dd: %s Search map failed\n", __func__);
+                       return -EINVAL;
+               }
+
+               state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper;
+               state->m_Regs[EB14] = (RFC_Cprog);
+               status = UpdateReg(state, EP2);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EB14);
+               if (status < 0)
+                       break;
+
+               freq_MainPLL = RF_in + 1000000;
+               status = CalcMainPLL(state, freq_MainPLL);
+               if (status < 0)
+                       break;
+               msleep(5);
+               state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1;    /* CAL_mode = 1 */
+               status = UpdateReg(state, EP4);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EP2);  /* Launch power measurement */
+               if (status < 0)
+                       break;
+               status = ReadExtented(state, Regs);
+               if (status < 0)
+                       break;
+               CID_Gain = Regs[EB10] & 0x3F;
+               state->m_Regs[ID] = Regs[ID];  /* Chip version, (needed for C1 workarround in CalibrateRF) */
+
+               *pRF_Out = RF_in;
+
+               while (CID_Gain < CID_Target) {
+                       freq_MainPLL = RF_in + sign * Count + 1000000;
+                       status = CalcMainPLL(state, freq_MainPLL);
+                       if (status < 0)
+                               break;
+                       msleep(wait ? 5 : 1);
+                       wait = false;
+                       status = UpdateReg(state, EP2);  /* Launch power measurement */
+                       if (status < 0)
+                               break;
+                       status = ReadExtented(state, Regs);
+                       if (status < 0)
+                               break;
+                       CID_Gain = Regs[EB10] & 0x3F;
+                       Count += 200000;
+
+                       if (Count < CountLimit * 100000)
+                               continue;
+                       if (sign < 0)
+                               break;
+
+                       sign = -sign;
+                       Count = 200000;
+                       wait = true;
+               }
+               status = status;
+               if (status < 0)
+                       break;
+               if (CID_Gain >= CID_Target) {
+                       *pbcal = true;
+                       *pRF_Out = freq_MainPLL - 1000000;
+               } else
+                       *pbcal = false;
+       } while (0);
+
+       return status;
+}
+
+static int PowerScanInit(struct tda_state *state)
+{
+       int status = 0;
+       do {
+               state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12;
+               state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */
+               status = UpdateRegs(state, EP3, EP4);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */
+               status = UpdateReg(state, EB18);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */
+               state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */
+               status = UpdateRegs(state, EB21, EB23);
+               if (status < 0)
+                       break;
+       } while (0);
+       return status;
+}
+
+static int CalcRFFilterCurve(struct tda_state *state)
+{
+       int status = 0;
+       do {
+               msleep(200);      /* Temperature stabilisation */
+               status = PowerScanInit(state);
+               if (status < 0)
+                       break;
+               status = RFTrackingFiltersInit(state, 0);
+               if (status < 0)
+                       break;
+               status = RFTrackingFiltersInit(state, 1);
+               if (status < 0)
+                       break;
+               status = RFTrackingFiltersInit(state, 2);
+               if (status < 0)
+                       break;
+               status = RFTrackingFiltersInit(state, 3);
+               if (status < 0)
+                       break;
+               status = RFTrackingFiltersInit(state, 4);
+               if (status < 0)
+                       break;
+               status = RFTrackingFiltersInit(state, 5);
+               if (status < 0)
+                       break;
+               status = RFTrackingFiltersInit(state, 6);
+               if (status < 0)
+                       break;
+               status = ThermometerRead(state, &state->m_TMValue_RFCal); /* also switches off Cal mode !!! */
+               if (status < 0)
+                       break;
+       } while (0);
+
+       return status;
+}
+
+static int FixedContentsI2CUpdate(struct tda_state *state)
+{
+       static u8 InitRegs[] = {
+               0x08, 0x80, 0xC6,
+               0xDF, 0x16, 0x60, 0x80,
+               0x80, 0x00, 0x00, 0x00,
+               0x00, 0x00, 0x00, 0x00,
+               0xFC, 0x01, 0x84, 0x41,
+               0x01, 0x84, 0x40, 0x07,
+               0x00, 0x00, 0x96, 0x3F,
+               0xC1, 0x00, 0x8F, 0x00,
+               0x00, 0x8C, 0x00, 0x20,
+               0xB3, 0x48, 0xB0,
+       };
+       int status = 0;
+       memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1);
+       do {
+               status = UpdateRegs(state, TM, EB23);
+               if (status < 0)
+                       break;
+
+               /* AGC1 gain setup */
+               state->m_Regs[EB17] = 0x00;
+               status = UpdateReg(state, EB17);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB17] = 0x03;
+               status = UpdateReg(state, EB17);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB17] = 0x43;
+               status = UpdateReg(state, EB17);
+               if (status < 0)
+                       break;
+               state->m_Regs[EB17] = 0x4C;
+               status = UpdateReg(state, EB17);
+               if (status < 0)
+                       break;
+
+               /* IRC Cal Low band */
+               state->m_Regs[EP3] = 0x1F;
+               state->m_Regs[EP4] = 0x66;
+               state->m_Regs[EP5] = 0x81;
+               state->m_Regs[CPD] = 0xCC;
+               state->m_Regs[CD1] = 0x6C;
+               state->m_Regs[CD2] = 0x00;
+               state->m_Regs[CD3] = 0x00;
+               state->m_Regs[MPD] = 0xC5;
+               state->m_Regs[MD1] = 0x77;
+               state->m_Regs[MD2] = 0x08;
+               state->m_Regs[MD3] = 0x00;
+               status = UpdateRegs(state, EP2, MD3); /* diff between sw and datasheet (ep3-md3) */
+               if (status < 0)
+                       break;
+
+#if 0
+               state->m_Regs[EB4] = 0x61;          /* missing in sw */
+               status = UpdateReg(state, EB4);
+               if (status < 0)
+                       break;
+               msleep(1);
+               state->m_Regs[EB4] = 0x41;
+               status = UpdateReg(state, EB4);
+               if (status < 0)
+                       break;
+#endif
+
+               msleep(5);
+               status = UpdateReg(state, EP1);
+               if (status < 0)
+                       break;
+               msleep(5);
+
+               state->m_Regs[EP5] = 0x85;
+               state->m_Regs[CPD] = 0xCB;
+               state->m_Regs[CD1] = 0x66;
+               state->m_Regs[CD2] = 0x70;
+               status = UpdateRegs(state, EP3, CD3);
+               if (status < 0)
+                       break;
+               msleep(5);
+               status = UpdateReg(state, EP2);
+               if (status < 0)
+                       break;
+               msleep(30);
+
+               /* IRC Cal mid band */
+               state->m_Regs[EP5] = 0x82;
+               state->m_Regs[CPD] = 0xA8;
+               state->m_Regs[CD2] = 0x00;
+               state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */
+               state->m_Regs[MD1] = 0x73;
+               state->m_Regs[MD2] = 0x1A;
+               status = UpdateRegs(state, EP3, MD3);
+               if (status < 0)
+                       break;
+
+               msleep(5);
+               status = UpdateReg(state, EP1);
+               if (status < 0)
+                       break;
+               msleep(5);
+
+               state->m_Regs[EP5] = 0x86;
+               state->m_Regs[CPD] = 0xA8;
+               state->m_Regs[CD1] = 0x66;
+               state->m_Regs[CD2] = 0xA0;
+               status = UpdateRegs(state, EP3, CD3);
+               if (status < 0)
+                       break;
+               msleep(5);
+               status = UpdateReg(state, EP2);
+               if (status < 0)
+                       break;
+               msleep(30);
+
+               /* IRC Cal high band */
+               state->m_Regs[EP5] = 0x83;
+               state->m_Regs[CPD] = 0x98;
+               state->m_Regs[CD1] = 0x65;
+               state->m_Regs[CD2] = 0x00;
+               state->m_Regs[MPD] = 0x91;  /* Datasheet = 0x91 */
+               state->m_Regs[MD1] = 0x71;
+               state->m_Regs[MD2] = 0xCD;
+               status = UpdateRegs(state, EP3, MD3);
+               if (status < 0)
+                       break;
+               msleep(5);
+               status = UpdateReg(state, EP1);
+               if (status < 0)
+                       break;
+               msleep(5);
+               state->m_Regs[EP5] = 0x87;
+               state->m_Regs[CD1] = 0x65;
+               state->m_Regs[CD2] = 0x50;
+               status = UpdateRegs(state, EP3, CD3);
+               if (status < 0)
+                       break;
+               msleep(5);
+               status = UpdateReg(state, EP2);
+               if (status < 0)
+                       break;
+               msleep(30);
+
+               /* Back to normal */
+               state->m_Regs[EP4] = 0x64;
+               status = UpdateReg(state, EP4);
+               if (status < 0)
+                       break;
+               status = UpdateReg(state, EP1);
+               if (status < 0)
+                       break;
+
+       } while (0);
+       return status;
+}
+
+static int InitCal(struct tda_state *state)
+{
+       int status = 0;
+
+       do {
+               status = FixedContentsI2CUpdate(state);
+               if (status < 0)
+                       break;
+               status = CalcRFFilterCurve(state);
+               if (status < 0)
+                       break;
+               status = StandBy(state);
+               if (status < 0)
+                       break;
+               /* m_bInitDone = true; */
+       } while (0);
+       return status;
+};
+
+static int RFTrackingFiltersCorrection(struct tda_state *state,
+                                      u32 Frequency)
+{
+       int status = 0;
+       s32 Cprog_table;
+       u8 RFBand;
+       u8 dCoverdT;
+
+       if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) ||
+           !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) ||
+           !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT))
+
+               return -EINVAL;
+
+       do {
+               u8 TMValue_Current;
+               u32   RF1 = state->m_RF1[RFBand];
+               u32   RF2 = state->m_RF1[RFBand];
+               u32   RF3 = state->m_RF1[RFBand];
+               s32    RF_A1 = state->m_RF_A1[RFBand];
+               s32    RF_B1 = state->m_RF_B1[RFBand];
+               s32    RF_A2 = state->m_RF_A2[RFBand];
+               s32    RF_B2 = state->m_RF_B2[RFBand];
+               s32 Capprox = 0;
+               int TComp;
+
+               state->m_Regs[EP3] &= ~0xE0;  /* Power up */
+               status = UpdateReg(state, EP3);
+               if (status < 0)
+                       break;
+
+               status = ThermometerRead(state, &TMValue_Current);
+               if (status < 0)
+                       break;
+
+               if (RF3 == 0 || Frequency < RF2)
+                       Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table;
+               else
+                       Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table;
+
+               TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000;
+
+               Capprox += TComp;
+
+               if (Capprox < 0)
+                       Capprox = 0;
+               else if (Capprox > 255)
+                       Capprox = 255;
+
+
+               /* TODO Temperature compensation. There is defenitely a scale factor */
+               /*      missing in the datasheet, so leave it out for now.           */
+               state->m_Regs[EB14] = Capprox;
+
+               status = UpdateReg(state, EB14);
+               if (status < 0)
+                       break;
+
+       } while (0);
+       return status;
+}
+
+static int ChannelConfiguration(struct tda_state *state,
+                               u32 Frequency, int Standard)
+{
+
+       s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency;
+       int status = 0;
+
+       u8 BP_Filter = 0;
+       u8 RF_Band = 0;
+       u8 GainTaper = 0;
+       u8 IR_Meas = 0;
+
+       state->IF = IntermediateFrequency;
+       /* printk("tda18271c2dd: %s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */
+       /* get values from tables */
+
+       if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) &&
+              SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) &&
+              SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) &&
+              SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) {
+
+               printk(KERN_ERR "tda18271c2dd: %s SearchMap failed\n", __func__);
+               return -EINVAL;
+       }
+
+       do {
+               state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0;
+               state->m_Regs[EP3] &= ~0x04;   /* switch RFAGC to high speed mode */
+
+               /* m_EP4 default for XToutOn, CAL_Mode (0) */
+               state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog);
+               /* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */
+               if (Standard <= HF_AnalogMax)
+                       state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog;
+               else if (Standard <= HF_ATSC)
+                       state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT;
+               else if (Standard <= HF_DVBC)
+                       state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC;
+               else
+                       state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
+
+               if ((Standard == HF_FM_Radio) && state->m_bFMInput)
+                       state->m_Regs[EP4] |= 0x80;
+
+               state->m_Regs[MPD] &= ~0x80;
+               if (Standard > HF_AnalogMax)
+                       state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */
+
+               state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22;
+
+               /* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */
+               if (Standard == HF_FM_Radio)
+                       state->m_Regs[EB23] |=  0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */
+               else
+                       state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */
+
+               status = UpdateRegs(state, EB22, EB23);
+               if (status < 0)
+                       break;
+
+               state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter;   /* Dis_Power_level = 1, Filter */
+               state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas;
+               state->m_Regs[EP2] = (RF_Band << 5) | GainTaper;
+
+               state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) |
+                       (state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */
+               /* AGC1_always_master = 0 */
+               /* AGC_firstn = 0 */
+               status = UpdateReg(state, EB1);
+               if (status < 0)
+                       break;
+
+               if (state->m_bMaster) {
+                       status = CalcMainPLL(state, Frequency + IntermediateFrequency);
+                       if (status < 0)
+                               break;
+                       status = UpdateRegs(state, TM, EP5);
+                       if (status < 0)
+                               break;
+                       state->m_Regs[EB4] |= 0x20;    /* LO_forceSrce = 1 */
+                       status = UpdateReg(state, EB4);
+                       if (status < 0)
+                               break;
+                       msleep(1);
+                       state->m_Regs[EB4] &= ~0x20;   /* LO_forceSrce = 0 */
+                       status = UpdateReg(state, EB4);
+                       if (status < 0)
+                               break;
+               } else {
+                       u8 PostDiv = 0;
+                       u8 Div;
+                       status = CalcCalPLL(state, Frequency + IntermediateFrequency);
+                       if (status < 0)
+                               break;
+
+                       SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div);
+                       state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77);
+                       status = UpdateReg(state, MPD);
+                       if (status < 0)
+                               break;
+                       status = UpdateRegs(state, TM, EP5);
+                       if (status < 0)
+                               break;
+
+                       state->m_Regs[EB7] |= 0x20;    /* CAL_forceSrce = 1 */
+                       status = UpdateReg(state, EB7);
+                       if (status < 0)
+                               break;
+                       msleep(1);
+                       state->m_Regs[EB7] &= ~0x20;   /* CAL_forceSrce = 0 */
+                       status = UpdateReg(state, EB7);
+                       if (status < 0)
+                               break;
+               }
+               msleep(20);
+               if (Standard != HF_FM_Radio)
+                       state->m_Regs[EP3] |= 0x04;    /* RFAGC to normal mode */
+               status = UpdateReg(state, EP3);
+               if (status < 0)
+                       break;
+
+       } while (0);
+       return status;
+}
+
+static int sleep(struct dvb_frontend *fe)
+{
+       struct tda_state *state = fe->tuner_priv;
+
+       StandBy(state);
+       return 0;
+}
+
+static int init(struct dvb_frontend *fe)
+{
+       return 0;
+}
+
+static int release(struct dvb_frontend *fe)
+{
+       kfree(fe->tuner_priv);
+       fe->tuner_priv = NULL;
+       return 0;
+}
+
+
+static int set_params(struct dvb_frontend *fe)
+{
+       struct tda_state *state = fe->tuner_priv;
+       int status = 0;
+       int Standard;
+       u32 bw = fe->dtv_property_cache.bandwidth_hz;
+       u32 delsys  = fe->dtv_property_cache.delivery_system;
+
+       state->m_Frequency = fe->dtv_property_cache.frequency;
+
+       switch (delsys) {
+       case  SYS_DVBT:
+       case  SYS_DVBT2:
+               switch (bw) {
+               case 6000000:
+                       Standard = HF_DVBT_6MHZ;
+                       break;
+               case 7000000:
+                       Standard = HF_DVBT_7MHZ;
+                       break;
+               case 8000000:
+                       Standard = HF_DVBT_8MHZ;
+                       break;
+               default:
+                       return -EINVAL;
+               }
+       case SYS_DVBC_ANNEX_A:
+       case SYS_DVBC_ANNEX_C:
+               if (bw <= 6000000)
+                       Standard = HF_DVBC_6MHZ;
+               else if (bw <= 7000000)
+                       Standard = HF_DVBC_7MHZ;
+               else
+                       Standard = HF_DVBC_8MHZ;
+               break;
+       default:
+               return -EINVAL;
+       }
+       do {
+               status = RFTrackingFiltersCorrection(state, state->m_Frequency);
+               if (status < 0)
+                       break;
+               status = ChannelConfiguration(state, state->m_Frequency,
+                                             Standard);
+               if (status < 0)
+                       break;
+
+               msleep(state->m_SettlingTime);  /* Allow AGC's to settle down */
+       } while (0);
+       return status;
+}
+
+#if 0
+static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc)
+{
+       if (IFAgc < 500) {
+               /* Scale this from 0 to 50000 */
+               *pSignalStrength = IFAgc * 100;
+       } else {
+               /* Scale range 500-1500 to 50000-80000 */
+               *pSignalStrength = 50000 + (IFAgc - 500) * 30;
+       }
+
+       return 0;
+}
+#endif
+
+static int get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
+{
+       struct tda_state *state = fe->tuner_priv;
+
+       *frequency = state->IF;
+       return 0;
+}
+
+static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
+{
+       /* struct tda_state *state = fe->tuner_priv; */
+       /* *bandwidth = priv->bandwidth; */
+       return 0;
+}
+
+
+static struct dvb_tuner_ops tuner_ops = {
+       .info = {
+               .name = "NXP TDA18271C2D",
+               .frequency_min  =  47125000,
+               .frequency_max  = 865000000,
+               .frequency_step =     62500
+       },
+       .init              = init,
+       .sleep             = sleep,
+       .set_params        = set_params,
+       .release           = release,
+       .get_if_frequency  = get_if_frequency,
+       .get_bandwidth     = get_bandwidth,
+};
+
+struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe,
+                                        struct i2c_adapter *i2c, u8 adr)
+{
+       struct tda_state *state;
+
+       state = kzalloc(sizeof(struct tda_state), GFP_KERNEL);
+       if (!state)
+               return NULL;
+
+       fe->tuner_priv = state;
+       state->adr = adr;
+       state->i2c = i2c;
+       memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
+       reset(state);
+       InitCal(state);
+
+       return fe;
+}
+EXPORT_SYMBOL_GPL(tda18271c2dd_attach);
+
+MODULE_DESCRIPTION("TDA18271C2 driver");
+MODULE_AUTHOR("DD");
+MODULE_LICENSE("GPL");