These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / gpu / drm / amd / amdkfd / kfd_events.c
diff --git a/kernel/drivers/gpu/drm/amd/amdkfd/kfd_events.c b/kernel/drivers/gpu/drm/amd/amdkfd/kfd_events.c
new file mode 100644 (file)
index 0000000..b6e28dc
--- /dev/null
@@ -0,0 +1,969 @@
+/*
+ * Copyright 2014 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+#include <linux/mm_types.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/sched.h>
+#include <linux/uaccess.h>
+#include <linux/mm.h>
+#include <linux/mman.h>
+#include <linux/memory.h>
+#include "kfd_priv.h"
+#include "kfd_events.h"
+#include <linux/device.h>
+
+/*
+ * A task can only be on a single wait_queue at a time, but we need to support
+ * waiting on multiple events (any/all).
+ * Instead of each event simply having a wait_queue with sleeping tasks, it
+ * has a singly-linked list of tasks.
+ * A thread that wants to sleep creates an array of these, one for each event
+ * and adds one to each event's waiter chain.
+ */
+struct kfd_event_waiter {
+       struct list_head waiters;
+       struct task_struct *sleeping_task;
+
+       /* Transitions to true when the event this belongs to is signaled. */
+       bool activated;
+
+       /* Event */
+       struct kfd_event *event;
+       uint32_t input_index;
+};
+
+/*
+ * Over-complicated pooled allocator for event notification slots.
+ *
+ * Each signal event needs a 64-bit signal slot where the signaler will write
+ * a 1 before sending an interrupt.l (This is needed because some interrupts
+ * do not contain enough spare data bits to identify an event.)
+ * We get whole pages from vmalloc and map them to the process VA.
+ * Individual signal events are then allocated a slot in a page.
+ */
+
+struct signal_page {
+       struct list_head event_pages;   /* kfd_process.signal_event_pages */
+       uint64_t *kernel_address;
+       uint64_t __user *user_address;
+       uint32_t page_index;            /* Index into the mmap aperture. */
+       unsigned int free_slots;
+       unsigned long used_slot_bitmap[0];
+};
+
+#define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT
+#define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE)
+#define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1)
+#define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \
+                               SLOT_BITMAP_SIZE * sizeof(long))
+
+/*
+ * For signal events, the event ID is used as the interrupt user data.
+ * For SQ s_sendmsg interrupts, this is limited to 8 bits.
+ */
+
+#define INTERRUPT_DATA_BITS 8
+#define SIGNAL_EVENT_ID_SLOT_SHIFT 0
+
+static uint64_t *page_slots(struct signal_page *page)
+{
+       return page->kernel_address;
+}
+
+static bool allocate_free_slot(struct kfd_process *process,
+                               struct signal_page **out_page,
+                               unsigned int *out_slot_index)
+{
+       struct signal_page *page;
+
+       list_for_each_entry(page, &process->signal_event_pages, event_pages) {
+               if (page->free_slots > 0) {
+                       unsigned int slot =
+                               find_first_zero_bit(page->used_slot_bitmap,
+                                                       SLOTS_PER_PAGE);
+
+                       __set_bit(slot, page->used_slot_bitmap);
+                       page->free_slots--;
+
+                       page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT;
+
+                       *out_page = page;
+                       *out_slot_index = slot;
+
+                       pr_debug("allocated event signal slot in page %p, slot %d\n",
+                                       page, slot);
+
+                       return true;
+               }
+       }
+
+       pr_debug("No free event signal slots were found for process %p\n",
+                       process);
+
+       return false;
+}
+
+#define list_tail_entry(head, type, member) \
+       list_entry((head)->prev, type, member)
+
+static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p)
+{
+       void *backing_store;
+       struct signal_page *page;
+
+       page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL);
+       if (!page)
+               goto fail_alloc_signal_page;
+
+       page->free_slots = SLOTS_PER_PAGE;
+
+       backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
+                                       get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
+       if (!backing_store)
+               goto fail_alloc_signal_store;
+
+       /* prevent user-mode info leaks */
+       memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
+               KFD_SIGNAL_EVENT_LIMIT * 8);
+
+       page->kernel_address = backing_store;
+
+       if (list_empty(&p->signal_event_pages))
+               page->page_index = 0;
+       else
+               page->page_index = list_tail_entry(&p->signal_event_pages,
+                                                  struct signal_page,
+                                                  event_pages)->page_index + 1;
+
+       pr_debug("allocated new event signal page at %p, for process %p\n",
+                       page, p);
+       pr_debug("page index is %d\n", page->page_index);
+
+       list_add(&page->event_pages, &p->signal_event_pages);
+
+       return true;
+
+fail_alloc_signal_store:
+       kfree(page);
+fail_alloc_signal_page:
+       return false;
+}
+
+static bool allocate_event_notification_slot(struct file *devkfd,
+                                       struct kfd_process *p,
+                                       struct signal_page **page,
+                                       unsigned int *signal_slot_index)
+{
+       bool ret;
+
+       ret = allocate_free_slot(p, page, signal_slot_index);
+       if (ret == false) {
+               ret = allocate_signal_page(devkfd, p);
+               if (ret == true)
+                       ret = allocate_free_slot(p, page, signal_slot_index);
+       }
+
+       return ret;
+}
+
+/* Assumes that the process's event_mutex is locked. */
+static void release_event_notification_slot(struct signal_page *page,
+                                               size_t slot_index)
+{
+       __clear_bit(slot_index, page->used_slot_bitmap);
+       page->free_slots++;
+
+       /* We don't free signal pages, they are retained by the process
+        * and reused until it exits. */
+}
+
+static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p,
+                                               unsigned int page_index)
+{
+       struct signal_page *page;
+
+       /*
+        * This is safe because we don't delete signal pages until the
+        * process exits.
+        */
+       list_for_each_entry(page, &p->signal_event_pages, event_pages)
+               if (page->page_index == page_index)
+                       return page;
+
+       return NULL;
+}
+
+/*
+ * Assumes that p->event_mutex is held and of course that p is not going
+ * away (current or locked).
+ */
+static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
+{
+       struct kfd_event *ev;
+
+       hash_for_each_possible(p->events, ev, events, id)
+               if (ev->event_id == id)
+                       return ev;
+
+       return NULL;
+}
+
+static u32 make_signal_event_id(struct signal_page *page,
+                                        unsigned int signal_slot_index)
+{
+       return page->page_index |
+                       (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT);
+}
+
+/*
+ * Produce a kfd event id for a nonsignal event.
+ * These are arbitrary numbers, so we do a sequential search through
+ * the hash table for an unused number.
+ */
+static u32 make_nonsignal_event_id(struct kfd_process *p)
+{
+       u32 id;
+
+       for (id = p->next_nonsignal_event_id;
+               id < KFD_LAST_NONSIGNAL_EVENT_ID &&
+               lookup_event_by_id(p, id) != NULL;
+               id++)
+               ;
+
+       if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
+
+               /*
+                * What if id == LAST_NONSIGNAL_EVENT_ID - 1?
+                * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so
+                * the first loop fails immediately and we proceed with the
+                * wraparound loop below.
+                */
+               p->next_nonsignal_event_id = id + 1;
+
+               return id;
+       }
+
+       for (id = KFD_FIRST_NONSIGNAL_EVENT_ID;
+               id < KFD_LAST_NONSIGNAL_EVENT_ID &&
+               lookup_event_by_id(p, id) != NULL;
+               id++)
+               ;
+
+
+       if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
+               p->next_nonsignal_event_id = id + 1;
+               return id;
+       }
+
+       p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
+       return 0;
+}
+
+static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p,
+                                               struct signal_page *page,
+                                               unsigned int signal_slot)
+{
+       return lookup_event_by_id(p, make_signal_event_id(page, signal_slot));
+}
+
+static int create_signal_event(struct file *devkfd,
+                               struct kfd_process *p,
+                               struct kfd_event *ev)
+{
+       if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) {
+               pr_warn("amdkfd: Signal event wasn't created because limit was reached\n");
+               return -ENOMEM;
+       }
+
+       if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page,
+                                               &ev->signal_slot_index)) {
+               pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n");
+               return -ENOMEM;
+       }
+
+       p->signal_event_count++;
+
+       ev->user_signal_address =
+                       &ev->signal_page->user_address[ev->signal_slot_index];
+
+       ev->event_id = make_signal_event_id(ev->signal_page,
+                                               ev->signal_slot_index);
+
+       pr_debug("signal event number %zu created with id %d, address %p\n",
+                       p->signal_event_count, ev->event_id,
+                       ev->user_signal_address);
+
+       pr_debug("signal event number %zu created with id %d, address %p\n",
+                       p->signal_event_count, ev->event_id,
+                       ev->user_signal_address);
+
+       return 0;
+}
+
+/*
+ * No non-signal events are supported yet.
+ * We create them as events that never signal.
+ * Set event calls from user-mode are failed.
+ */
+static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
+{
+       ev->event_id = make_nonsignal_event_id(p);
+       if (ev->event_id == 0)
+               return -ENOMEM;
+
+       return 0;
+}
+
+void kfd_event_init_process(struct kfd_process *p)
+{
+       mutex_init(&p->event_mutex);
+       hash_init(p->events);
+       INIT_LIST_HEAD(&p->signal_event_pages);
+       p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
+       p->signal_event_count = 0;
+}
+
+static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
+{
+       if (ev->signal_page != NULL) {
+               release_event_notification_slot(ev->signal_page,
+                                               ev->signal_slot_index);
+               p->signal_event_count--;
+       }
+
+       /*
+        * Abandon the list of waiters. Individual waiting threads will
+        * clean up their own data.
+        */
+       list_del(&ev->waiters);
+
+       hash_del(&ev->events);
+       kfree(ev);
+}
+
+static void destroy_events(struct kfd_process *p)
+{
+       struct kfd_event *ev;
+       struct hlist_node *tmp;
+       unsigned int hash_bkt;
+
+       hash_for_each_safe(p->events, hash_bkt, tmp, ev, events)
+               destroy_event(p, ev);
+}
+
+/*
+ * We assume that the process is being destroyed and there is no need to
+ * unmap the pages or keep bookkeeping data in order.
+ */
+static void shutdown_signal_pages(struct kfd_process *p)
+{
+       struct signal_page *page, *tmp;
+
+       list_for_each_entry_safe(page, tmp, &p->signal_event_pages,
+                                       event_pages) {
+               free_pages((unsigned long)page->kernel_address,
+                               get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
+               kfree(page);
+       }
+}
+
+void kfd_event_free_process(struct kfd_process *p)
+{
+       destroy_events(p);
+       shutdown_signal_pages(p);
+}
+
+static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
+{
+       return ev->type == KFD_EVENT_TYPE_SIGNAL ||
+                                       ev->type == KFD_EVENT_TYPE_DEBUG;
+}
+
+static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
+{
+       return ev->type == KFD_EVENT_TYPE_SIGNAL;
+}
+
+int kfd_event_create(struct file *devkfd, struct kfd_process *p,
+                    uint32_t event_type, bool auto_reset, uint32_t node_id,
+                    uint32_t *event_id, uint32_t *event_trigger_data,
+                    uint64_t *event_page_offset, uint32_t *event_slot_index)
+{
+       int ret = 0;
+       struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
+
+       if (!ev)
+               return -ENOMEM;
+
+       ev->type = event_type;
+       ev->auto_reset = auto_reset;
+       ev->signaled = false;
+
+       INIT_LIST_HEAD(&ev->waiters);
+
+       *event_page_offset = 0;
+
+       mutex_lock(&p->event_mutex);
+
+       switch (event_type) {
+       case KFD_EVENT_TYPE_SIGNAL:
+       case KFD_EVENT_TYPE_DEBUG:
+               ret = create_signal_event(devkfd, p, ev);
+               if (!ret) {
+                       *event_page_offset = (ev->signal_page->page_index |
+                                       KFD_MMAP_EVENTS_MASK);
+                       *event_page_offset <<= PAGE_SHIFT;
+                       *event_slot_index = ev->signal_slot_index;
+               }
+               break;
+       default:
+               ret = create_other_event(p, ev);
+               break;
+       }
+
+       if (!ret) {
+               hash_add(p->events, &ev->events, ev->event_id);
+
+               *event_id = ev->event_id;
+               *event_trigger_data = ev->event_id;
+       } else {
+               kfree(ev);
+       }
+
+       mutex_unlock(&p->event_mutex);
+
+       return ret;
+}
+
+/* Assumes that p is current. */
+int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
+{
+       struct kfd_event *ev;
+       int ret = 0;
+
+       mutex_lock(&p->event_mutex);
+
+       ev = lookup_event_by_id(p, event_id);
+
+       if (ev)
+               destroy_event(p, ev);
+       else
+               ret = -EINVAL;
+
+       mutex_unlock(&p->event_mutex);
+       return ret;
+}
+
+static void set_event(struct kfd_event *ev)
+{
+       struct kfd_event_waiter *waiter;
+       struct kfd_event_waiter *next;
+
+       /* Auto reset if the list is non-empty and we're waking someone. */
+       ev->signaled = !ev->auto_reset || list_empty(&ev->waiters);
+
+       list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) {
+               waiter->activated = true;
+
+               /* _init because free_waiters will call list_del */
+               list_del_init(&waiter->waiters);
+
+               wake_up_process(waiter->sleeping_task);
+       }
+}
+
+/* Assumes that p is current. */
+int kfd_set_event(struct kfd_process *p, uint32_t event_id)
+{
+       int ret = 0;
+       struct kfd_event *ev;
+
+       mutex_lock(&p->event_mutex);
+
+       ev = lookup_event_by_id(p, event_id);
+
+       if (ev && event_can_be_cpu_signaled(ev))
+               set_event(ev);
+       else
+               ret = -EINVAL;
+
+       mutex_unlock(&p->event_mutex);
+       return ret;
+}
+
+static void reset_event(struct kfd_event *ev)
+{
+       ev->signaled = false;
+}
+
+/* Assumes that p is current. */
+int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
+{
+       int ret = 0;
+       struct kfd_event *ev;
+
+       mutex_lock(&p->event_mutex);
+
+       ev = lookup_event_by_id(p, event_id);
+
+       if (ev && event_can_be_cpu_signaled(ev))
+               reset_event(ev);
+       else
+               ret = -EINVAL;
+
+       mutex_unlock(&p->event_mutex);
+       return ret;
+
+}
+
+static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
+{
+       page_slots(ev->signal_page)[ev->signal_slot_index] =
+                                               UNSIGNALED_EVENT_SLOT;
+}
+
+static bool is_slot_signaled(struct signal_page *page, unsigned int index)
+{
+       return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT;
+}
+
+static void set_event_from_interrupt(struct kfd_process *p,
+                                       struct kfd_event *ev)
+{
+       if (ev && event_can_be_gpu_signaled(ev)) {
+               acknowledge_signal(p, ev);
+               set_event(ev);
+       }
+}
+
+void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
+                               uint32_t valid_id_bits)
+{
+       struct kfd_event *ev;
+
+       /*
+        * Because we are called from arbitrary context (workqueue) as opposed
+        * to process context, kfd_process could attempt to exit while we are
+        * running so the lookup function returns a locked process.
+        */
+       struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
+
+       if (!p)
+               return; /* Presumably process exited. */
+
+       mutex_lock(&p->event_mutex);
+
+       if (valid_id_bits >= INTERRUPT_DATA_BITS) {
+               /* Partial ID is a full ID. */
+               ev = lookup_event_by_id(p, partial_id);
+               set_event_from_interrupt(p, ev);
+       } else {
+               /*
+                * Partial ID is in fact partial. For now we completely
+                * ignore it, but we could use any bits we did receive to
+                * search faster.
+                */
+               struct signal_page *page;
+               unsigned i;
+
+               list_for_each_entry(page, &p->signal_event_pages, event_pages)
+                       for (i = 0; i < SLOTS_PER_PAGE; i++)
+                               if (is_slot_signaled(page, i)) {
+                                       ev = lookup_event_by_page_slot(p,
+                                                               page, i);
+                                       set_event_from_interrupt(p, ev);
+                               }
+       }
+
+       mutex_unlock(&p->event_mutex);
+       mutex_unlock(&p->mutex);
+}
+
+static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
+{
+       struct kfd_event_waiter *event_waiters;
+       uint32_t i;
+
+       event_waiters = kmalloc_array(num_events,
+                                       sizeof(struct kfd_event_waiter),
+                                       GFP_KERNEL);
+
+       for (i = 0; (event_waiters) && (i < num_events) ; i++) {
+               INIT_LIST_HEAD(&event_waiters[i].waiters);
+               event_waiters[i].sleeping_task = current;
+               event_waiters[i].activated = false;
+       }
+
+       return event_waiters;
+}
+
+static int init_event_waiter(struct kfd_process *p,
+               struct kfd_event_waiter *waiter,
+               uint32_t event_id,
+               uint32_t input_index)
+{
+       struct kfd_event *ev = lookup_event_by_id(p, event_id);
+
+       if (!ev)
+               return -EINVAL;
+
+       waiter->event = ev;
+       waiter->input_index = input_index;
+       waiter->activated = ev->signaled;
+       ev->signaled = ev->signaled && !ev->auto_reset;
+
+       list_add(&waiter->waiters, &ev->waiters);
+
+       return 0;
+}
+
+static bool test_event_condition(bool all, uint32_t num_events,
+                               struct kfd_event_waiter *event_waiters)
+{
+       uint32_t i;
+       uint32_t activated_count = 0;
+
+       for (i = 0; i < num_events; i++) {
+               if (event_waiters[i].activated) {
+                       if (!all)
+                               return true;
+
+                       activated_count++;
+               }
+       }
+
+       return activated_count == num_events;
+}
+
+/*
+ * Copy event specific data, if defined.
+ * Currently only memory exception events have additional data to copy to user
+ */
+static bool copy_signaled_event_data(uint32_t num_events,
+               struct kfd_event_waiter *event_waiters,
+               struct kfd_event_data __user *data)
+{
+       struct kfd_hsa_memory_exception_data *src;
+       struct kfd_hsa_memory_exception_data __user *dst;
+       struct kfd_event_waiter *waiter;
+       struct kfd_event *event;
+       uint32_t i;
+
+       for (i = 0; i < num_events; i++) {
+               waiter = &event_waiters[i];
+               event = waiter->event;
+               if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
+                       dst = &data[waiter->input_index].memory_exception_data;
+                       src = &event->memory_exception_data;
+                       if (copy_to_user(dst, src,
+                               sizeof(struct kfd_hsa_memory_exception_data)))
+                               return false;
+               }
+       }
+
+       return true;
+
+}
+
+
+
+static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
+{
+       if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
+               return 0;
+
+       if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
+               return MAX_SCHEDULE_TIMEOUT;
+
+       /*
+        * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
+        * but we consider them finite.
+        * This hack is wrong, but nobody is likely to notice.
+        */
+       user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
+
+       return msecs_to_jiffies(user_timeout_ms) + 1;
+}
+
+static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
+{
+       uint32_t i;
+
+       for (i = 0; i < num_events; i++)
+               list_del(&waiters[i].waiters);
+
+       kfree(waiters);
+}
+
+int kfd_wait_on_events(struct kfd_process *p,
+                      uint32_t num_events, void __user *data,
+                      bool all, uint32_t user_timeout_ms,
+                      enum kfd_event_wait_result *wait_result)
+{
+       struct kfd_event_data __user *events =
+                       (struct kfd_event_data __user *) data;
+       uint32_t i;
+       int ret = 0;
+       struct kfd_event_waiter *event_waiters = NULL;
+       long timeout = user_timeout_to_jiffies(user_timeout_ms);
+
+       mutex_lock(&p->event_mutex);
+
+       event_waiters = alloc_event_waiters(num_events);
+       if (!event_waiters) {
+               ret = -ENOMEM;
+               goto fail;
+       }
+
+       for (i = 0; i < num_events; i++) {
+               struct kfd_event_data event_data;
+
+               if (copy_from_user(&event_data, &events[i],
+                               sizeof(struct kfd_event_data)))
+                       goto fail;
+
+               ret = init_event_waiter(p, &event_waiters[i],
+                               event_data.event_id, i);
+               if (ret)
+                       goto fail;
+       }
+
+       mutex_unlock(&p->event_mutex);
+
+       while (true) {
+               if (fatal_signal_pending(current)) {
+                       ret = -EINTR;
+                       break;
+               }
+
+               if (signal_pending(current)) {
+                       /*
+                        * This is wrong when a nonzero, non-infinite timeout
+                        * is specified. We need to use
+                        * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
+                        * contains a union with data for each user and it's
+                        * in generic kernel code that I don't want to
+                        * touch yet.
+                        */
+                       ret = -ERESTARTSYS;
+                       break;
+               }
+
+               if (test_event_condition(all, num_events, event_waiters)) {
+                       if (copy_signaled_event_data(num_events,
+                                       event_waiters, events))
+                               *wait_result = KFD_WAIT_COMPLETE;
+                       else
+                               *wait_result = KFD_WAIT_ERROR;
+                       break;
+               }
+
+               if (timeout <= 0) {
+                       *wait_result = KFD_WAIT_TIMEOUT;
+                       break;
+               }
+
+               timeout = schedule_timeout_interruptible(timeout);
+       }
+       __set_current_state(TASK_RUNNING);
+
+       mutex_lock(&p->event_mutex);
+       free_waiters(num_events, event_waiters);
+       mutex_unlock(&p->event_mutex);
+
+       return ret;
+
+fail:
+       if (event_waiters)
+               free_waiters(num_events, event_waiters);
+
+       mutex_unlock(&p->event_mutex);
+
+       *wait_result = KFD_WAIT_ERROR;
+
+       return ret;
+}
+
+int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
+{
+
+       unsigned int page_index;
+       unsigned long pfn;
+       struct signal_page *page;
+
+       /* check required size is logical */
+       if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) !=
+                       get_order(vma->vm_end - vma->vm_start)) {
+               pr_err("amdkfd: event page mmap requested illegal size\n");
+               return -EINVAL;
+       }
+
+       page_index = vma->vm_pgoff;
+
+       page = lookup_signal_page_by_index(p, page_index);
+       if (!page) {
+               /* Probably KFD bug, but mmap is user-accessible. */
+               pr_debug("signal page could not be found for page_index %u\n",
+                               page_index);
+               return -EINVAL;
+       }
+
+       pfn = __pa(page->kernel_address);
+       pfn >>= PAGE_SHIFT;
+
+       vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
+                      | VM_DONTDUMP | VM_PFNMAP;
+
+       pr_debug("mapping signal page\n");
+       pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
+       pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
+       pr_debug("     pfn                 == 0x%016lX\n", pfn);
+       pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
+       pr_debug("     size                == 0x%08lX\n",
+                       vma->vm_end - vma->vm_start);
+
+       page->user_address = (uint64_t __user *)vma->vm_start;
+
+       /* mapping the page to user process */
+       return remap_pfn_range(vma, vma->vm_start, pfn,
+                       vma->vm_end - vma->vm_start, vma->vm_page_prot);
+}
+
+/*
+ * Assumes that p->event_mutex is held and of course
+ * that p is not going away (current or locked).
+ */
+static void lookup_events_by_type_and_signal(struct kfd_process *p,
+               int type, void *event_data)
+{
+       struct kfd_hsa_memory_exception_data *ev_data;
+       struct kfd_event *ev;
+       int bkt;
+       bool send_signal = true;
+
+       ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
+
+       hash_for_each(p->events, bkt, ev, events)
+               if (ev->type == type) {
+                       send_signal = false;
+                       dev_dbg(kfd_device,
+                                       "Event found: id %X type %d",
+                                       ev->event_id, ev->type);
+                       set_event(ev);
+                       if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
+                               ev->memory_exception_data = *ev_data;
+               }
+
+       /* Send SIGTERM no event of type "type" has been found*/
+       if (send_signal) {
+               if (send_sigterm) {
+                       dev_warn(kfd_device,
+                               "Sending SIGTERM to HSA Process with PID %d ",
+                                       p->lead_thread->pid);
+                       send_sig(SIGTERM, p->lead_thread, 0);
+               } else {
+                       dev_err(kfd_device,
+                               "HSA Process (PID %d) got unhandled exception",
+                               p->lead_thread->pid);
+               }
+       }
+}
+
+void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
+               unsigned long address, bool is_write_requested,
+               bool is_execute_requested)
+{
+       struct kfd_hsa_memory_exception_data memory_exception_data;
+       struct vm_area_struct *vma;
+
+       /*
+        * Because we are called from arbitrary context (workqueue) as opposed
+        * to process context, kfd_process could attempt to exit while we are
+        * running so the lookup function returns a locked process.
+        */
+       struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
+
+       if (!p)
+               return; /* Presumably process exited. */
+
+       memset(&memory_exception_data, 0, sizeof(memory_exception_data));
+
+       down_read(&p->mm->mmap_sem);
+       vma = find_vma(p->mm, address);
+
+       memory_exception_data.gpu_id = dev->id;
+       memory_exception_data.va = address;
+       /* Set failure reason */
+       memory_exception_data.failure.NotPresent = 1;
+       memory_exception_data.failure.NoExecute = 0;
+       memory_exception_data.failure.ReadOnly = 0;
+       if (vma) {
+               if (vma->vm_start > address) {
+                       memory_exception_data.failure.NotPresent = 1;
+                       memory_exception_data.failure.NoExecute = 0;
+                       memory_exception_data.failure.ReadOnly = 0;
+               } else {
+                       memory_exception_data.failure.NotPresent = 0;
+                       if (is_write_requested && !(vma->vm_flags & VM_WRITE))
+                               memory_exception_data.failure.ReadOnly = 1;
+                       else
+                               memory_exception_data.failure.ReadOnly = 0;
+                       if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
+                               memory_exception_data.failure.NoExecute = 1;
+                       else
+                               memory_exception_data.failure.NoExecute = 0;
+               }
+       }
+
+       up_read(&p->mm->mmap_sem);
+
+       mutex_lock(&p->event_mutex);
+
+       /* Lookup events by type and signal them */
+       lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
+                       &memory_exception_data);
+
+       mutex_unlock(&p->event_mutex);
+       mutex_unlock(&p->mutex);
+}
+
+void kfd_signal_hw_exception_event(unsigned int pasid)
+{
+       /*
+        * Because we are called from arbitrary context (workqueue) as opposed
+        * to process context, kfd_process could attempt to exit while we are
+        * running so the lookup function returns a locked process.
+        */
+       struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
+
+       if (!p)
+               return; /* Presumably process exited. */
+
+       mutex_lock(&p->event_mutex);
+
+       /* Lookup events by type and signal them */
+       lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
+
+       mutex_unlock(&p->event_mutex);
+       mutex_unlock(&p->mutex);
+}