Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / edac / sb_edac.c
diff --git a/kernel/drivers/edac/sb_edac.c b/kernel/drivers/edac/sb_edac.c
new file mode 100644 (file)
index 0000000..1acf57b
--- /dev/null
@@ -0,0 +1,2592 @@
+/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
+ *
+ * This driver supports the memory controllers found on the Intel
+ * processor family Sandy Bridge.
+ *
+ * This file may be distributed under the terms of the
+ * GNU General Public License version 2 only.
+ *
+ * Copyright (c) 2011 by:
+ *      Mauro Carvalho Chehab
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/edac.h>
+#include <linux/mmzone.h>
+#include <linux/smp.h>
+#include <linux/bitmap.h>
+#include <linux/math64.h>
+#include <asm/processor.h>
+#include <asm/mce.h>
+
+#include "edac_core.h"
+
+/* Static vars */
+static LIST_HEAD(sbridge_edac_list);
+static DEFINE_MUTEX(sbridge_edac_lock);
+static int probed;
+
+/*
+ * Alter this version for the module when modifications are made
+ */
+#define SBRIDGE_REVISION    " Ver: 1.1.0 "
+#define EDAC_MOD_STR      "sbridge_edac"
+
+/*
+ * Debug macros
+ */
+#define sbridge_printk(level, fmt, arg...)                     \
+       edac_printk(level, "sbridge", fmt, ##arg)
+
+#define sbridge_mc_printk(mci, level, fmt, arg...)             \
+       edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
+
+/*
+ * Get a bit field at register value <v>, from bit <lo> to bit <hi>
+ */
+#define GET_BITFIELD(v, lo, hi)        \
+       (((v) & GENMASK_ULL(hi, lo)) >> (lo))
+
+/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
+static const u32 sbridge_dram_rule[] = {
+       0x80, 0x88, 0x90, 0x98, 0xa0,
+       0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
+};
+
+static const u32 ibridge_dram_rule[] = {
+       0x60, 0x68, 0x70, 0x78, 0x80,
+       0x88, 0x90, 0x98, 0xa0, 0xa8,
+       0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
+       0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
+};
+
+#define SAD_LIMIT(reg)         ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
+#define DRAM_ATTR(reg)         GET_BITFIELD(reg, 2,  3)
+#define INTERLEAVE_MODE(reg)   GET_BITFIELD(reg, 1,  1)
+#define DRAM_RULE_ENABLE(reg)  GET_BITFIELD(reg, 0,  0)
+#define A7MODE(reg)            GET_BITFIELD(reg, 26, 26)
+
+static char *get_dram_attr(u32 reg)
+{
+       switch(DRAM_ATTR(reg)) {
+               case 0:
+                       return "DRAM";
+               case 1:
+                       return "MMCFG";
+               case 2:
+                       return "NXM";
+               default:
+                       return "unknown";
+       }
+}
+
+static const u32 sbridge_interleave_list[] = {
+       0x84, 0x8c, 0x94, 0x9c, 0xa4,
+       0xac, 0xb4, 0xbc, 0xc4, 0xcc,
+};
+
+static const u32 ibridge_interleave_list[] = {
+       0x64, 0x6c, 0x74, 0x7c, 0x84,
+       0x8c, 0x94, 0x9c, 0xa4, 0xac,
+       0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
+       0xdc, 0xe4, 0xec, 0xf4, 0xfc,
+};
+
+struct interleave_pkg {
+       unsigned char start;
+       unsigned char end;
+};
+
+static const struct interleave_pkg sbridge_interleave_pkg[] = {
+       { 0, 2 },
+       { 3, 5 },
+       { 8, 10 },
+       { 11, 13 },
+       { 16, 18 },
+       { 19, 21 },
+       { 24, 26 },
+       { 27, 29 },
+};
+
+static const struct interleave_pkg ibridge_interleave_pkg[] = {
+       { 0, 3 },
+       { 4, 7 },
+       { 8, 11 },
+       { 12, 15 },
+       { 16, 19 },
+       { 20, 23 },
+       { 24, 27 },
+       { 28, 31 },
+};
+
+static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
+                         int interleave)
+{
+       return GET_BITFIELD(reg, table[interleave].start,
+                           table[interleave].end);
+}
+
+/* Devices 12 Function 7 */
+
+#define TOLM           0x80
+#define        TOHM            0x84
+#define HASWELL_TOLM   0xd0
+#define HASWELL_TOHM_0 0xd4
+#define HASWELL_TOHM_1 0xd8
+
+#define GET_TOLM(reg)          ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
+#define GET_TOHM(reg)          ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
+
+/* Device 13 Function 6 */
+
+#define SAD_TARGET     0xf0
+
+#define SOURCE_ID(reg)         GET_BITFIELD(reg, 9, 11)
+
+#define SAD_CONTROL    0xf4
+
+/* Device 14 function 0 */
+
+static const u32 tad_dram_rule[] = {
+       0x40, 0x44, 0x48, 0x4c,
+       0x50, 0x54, 0x58, 0x5c,
+       0x60, 0x64, 0x68, 0x6c,
+};
+#define MAX_TAD        ARRAY_SIZE(tad_dram_rule)
+
+#define TAD_LIMIT(reg)         ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
+#define TAD_SOCK(reg)          GET_BITFIELD(reg, 10, 11)
+#define TAD_CH(reg)            GET_BITFIELD(reg,  8,  9)
+#define TAD_TGT3(reg)          GET_BITFIELD(reg,  6,  7)
+#define TAD_TGT2(reg)          GET_BITFIELD(reg,  4,  5)
+#define TAD_TGT1(reg)          GET_BITFIELD(reg,  2,  3)
+#define TAD_TGT0(reg)          GET_BITFIELD(reg,  0,  1)
+
+/* Device 15, function 0 */
+
+#define MCMTR                  0x7c
+
+#define IS_ECC_ENABLED(mcmtr)          GET_BITFIELD(mcmtr, 2, 2)
+#define IS_LOCKSTEP_ENABLED(mcmtr)     GET_BITFIELD(mcmtr, 1, 1)
+#define IS_CLOSE_PG(mcmtr)             GET_BITFIELD(mcmtr, 0, 0)
+
+/* Device 15, function 1 */
+
+#define RASENABLES             0xac
+#define IS_MIRROR_ENABLED(reg)         GET_BITFIELD(reg, 0, 0)
+
+/* Device 15, functions 2-5 */
+
+static const int mtr_regs[] = {
+       0x80, 0x84, 0x88,
+};
+
+#define RANK_DISABLE(mtr)              GET_BITFIELD(mtr, 16, 19)
+#define IS_DIMM_PRESENT(mtr)           GET_BITFIELD(mtr, 14, 14)
+#define RANK_CNT_BITS(mtr)             GET_BITFIELD(mtr, 12, 13)
+#define RANK_WIDTH_BITS(mtr)           GET_BITFIELD(mtr, 2, 4)
+#define COL_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 0, 1)
+
+static const u32 tad_ch_nilv_offset[] = {
+       0x90, 0x94, 0x98, 0x9c,
+       0xa0, 0xa4, 0xa8, 0xac,
+       0xb0, 0xb4, 0xb8, 0xbc,
+};
+#define CHN_IDX_OFFSET(reg)            GET_BITFIELD(reg, 28, 29)
+#define TAD_OFFSET(reg)                        (GET_BITFIELD(reg,  6, 25) << 26)
+
+static const u32 rir_way_limit[] = {
+       0x108, 0x10c, 0x110, 0x114, 0x118,
+};
+#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
+
+#define IS_RIR_VALID(reg)      GET_BITFIELD(reg, 31, 31)
+#define RIR_WAY(reg)           GET_BITFIELD(reg, 28, 29)
+
+#define MAX_RIR_WAY    8
+
+static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
+       { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
+       { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
+       { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
+       { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
+       { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
+};
+
+#define RIR_RNK_TGT(reg)               GET_BITFIELD(reg, 16, 19)
+#define RIR_OFFSET(reg)                GET_BITFIELD(reg,  2, 14)
+
+/* Device 16, functions 2-7 */
+
+/*
+ * FIXME: Implement the error count reads directly
+ */
+
+static const u32 correrrcnt[] = {
+       0x104, 0x108, 0x10c, 0x110,
+};
+
+#define RANK_ODD_OV(reg)               GET_BITFIELD(reg, 31, 31)
+#define RANK_ODD_ERR_CNT(reg)          GET_BITFIELD(reg, 16, 30)
+#define RANK_EVEN_OV(reg)              GET_BITFIELD(reg, 15, 15)
+#define RANK_EVEN_ERR_CNT(reg)         GET_BITFIELD(reg,  0, 14)
+
+static const u32 correrrthrsld[] = {
+       0x11c, 0x120, 0x124, 0x128,
+};
+
+#define RANK_ODD_ERR_THRSLD(reg)       GET_BITFIELD(reg, 16, 30)
+#define RANK_EVEN_ERR_THRSLD(reg)      GET_BITFIELD(reg,  0, 14)
+
+
+/* Device 17, function 0 */
+
+#define SB_RANK_CFG_A          0x0328
+
+#define IB_RANK_CFG_A          0x0320
+
+/*
+ * sbridge structs
+ */
+
+#define NUM_CHANNELS           4
+#define MAX_DIMMS              3       /* Max DIMMS per channel */
+#define CHANNEL_UNSPECIFIED    0xf     /* Intel IA32 SDM 15-14 */
+
+enum type {
+       SANDY_BRIDGE,
+       IVY_BRIDGE,
+       HASWELL,
+       BROADWELL,
+};
+
+struct sbridge_pvt;
+struct sbridge_info {
+       enum type       type;
+       u32             mcmtr;
+       u32             rankcfgr;
+       u64             (*get_tolm)(struct sbridge_pvt *pvt);
+       u64             (*get_tohm)(struct sbridge_pvt *pvt);
+       u64             (*rir_limit)(u32 reg);
+       const u32       *dram_rule;
+       const u32       *interleave_list;
+       const struct interleave_pkg *interleave_pkg;
+       u8              max_sad;
+       u8              max_interleave;
+       u8              (*get_node_id)(struct sbridge_pvt *pvt);
+       enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
+       struct pci_dev  *pci_vtd;
+};
+
+struct sbridge_channel {
+       u32             ranks;
+       u32             dimms;
+};
+
+struct pci_id_descr {
+       int                     dev_id;
+       int                     optional;
+};
+
+struct pci_id_table {
+       const struct pci_id_descr       *descr;
+       int                             n_devs;
+};
+
+struct sbridge_dev {
+       struct list_head        list;
+       u8                      bus, mc;
+       u8                      node_id, source_id;
+       struct pci_dev          **pdev;
+       int                     n_devs;
+       struct mem_ctl_info     *mci;
+};
+
+struct sbridge_pvt {
+       struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
+       struct pci_dev          *pci_sad0, *pci_sad1;
+       struct pci_dev          *pci_ha0, *pci_ha1;
+       struct pci_dev          *pci_br0, *pci_br1;
+       struct pci_dev          *pci_ha1_ta;
+       struct pci_dev          *pci_tad[NUM_CHANNELS];
+
+       struct sbridge_dev      *sbridge_dev;
+
+       struct sbridge_info     info;
+       struct sbridge_channel  channel[NUM_CHANNELS];
+
+       /* Memory type detection */
+       bool                    is_mirrored, is_lockstep, is_close_pg;
+
+       /* Fifo double buffers */
+       struct mce              mce_entry[MCE_LOG_LEN];
+       struct mce              mce_outentry[MCE_LOG_LEN];
+
+       /* Fifo in/out counters */
+       unsigned                mce_in, mce_out;
+
+       /* Count indicator to show errors not got */
+       unsigned                mce_overrun;
+
+       /* Memory description */
+       u64                     tolm, tohm;
+};
+
+#define PCI_DESCR(device_id, opt)      \
+       .dev_id = (device_id),          \
+       .optional = opt
+
+static const struct pci_id_descr pci_dev_descr_sbridge[] = {
+               /* Processor Home Agent */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
+
+               /* Memory controller */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
+
+               /* System Address Decoder */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
+
+               /* Broadcast Registers */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
+};
+
+#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
+static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
+       PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
+       {0,}                    /* 0 terminated list. */
+};
+
+/* This changes depending if 1HA or 2HA:
+ * 1HA:
+ *     0x0eb8 (17.0) is DDRIO0
+ * 2HA:
+ *     0x0ebc (17.4) is DDRIO0
+ */
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0     0x0eb8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0     0x0ebc
+
+/* pci ids */
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0            0x0ea0
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA         0x0ea8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS                0x0e71
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0       0x0eaa
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1       0x0eab
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2       0x0eac
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3       0x0ead
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                        0x0ec8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                        0x0ec9
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                        0x0eca
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1            0x0e60
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA         0x0e68
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS                0x0e79
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0       0x0e6a
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1       0x0e6b
+
+static const struct pci_id_descr pci_dev_descr_ibridge[] = {
+               /* Processor Home Agent */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
+
+               /* Memory controller */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
+
+               /* System Address Decoder */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
+
+               /* Broadcast Registers */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
+
+               /* Optional, mode 2HA */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
+#if 0
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
+#endif
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
+};
+
+static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
+       PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
+       {0,}                    /* 0 terminated list. */
+};
+
+/* Haswell support */
+/* EN processor:
+ *     - 1 IMC
+ *     - 3 DDR3 channels, 2 DPC per channel
+ * EP processor:
+ *     - 1 or 2 IMC
+ *     - 4 DDR4 channels, 3 DPC per channel
+ * EP 4S processor:
+ *     - 2 IMC
+ *     - 4 DDR4 channels, 3 DPC per channel
+ * EX processor:
+ *     - 2 IMC
+ *     - each IMC interfaces with a SMI 2 channel
+ *     - each SMI channel interfaces with a scalable memory buffer
+ *     - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
+ */
+#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
+#define HASWELL_HASYSDEFEATURE2 0x84
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0    0x2fa0
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1    0x2f60
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
+static const struct pci_id_descr pci_dev_descr_haswell[] = {
+       /* first item must be the HA */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
+};
+
+static const struct pci_id_table pci_dev_descr_haswell_table[] = {
+       PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
+       {0,}                    /* 0 terminated list. */
+};
+
+/*
+ * Broadwell support
+ *
+ * DE processor:
+ *     - 1 IMC
+ *     - 2 DDR3 channels, 2 DPC per channel
+ */
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0  0x6fa0
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA       0x6fa8
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
+
+static const struct pci_id_descr pci_dev_descr_broadwell[] = {
+       /* first item must be the HA */
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
+
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 0)      },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 0)      },
+       { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
+};
+
+static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
+       PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
+       {0,}                    /* 0 terminated list. */
+};
+
+/*
+ *     pci_device_id   table for which devices we are looking for
+ */
+static const struct pci_device_id sbridge_pci_tbl[] = {
+       {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
+       {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
+       {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
+       {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
+       {0,}                    /* 0 terminated list. */
+};
+
+
+/****************************************************************************
+                       Ancillary status routines
+ ****************************************************************************/
+
+static inline int numrank(enum type type, u32 mtr)
+{
+       int ranks = (1 << RANK_CNT_BITS(mtr));
+       int max = 4;
+
+       if (type == HASWELL)
+               max = 8;
+
+       if (ranks > max) {
+               edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
+                        ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
+               return -EINVAL;
+       }
+
+       return ranks;
+}
+
+static inline int numrow(u32 mtr)
+{
+       int rows = (RANK_WIDTH_BITS(mtr) + 12);
+
+       if (rows < 13 || rows > 18) {
+               edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
+                        rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
+               return -EINVAL;
+       }
+
+       return 1 << rows;
+}
+
+static inline int numcol(u32 mtr)
+{
+       int cols = (COL_WIDTH_BITS(mtr) + 10);
+
+       if (cols > 12) {
+               edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
+                        cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
+               return -EINVAL;
+       }
+
+       return 1 << cols;
+}
+
+static struct sbridge_dev *get_sbridge_dev(u8 bus)
+{
+       struct sbridge_dev *sbridge_dev;
+
+       list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+               if (sbridge_dev->bus == bus)
+                       return sbridge_dev;
+       }
+
+       return NULL;
+}
+
+static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
+                                          const struct pci_id_table *table)
+{
+       struct sbridge_dev *sbridge_dev;
+
+       sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
+       if (!sbridge_dev)
+               return NULL;
+
+       sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
+                                  GFP_KERNEL);
+       if (!sbridge_dev->pdev) {
+               kfree(sbridge_dev);
+               return NULL;
+       }
+
+       sbridge_dev->bus = bus;
+       sbridge_dev->n_devs = table->n_devs;
+       list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
+
+       return sbridge_dev;
+}
+
+static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
+{
+       list_del(&sbridge_dev->list);
+       kfree(sbridge_dev->pdev);
+       kfree(sbridge_dev);
+}
+
+static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+
+       /* Address range is 32:28 */
+       pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
+       return GET_TOLM(reg);
+}
+
+static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+
+       pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
+       return GET_TOHM(reg);
+}
+
+static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+
+       pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
+
+       return GET_TOLM(reg);
+}
+
+static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+
+       pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
+
+       return GET_TOHM(reg);
+}
+
+static u64 rir_limit(u32 reg)
+{
+       return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
+}
+
+static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+       enum mem_type mtype;
+
+       if (pvt->pci_ddrio) {
+               pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
+                                     &reg);
+               if (GET_BITFIELD(reg, 11, 11))
+                       /* FIXME: Can also be LRDIMM */
+                       mtype = MEM_RDDR3;
+               else
+                       mtype = MEM_DDR3;
+       } else
+               mtype = MEM_UNKNOWN;
+
+       return mtype;
+}
+
+static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+       bool registered = false;
+       enum mem_type mtype = MEM_UNKNOWN;
+
+       if (!pvt->pci_ddrio)
+               goto out;
+
+       pci_read_config_dword(pvt->pci_ddrio,
+                             HASWELL_DDRCRCLKCONTROLS, &reg);
+       /* Is_Rdimm */
+       if (GET_BITFIELD(reg, 16, 16))
+               registered = true;
+
+       pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
+       if (GET_BITFIELD(reg, 14, 14)) {
+               if (registered)
+                       mtype = MEM_RDDR4;
+               else
+                       mtype = MEM_DDR4;
+       } else {
+               if (registered)
+                       mtype = MEM_RDDR3;
+               else
+                       mtype = MEM_DDR3;
+       }
+
+out:
+       return mtype;
+}
+
+static u8 get_node_id(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+       pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
+       return GET_BITFIELD(reg, 0, 2);
+}
+
+static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+
+       pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
+       return GET_BITFIELD(reg, 0, 3);
+}
+
+static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
+{
+       u32 reg;
+
+       pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
+       return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
+}
+
+static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
+{
+       u64 rc;
+       u32 reg;
+
+       pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
+       rc = GET_BITFIELD(reg, 26, 31);
+       pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
+       rc = ((reg << 6) | rc) << 26;
+
+       return rc | 0x1ffffff;
+}
+
+static u64 haswell_rir_limit(u32 reg)
+{
+       return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
+}
+
+static inline u8 sad_pkg_socket(u8 pkg)
+{
+       /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
+       return ((pkg >> 3) << 2) | (pkg & 0x3);
+}
+
+static inline u8 sad_pkg_ha(u8 pkg)
+{
+       return (pkg >> 2) & 0x1;
+}
+
+/****************************************************************************
+                       Memory check routines
+ ****************************************************************************/
+static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
+{
+       struct pci_dev *pdev = NULL;
+
+       do {
+               pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
+               if (pdev && pdev->bus->number == bus)
+                       break;
+       } while (pdev);
+
+       return pdev;
+}
+
+/**
+ * check_if_ecc_is_active() - Checks if ECC is active
+ * @bus:       Device bus
+ * @type:      Memory controller type
+ * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
+ *         disabled
+ */
+static int check_if_ecc_is_active(const u8 bus, enum type type)
+{
+       struct pci_dev *pdev = NULL;
+       u32 mcmtr, id;
+
+       switch (type) {
+       case IVY_BRIDGE:
+               id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
+               break;
+       case HASWELL:
+               id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
+               break;
+       case SANDY_BRIDGE:
+               id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
+               break;
+       case BROADWELL:
+               id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
+               break;
+       default:
+               return -ENODEV;
+       }
+
+       pdev = get_pdev_same_bus(bus, id);
+       if (!pdev) {
+               sbridge_printk(KERN_ERR, "Couldn't find PCI device "
+                                       "%04x:%04x! on bus %02d\n",
+                                       PCI_VENDOR_ID_INTEL, id, bus);
+               return -ENODEV;
+       }
+
+       pci_read_config_dword(pdev, MCMTR, &mcmtr);
+       if (!IS_ECC_ENABLED(mcmtr)) {
+               sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
+               return -ENODEV;
+       }
+       return 0;
+}
+
+static int get_dimm_config(struct mem_ctl_info *mci)
+{
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       struct dimm_info *dimm;
+       unsigned i, j, banks, ranks, rows, cols, npages;
+       u64 size;
+       u32 reg;
+       enum edac_type mode;
+       enum mem_type mtype;
+
+       if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
+               pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
+       else
+               pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
+
+       pvt->sbridge_dev->source_id = SOURCE_ID(reg);
+
+       pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
+       edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
+                pvt->sbridge_dev->mc,
+                pvt->sbridge_dev->node_id,
+                pvt->sbridge_dev->source_id);
+
+       pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
+       if (IS_MIRROR_ENABLED(reg)) {
+               edac_dbg(0, "Memory mirror is enabled\n");
+               pvt->is_mirrored = true;
+       } else {
+               edac_dbg(0, "Memory mirror is disabled\n");
+               pvt->is_mirrored = false;
+       }
+
+       pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
+       if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
+               edac_dbg(0, "Lockstep is enabled\n");
+               mode = EDAC_S8ECD8ED;
+               pvt->is_lockstep = true;
+       } else {
+               edac_dbg(0, "Lockstep is disabled\n");
+               mode = EDAC_S4ECD4ED;
+               pvt->is_lockstep = false;
+       }
+       if (IS_CLOSE_PG(pvt->info.mcmtr)) {
+               edac_dbg(0, "address map is on closed page mode\n");
+               pvt->is_close_pg = true;
+       } else {
+               edac_dbg(0, "address map is on open page mode\n");
+               pvt->is_close_pg = false;
+       }
+
+       mtype = pvt->info.get_memory_type(pvt);
+       if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
+               edac_dbg(0, "Memory is registered\n");
+       else if (mtype == MEM_UNKNOWN)
+               edac_dbg(0, "Cannot determine memory type\n");
+       else
+               edac_dbg(0, "Memory is unregistered\n");
+
+       if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
+               banks = 16;
+       else
+               banks = 8;
+
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               u32 mtr;
+
+               for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
+                       dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
+                                      i, j, 0);
+                       pci_read_config_dword(pvt->pci_tad[i],
+                                             mtr_regs[j], &mtr);
+                       edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
+                       if (IS_DIMM_PRESENT(mtr)) {
+                               pvt->channel[i].dimms++;
+
+                               ranks = numrank(pvt->info.type, mtr);
+                               rows = numrow(mtr);
+                               cols = numcol(mtr);
+
+                               size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
+                               npages = MiB_TO_PAGES(size);
+
+                               edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
+                                        pvt->sbridge_dev->mc, i, j,
+                                        size, npages,
+                                        banks, ranks, rows, cols);
+
+                               dimm->nr_pages = npages;
+                               dimm->grain = 32;
+                               switch (banks) {
+                               case 16:
+                                       dimm->dtype = DEV_X16;
+                                       break;
+                               case 8:
+                                       dimm->dtype = DEV_X8;
+                                       break;
+                               case 4:
+                                       dimm->dtype = DEV_X4;
+                                       break;
+                               }
+                               dimm->mtype = mtype;
+                               dimm->edac_mode = mode;
+                               snprintf(dimm->label, sizeof(dimm->label),
+                                        "CPU_SrcID#%u_Channel#%u_DIMM#%u",
+                                        pvt->sbridge_dev->source_id, i, j);
+                       }
+               }
+       }
+
+       return 0;
+}
+
+static void get_memory_layout(const struct mem_ctl_info *mci)
+{
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       int i, j, k, n_sads, n_tads, sad_interl;
+       u32 reg;
+       u64 limit, prv = 0;
+       u64 tmp_mb;
+       u32 gb, mb;
+       u32 rir_way;
+
+       /*
+        * Step 1) Get TOLM/TOHM ranges
+        */
+
+       pvt->tolm = pvt->info.get_tolm(pvt);
+       tmp_mb = (1 + pvt->tolm) >> 20;
+
+       gb = div_u64_rem(tmp_mb, 1024, &mb);
+       edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
+               gb, (mb*1000)/1024, (u64)pvt->tolm);
+
+       /* Address range is already 45:25 */
+       pvt->tohm = pvt->info.get_tohm(pvt);
+       tmp_mb = (1 + pvt->tohm) >> 20;
+
+       gb = div_u64_rem(tmp_mb, 1024, &mb);
+       edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
+               gb, (mb*1000)/1024, (u64)pvt->tohm);
+
+       /*
+        * Step 2) Get SAD range and SAD Interleave list
+        * TAD registers contain the interleave wayness. However, it
+        * seems simpler to just discover it indirectly, with the
+        * algorithm bellow.
+        */
+       prv = 0;
+       for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
+               /* SAD_LIMIT Address range is 45:26 */
+               pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
+                                     &reg);
+               limit = SAD_LIMIT(reg);
+
+               if (!DRAM_RULE_ENABLE(reg))
+                       continue;
+
+               if (limit <= prv)
+                       break;
+
+               tmp_mb = (limit + 1) >> 20;
+               gb = div_u64_rem(tmp_mb, 1024, &mb);
+               edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
+                        n_sads,
+                        get_dram_attr(reg),
+                        gb, (mb*1000)/1024,
+                        ((u64)tmp_mb) << 20L,
+                        INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
+                        reg);
+               prv = limit;
+
+               pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
+                                     &reg);
+               sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
+               for (j = 0; j < 8; j++) {
+                       u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
+                       if (j > 0 && sad_interl == pkg)
+                               break;
+
+                       edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
+                                n_sads, j, pkg);
+               }
+       }
+
+       /*
+        * Step 3) Get TAD range
+        */
+       prv = 0;
+       for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
+               pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
+                                     &reg);
+               limit = TAD_LIMIT(reg);
+               if (limit <= prv)
+                       break;
+               tmp_mb = (limit + 1) >> 20;
+
+               gb = div_u64_rem(tmp_mb, 1024, &mb);
+               edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
+                        n_tads, gb, (mb*1000)/1024,
+                        ((u64)tmp_mb) << 20L,
+                        (u32)TAD_SOCK(reg),
+                        (u32)TAD_CH(reg),
+                        (u32)TAD_TGT0(reg),
+                        (u32)TAD_TGT1(reg),
+                        (u32)TAD_TGT2(reg),
+                        (u32)TAD_TGT3(reg),
+                        reg);
+               prv = limit;
+       }
+
+       /*
+        * Step 4) Get TAD offsets, per each channel
+        */
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               if (!pvt->channel[i].dimms)
+                       continue;
+               for (j = 0; j < n_tads; j++) {
+                       pci_read_config_dword(pvt->pci_tad[i],
+                                             tad_ch_nilv_offset[j],
+                                             &reg);
+                       tmp_mb = TAD_OFFSET(reg) >> 20;
+                       gb = div_u64_rem(tmp_mb, 1024, &mb);
+                       edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
+                                i, j,
+                                gb, (mb*1000)/1024,
+                                ((u64)tmp_mb) << 20L,
+                                reg);
+               }
+       }
+
+       /*
+        * Step 6) Get RIR Wayness/Limit, per each channel
+        */
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               if (!pvt->channel[i].dimms)
+                       continue;
+               for (j = 0; j < MAX_RIR_RANGES; j++) {
+                       pci_read_config_dword(pvt->pci_tad[i],
+                                             rir_way_limit[j],
+                                             &reg);
+
+                       if (!IS_RIR_VALID(reg))
+                               continue;
+
+                       tmp_mb = pvt->info.rir_limit(reg) >> 20;
+                       rir_way = 1 << RIR_WAY(reg);
+                       gb = div_u64_rem(tmp_mb, 1024, &mb);
+                       edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
+                                i, j,
+                                gb, (mb*1000)/1024,
+                                ((u64)tmp_mb) << 20L,
+                                rir_way,
+                                reg);
+
+                       for (k = 0; k < rir_way; k++) {
+                               pci_read_config_dword(pvt->pci_tad[i],
+                                                     rir_offset[j][k],
+                                                     &reg);
+                               tmp_mb = RIR_OFFSET(reg) << 6;
+
+                               gb = div_u64_rem(tmp_mb, 1024, &mb);
+                               edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
+                                        i, j, k,
+                                        gb, (mb*1000)/1024,
+                                        ((u64)tmp_mb) << 20L,
+                                        (u32)RIR_RNK_TGT(reg),
+                                        reg);
+                       }
+               }
+       }
+}
+
+static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
+{
+       struct sbridge_dev *sbridge_dev;
+
+       list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+               if (sbridge_dev->node_id == node_id)
+                       return sbridge_dev->mci;
+       }
+       return NULL;
+}
+
+static int get_memory_error_data(struct mem_ctl_info *mci,
+                                u64 addr,
+                                u8 *socket,
+                                long *channel_mask,
+                                u8 *rank,
+                                char **area_type, char *msg)
+{
+       struct mem_ctl_info     *new_mci;
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       struct pci_dev          *pci_ha;
+       int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
+       int                     sad_interl, idx, base_ch;
+       int                     interleave_mode, shiftup = 0;
+       unsigned                sad_interleave[pvt->info.max_interleave];
+       u32                     reg, dram_rule;
+       u8                      ch_way, sck_way, pkg, sad_ha = 0;
+       u32                     tad_offset;
+       u32                     rir_way;
+       u32                     mb, gb;
+       u64                     ch_addr, offset, limit = 0, prv = 0;
+
+
+       /*
+        * Step 0) Check if the address is at special memory ranges
+        * The check bellow is probably enough to fill all cases where
+        * the error is not inside a memory, except for the legacy
+        * range (e. g. VGA addresses). It is unlikely, however, that the
+        * memory controller would generate an error on that range.
+        */
+       if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
+               sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
+               return -EINVAL;
+       }
+       if (addr >= (u64)pvt->tohm) {
+               sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
+               return -EINVAL;
+       }
+
+       /*
+        * Step 1) Get socket
+        */
+       for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
+               pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
+                                     &reg);
+
+               if (!DRAM_RULE_ENABLE(reg))
+                       continue;
+
+               limit = SAD_LIMIT(reg);
+               if (limit <= prv) {
+                       sprintf(msg, "Can't discover the memory socket");
+                       return -EINVAL;
+               }
+               if  (addr <= limit)
+                       break;
+               prv = limit;
+       }
+       if (n_sads == pvt->info.max_sad) {
+               sprintf(msg, "Can't discover the memory socket");
+               return -EINVAL;
+       }
+       dram_rule = reg;
+       *area_type = get_dram_attr(dram_rule);
+       interleave_mode = INTERLEAVE_MODE(dram_rule);
+
+       pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
+                             &reg);
+
+       if (pvt->info.type == SANDY_BRIDGE) {
+               sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
+               for (sad_way = 0; sad_way < 8; sad_way++) {
+                       u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
+                       if (sad_way > 0 && sad_interl == pkg)
+                               break;
+                       sad_interleave[sad_way] = pkg;
+                       edac_dbg(0, "SAD interleave #%d: %d\n",
+                                sad_way, sad_interleave[sad_way]);
+               }
+               edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
+                        pvt->sbridge_dev->mc,
+                        n_sads,
+                        addr,
+                        limit,
+                        sad_way + 7,
+                        !interleave_mode ? "" : "XOR[18:16]");
+               if (interleave_mode)
+                       idx = ((addr >> 6) ^ (addr >> 16)) & 7;
+               else
+                       idx = (addr >> 6) & 7;
+               switch (sad_way) {
+               case 1:
+                       idx = 0;
+                       break;
+               case 2:
+                       idx = idx & 1;
+                       break;
+               case 4:
+                       idx = idx & 3;
+                       break;
+               case 8:
+                       break;
+               default:
+                       sprintf(msg, "Can't discover socket interleave");
+                       return -EINVAL;
+               }
+               *socket = sad_interleave[idx];
+               edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
+                        idx, sad_way, *socket);
+       } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
+               int bits, a7mode = A7MODE(dram_rule);
+
+               if (a7mode) {
+                       /* A7 mode swaps P9 with P6 */
+                       bits = GET_BITFIELD(addr, 7, 8) << 1;
+                       bits |= GET_BITFIELD(addr, 9, 9);
+               } else
+                       bits = GET_BITFIELD(addr, 7, 9);
+
+               if (interleave_mode) {
+                       /* interleave mode will XOR {8,7,6} with {18,17,16} */
+                       idx = GET_BITFIELD(addr, 16, 18);
+                       idx ^= bits;
+               } else
+                       idx = bits;
+
+               pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
+               *socket = sad_pkg_socket(pkg);
+               sad_ha = sad_pkg_ha(pkg);
+
+               if (a7mode) {
+                       /* MCChanShiftUpEnable */
+                       pci_read_config_dword(pvt->pci_ha0,
+                                             HASWELL_HASYSDEFEATURE2, &reg);
+                       shiftup = GET_BITFIELD(reg, 22, 22);
+               }
+
+               edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
+                        idx, *socket, sad_ha, shiftup);
+       } else {
+               /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
+               idx = (addr >> 6) & 7;
+               pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
+               *socket = sad_pkg_socket(pkg);
+               sad_ha = sad_pkg_ha(pkg);
+               edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
+                        idx, *socket, sad_ha);
+       }
+
+       /*
+        * Move to the proper node structure, in order to access the
+        * right PCI registers
+        */
+       new_mci = get_mci_for_node_id(*socket);
+       if (!new_mci) {
+               sprintf(msg, "Struct for socket #%u wasn't initialized",
+                       *socket);
+               return -EINVAL;
+       }
+       mci = new_mci;
+       pvt = mci->pvt_info;
+
+       /*
+        * Step 2) Get memory channel
+        */
+       prv = 0;
+       if (pvt->info.type == SANDY_BRIDGE)
+               pci_ha = pvt->pci_ha0;
+       else {
+               if (sad_ha)
+                       pci_ha = pvt->pci_ha1;
+               else
+                       pci_ha = pvt->pci_ha0;
+       }
+       for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
+               pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
+               limit = TAD_LIMIT(reg);
+               if (limit <= prv) {
+                       sprintf(msg, "Can't discover the memory channel");
+                       return -EINVAL;
+               }
+               if  (addr <= limit)
+                       break;
+               prv = limit;
+       }
+       if (n_tads == MAX_TAD) {
+               sprintf(msg, "Can't discover the memory channel");
+               return -EINVAL;
+       }
+
+       ch_way = TAD_CH(reg) + 1;
+       sck_way = TAD_SOCK(reg) + 1;
+
+       if (ch_way == 3)
+               idx = addr >> 6;
+       else
+               idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
+       idx = idx % ch_way;
+
+       /*
+        * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
+        */
+       switch (idx) {
+       case 0:
+               base_ch = TAD_TGT0(reg);
+               break;
+       case 1:
+               base_ch = TAD_TGT1(reg);
+               break;
+       case 2:
+               base_ch = TAD_TGT2(reg);
+               break;
+       case 3:
+               base_ch = TAD_TGT3(reg);
+               break;
+       default:
+               sprintf(msg, "Can't discover the TAD target");
+               return -EINVAL;
+       }
+       *channel_mask = 1 << base_ch;
+
+       pci_read_config_dword(pvt->pci_tad[base_ch],
+                               tad_ch_nilv_offset[n_tads],
+                               &tad_offset);
+
+       if (pvt->is_mirrored) {
+               *channel_mask |= 1 << ((base_ch + 2) % 4);
+               switch(ch_way) {
+               case 2:
+               case 4:
+                       sck_xch = 1 << sck_way * (ch_way >> 1);
+                       break;
+               default:
+                       sprintf(msg, "Invalid mirror set. Can't decode addr");
+                       return -EINVAL;
+               }
+       } else
+               sck_xch = (1 << sck_way) * ch_way;
+
+       if (pvt->is_lockstep)
+               *channel_mask |= 1 << ((base_ch + 1) % 4);
+
+       offset = TAD_OFFSET(tad_offset);
+
+       edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
+                n_tads,
+                addr,
+                limit,
+                (u32)TAD_SOCK(reg),
+                ch_way,
+                offset,
+                idx,
+                base_ch,
+                *channel_mask);
+
+       /* Calculate channel address */
+       /* Remove the TAD offset */
+
+       if (offset > addr) {
+               sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
+                       offset, addr);
+               return -EINVAL;
+       }
+       addr -= offset;
+       /* Store the low bits [0:6] of the addr */
+       ch_addr = addr & 0x7f;
+       /* Remove socket wayness and remove 6 bits */
+       addr >>= 6;
+       addr = div_u64(addr, sck_xch);
+#if 0
+       /* Divide by channel way */
+       addr = addr / ch_way;
+#endif
+       /* Recover the last 6 bits */
+       ch_addr |= addr << 6;
+
+       /*
+        * Step 3) Decode rank
+        */
+       for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
+               pci_read_config_dword(pvt->pci_tad[base_ch],
+                                     rir_way_limit[n_rir],
+                                     &reg);
+
+               if (!IS_RIR_VALID(reg))
+                       continue;
+
+               limit = pvt->info.rir_limit(reg);
+               gb = div_u64_rem(limit >> 20, 1024, &mb);
+               edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
+                        n_rir,
+                        gb, (mb*1000)/1024,
+                        limit,
+                        1 << RIR_WAY(reg));
+               if  (ch_addr <= limit)
+                       break;
+       }
+       if (n_rir == MAX_RIR_RANGES) {
+               sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
+                       ch_addr);
+               return -EINVAL;
+       }
+       rir_way = RIR_WAY(reg);
+
+       if (pvt->is_close_pg)
+               idx = (ch_addr >> 6);
+       else
+               idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
+       idx %= 1 << rir_way;
+
+       pci_read_config_dword(pvt->pci_tad[base_ch],
+                             rir_offset[n_rir][idx],
+                             &reg);
+       *rank = RIR_RNK_TGT(reg);
+
+       edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
+                n_rir,
+                ch_addr,
+                limit,
+                rir_way,
+                idx);
+
+       return 0;
+}
+
+/****************************************************************************
+       Device initialization routines: put/get, init/exit
+ ****************************************************************************/
+
+/*
+ *     sbridge_put_all_devices 'put' all the devices that we have
+ *                             reserved via 'get'
+ */
+static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
+{
+       int i;
+
+       edac_dbg(0, "\n");
+       for (i = 0; i < sbridge_dev->n_devs; i++) {
+               struct pci_dev *pdev = sbridge_dev->pdev[i];
+               if (!pdev)
+                       continue;
+               edac_dbg(0, "Removing dev %02x:%02x.%d\n",
+                        pdev->bus->number,
+                        PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
+               pci_dev_put(pdev);
+       }
+}
+
+static void sbridge_put_all_devices(void)
+{
+       struct sbridge_dev *sbridge_dev, *tmp;
+
+       list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
+               sbridge_put_devices(sbridge_dev);
+               free_sbridge_dev(sbridge_dev);
+       }
+}
+
+static int sbridge_get_onedevice(struct pci_dev **prev,
+                                u8 *num_mc,
+                                const struct pci_id_table *table,
+                                const unsigned devno)
+{
+       struct sbridge_dev *sbridge_dev;
+       const struct pci_id_descr *dev_descr = &table->descr[devno];
+       struct pci_dev *pdev = NULL;
+       u8 bus = 0;
+
+       sbridge_printk(KERN_DEBUG,
+               "Seeking for: PCI ID %04x:%04x\n",
+               PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+       pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+                             dev_descr->dev_id, *prev);
+
+       if (!pdev) {
+               if (*prev) {
+                       *prev = pdev;
+                       return 0;
+               }
+
+               if (dev_descr->optional)
+                       return 0;
+
+               /* if the HA wasn't found */
+               if (devno == 0)
+                       return -ENODEV;
+
+               sbridge_printk(KERN_INFO,
+                       "Device not found: %04x:%04x\n",
+                       PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+               /* End of list, leave */
+               return -ENODEV;
+       }
+       bus = pdev->bus->number;
+
+       sbridge_dev = get_sbridge_dev(bus);
+       if (!sbridge_dev) {
+               sbridge_dev = alloc_sbridge_dev(bus, table);
+               if (!sbridge_dev) {
+                       pci_dev_put(pdev);
+                       return -ENOMEM;
+               }
+               (*num_mc)++;
+       }
+
+       if (sbridge_dev->pdev[devno]) {
+               sbridge_printk(KERN_ERR,
+                       "Duplicated device for %04x:%04x\n",
+                       PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+               pci_dev_put(pdev);
+               return -ENODEV;
+       }
+
+       sbridge_dev->pdev[devno] = pdev;
+
+       /* Be sure that the device is enabled */
+       if (unlikely(pci_enable_device(pdev) < 0)) {
+               sbridge_printk(KERN_ERR,
+                       "Couldn't enable %04x:%04x\n",
+                       PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+               return -ENODEV;
+       }
+
+       edac_dbg(0, "Detected %04x:%04x\n",
+                PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+       /*
+        * As stated on drivers/pci/search.c, the reference count for
+        * @from is always decremented if it is not %NULL. So, as we need
+        * to get all devices up to null, we need to do a get for the device
+        */
+       pci_dev_get(pdev);
+
+       *prev = pdev;
+
+       return 0;
+}
+
+/*
+ * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
+ *                          devices we want to reference for this driver.
+ * @num_mc: pointer to the memory controllers count, to be incremented in case
+ *         of success.
+ * @table: model specific table
+ *
+ * returns 0 in case of success or error code
+ */
+static int sbridge_get_all_devices(u8 *num_mc,
+                                  const struct pci_id_table *table)
+{
+       int i, rc;
+       struct pci_dev *pdev = NULL;
+
+       while (table && table->descr) {
+               for (i = 0; i < table->n_devs; i++) {
+                       pdev = NULL;
+                       do {
+                               rc = sbridge_get_onedevice(&pdev, num_mc,
+                                                          table, i);
+                               if (rc < 0) {
+                                       if (i == 0) {
+                                               i = table->n_devs;
+                                               break;
+                                       }
+                                       sbridge_put_all_devices();
+                                       return -ENODEV;
+                               }
+                       } while (pdev);
+               }
+               table++;
+       }
+
+       return 0;
+}
+
+static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
+                                struct sbridge_dev *sbridge_dev)
+{
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       struct pci_dev *pdev;
+       int i;
+
+       for (i = 0; i < sbridge_dev->n_devs; i++) {
+               pdev = sbridge_dev->pdev[i];
+               if (!pdev)
+                       continue;
+
+               switch (pdev->device) {
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
+                       pvt->pci_sad0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
+                       pvt->pci_sad1 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
+                       pvt->pci_br0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
+                       pvt->pci_ha0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
+                       pvt->pci_ta = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
+                       pvt->pci_ras = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
+               {
+                       int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
+                       pvt->pci_tad[id] = pdev;
+               }
+                       break;
+               case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
+                       pvt->pci_ddrio = pdev;
+                       break;
+               default:
+                       goto error;
+               }
+
+               edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
+                        pdev->vendor, pdev->device,
+                        sbridge_dev->bus,
+                        pdev);
+       }
+
+       /* Check if everything were registered */
+       if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
+           !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
+               goto enodev;
+
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               if (!pvt->pci_tad[i])
+                       goto enodev;
+       }
+       return 0;
+
+enodev:
+       sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+       return -ENODEV;
+
+error:
+       sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
+                      PCI_VENDOR_ID_INTEL, pdev->device);
+       return -EINVAL;
+}
+
+static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
+                                struct sbridge_dev *sbridge_dev)
+{
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       struct pci_dev *pdev, *tmp;
+       int i;
+       bool mode_2ha = false;
+
+       tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
+                            PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
+       if (tmp) {
+               mode_2ha = true;
+               pci_dev_put(tmp);
+       }
+
+       for (i = 0; i < sbridge_dev->n_devs; i++) {
+               pdev = sbridge_dev->pdev[i];
+               if (!pdev)
+                       continue;
+
+               switch (pdev->device) {
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
+                       pvt->pci_ha0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
+                       pvt->pci_ta = pdev;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
+                       pvt->pci_ras = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
+                       /* if we have 2 HAs active, channels 2 and 3
+                        * are in other device */
+                       if (mode_2ha)
+                               break;
+                       /* fall through */
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
+               {
+                       int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
+                       pvt->pci_tad[id] = pdev;
+               }
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
+                       pvt->pci_ddrio = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
+                       if (!mode_2ha)
+                               pvt->pci_ddrio = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
+                       pvt->pci_sad0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
+                       pvt->pci_br0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
+                       pvt->pci_br1 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
+                       pvt->pci_ha1 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
+               case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
+               {
+                       int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
+
+                       /* we shouldn't have this device if we have just one
+                        * HA present */
+                       WARN_ON(!mode_2ha);
+                       pvt->pci_tad[id] = pdev;
+               }
+                       break;
+               default:
+                       goto error;
+               }
+
+               edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+                        sbridge_dev->bus,
+                        PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+                        pdev);
+       }
+
+       /* Check if everything were registered */
+       if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
+           !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
+           !pvt->pci_ta)
+               goto enodev;
+
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               if (!pvt->pci_tad[i])
+                       goto enodev;
+       }
+       return 0;
+
+enodev:
+       sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+       return -ENODEV;
+
+error:
+       sbridge_printk(KERN_ERR,
+                      "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
+                       pdev->device);
+       return -EINVAL;
+}
+
+static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
+                                struct sbridge_dev *sbridge_dev)
+{
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       struct pci_dev *pdev, *tmp;
+       int i;
+       bool mode_2ha = false;
+
+       tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
+                            PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
+       if (tmp) {
+               mode_2ha = true;
+               pci_dev_put(tmp);
+       }
+
+       /* there's only one device per system; not tied to any bus */
+       if (pvt->info.pci_vtd == NULL)
+               /* result will be checked later */
+               pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
+                                                  PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
+                                                  NULL);
+
+       for (i = 0; i < sbridge_dev->n_devs; i++) {
+               pdev = sbridge_dev->pdev[i];
+               if (!pdev)
+                       continue;
+
+               switch (pdev->device) {
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
+                       pvt->pci_sad0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
+                       pvt->pci_sad1 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
+                       pvt->pci_ha0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
+                       pvt->pci_ta = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
+                       pvt->pci_ras = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
+                       pvt->pci_tad[0] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
+                       pvt->pci_tad[1] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
+                       if (!mode_2ha)
+                               pvt->pci_tad[2] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
+                       if (!mode_2ha)
+                               pvt->pci_tad[3] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
+                       pvt->pci_ddrio = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
+                       pvt->pci_ha1 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
+                       pvt->pci_ha1_ta = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
+                       if (mode_2ha)
+                               pvt->pci_tad[2] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
+                       if (mode_2ha)
+                               pvt->pci_tad[3] = pdev;
+                       break;
+               default:
+                       break;
+               }
+
+               edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+                        sbridge_dev->bus,
+                        PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+                        pdev);
+       }
+
+       /* Check if everything were registered */
+       if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
+           !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
+               goto enodev;
+
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               if (!pvt->pci_tad[i])
+                       goto enodev;
+       }
+       return 0;
+
+enodev:
+       sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+       return -ENODEV;
+}
+
+static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
+                                struct sbridge_dev *sbridge_dev)
+{
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       struct pci_dev *pdev;
+       int i;
+
+       /* there's only one device per system; not tied to any bus */
+       if (pvt->info.pci_vtd == NULL)
+               /* result will be checked later */
+               pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
+                                                  PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
+                                                  NULL);
+
+       for (i = 0; i < sbridge_dev->n_devs; i++) {
+               pdev = sbridge_dev->pdev[i];
+               if (!pdev)
+                       continue;
+
+               switch (pdev->device) {
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
+                       pvt->pci_sad0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
+                       pvt->pci_sad1 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
+                       pvt->pci_ha0 = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
+                       pvt->pci_ta = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
+                       pvt->pci_ras = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
+                       pvt->pci_tad[0] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
+                       pvt->pci_tad[1] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
+                       pvt->pci_tad[2] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
+                       pvt->pci_tad[3] = pdev;
+                       break;
+               case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
+                       pvt->pci_ddrio = pdev;
+                       break;
+               default:
+                       break;
+               }
+
+               edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+                        sbridge_dev->bus,
+                        PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+                        pdev);
+       }
+
+       /* Check if everything were registered */
+       if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
+           !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
+               goto enodev;
+
+       for (i = 0; i < NUM_CHANNELS; i++) {
+               if (!pvt->pci_tad[i])
+                       goto enodev;
+       }
+       return 0;
+
+enodev:
+       sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+       return -ENODEV;
+}
+
+/****************************************************************************
+                       Error check routines
+ ****************************************************************************/
+
+/*
+ * While Sandy Bridge has error count registers, SMI BIOS read values from
+ * and resets the counters. So, they are not reliable for the OS to read
+ * from them. So, we have no option but to just trust on whatever MCE is
+ * telling us about the errors.
+ */
+static void sbridge_mce_output_error(struct mem_ctl_info *mci,
+                                   const struct mce *m)
+{
+       struct mem_ctl_info *new_mci;
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       enum hw_event_mc_err_type tp_event;
+       char *type, *optype, msg[256];
+       bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
+       bool overflow = GET_BITFIELD(m->status, 62, 62);
+       bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
+       bool recoverable;
+       u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
+       u32 mscod = GET_BITFIELD(m->status, 16, 31);
+       u32 errcode = GET_BITFIELD(m->status, 0, 15);
+       u32 channel = GET_BITFIELD(m->status, 0, 3);
+       u32 optypenum = GET_BITFIELD(m->status, 4, 6);
+       long channel_mask, first_channel;
+       u8  rank, socket;
+       int rc, dimm;
+       char *area_type = NULL;
+
+       if (pvt->info.type == IVY_BRIDGE)
+               recoverable = true;
+       else
+               recoverable = GET_BITFIELD(m->status, 56, 56);
+
+       if (uncorrected_error) {
+               if (ripv) {
+                       type = "FATAL";
+                       tp_event = HW_EVENT_ERR_FATAL;
+               } else {
+                       type = "NON_FATAL";
+                       tp_event = HW_EVENT_ERR_UNCORRECTED;
+               }
+       } else {
+               type = "CORRECTED";
+               tp_event = HW_EVENT_ERR_CORRECTED;
+       }
+
+       /*
+        * According with Table 15-9 of the Intel Architecture spec vol 3A,
+        * memory errors should fit in this mask:
+        *      000f 0000 1mmm cccc (binary)
+        * where:
+        *      f = Correction Report Filtering Bit. If 1, subsequent errors
+        *          won't be shown
+        *      mmm = error type
+        *      cccc = channel
+        * If the mask doesn't match, report an error to the parsing logic
+        */
+       if (! ((errcode & 0xef80) == 0x80)) {
+               optype = "Can't parse: it is not a mem";
+       } else {
+               switch (optypenum) {
+               case 0:
+                       optype = "generic undef request error";
+                       break;
+               case 1:
+                       optype = "memory read error";
+                       break;
+               case 2:
+                       optype = "memory write error";
+                       break;
+               case 3:
+                       optype = "addr/cmd error";
+                       break;
+               case 4:
+                       optype = "memory scrubbing error";
+                       break;
+               default:
+                       optype = "reserved";
+                       break;
+               }
+       }
+
+       /* Only decode errors with an valid address (ADDRV) */
+       if (!GET_BITFIELD(m->status, 58, 58))
+               return;
+
+       rc = get_memory_error_data(mci, m->addr, &socket,
+                                  &channel_mask, &rank, &area_type, msg);
+       if (rc < 0)
+               goto err_parsing;
+       new_mci = get_mci_for_node_id(socket);
+       if (!new_mci) {
+               strcpy(msg, "Error: socket got corrupted!");
+               goto err_parsing;
+       }
+       mci = new_mci;
+       pvt = mci->pvt_info;
+
+       first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
+
+       if (rank < 4)
+               dimm = 0;
+       else if (rank < 8)
+               dimm = 1;
+       else
+               dimm = 2;
+
+
+       /*
+        * FIXME: On some memory configurations (mirror, lockstep), the
+        * Memory Controller can't point the error to a single DIMM. The
+        * EDAC core should be handling the channel mask, in order to point
+        * to the group of dimm's where the error may be happening.
+        */
+       if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
+               channel = first_channel;
+
+       snprintf(msg, sizeof(msg),
+                "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
+                overflow ? " OVERFLOW" : "",
+                (uncorrected_error && recoverable) ? " recoverable" : "",
+                area_type,
+                mscod, errcode,
+                socket,
+                channel_mask,
+                rank);
+
+       edac_dbg(0, "%s\n", msg);
+
+       /* FIXME: need support for channel mask */
+
+       if (channel == CHANNEL_UNSPECIFIED)
+               channel = -1;
+
+       /* Call the helper to output message */
+       edac_mc_handle_error(tp_event, mci, core_err_cnt,
+                            m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
+                            channel, dimm, -1,
+                            optype, msg);
+       return;
+err_parsing:
+       edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
+                            -1, -1, -1,
+                            msg, "");
+
+}
+
+/*
+ *     sbridge_check_error     Retrieve and process errors reported by the
+ *                             hardware. Called by the Core module.
+ */
+static void sbridge_check_error(struct mem_ctl_info *mci)
+{
+       struct sbridge_pvt *pvt = mci->pvt_info;
+       int i;
+       unsigned count = 0;
+       struct mce *m;
+
+       /*
+        * MCE first step: Copy all mce errors into a temporary buffer
+        * We use a double buffering here, to reduce the risk of
+        * loosing an error.
+        */
+       smp_rmb();
+       count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
+               % MCE_LOG_LEN;
+       if (!count)
+               return;
+
+       m = pvt->mce_outentry;
+       if (pvt->mce_in + count > MCE_LOG_LEN) {
+               unsigned l = MCE_LOG_LEN - pvt->mce_in;
+
+               memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
+               smp_wmb();
+               pvt->mce_in = 0;
+               count -= l;
+               m += l;
+       }
+       memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
+       smp_wmb();
+       pvt->mce_in += count;
+
+       smp_rmb();
+       if (pvt->mce_overrun) {
+               sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
+                             pvt->mce_overrun);
+               smp_wmb();
+               pvt->mce_overrun = 0;
+       }
+
+       /*
+        * MCE second step: parse errors and display
+        */
+       for (i = 0; i < count; i++)
+               sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
+}
+
+/*
+ * sbridge_mce_check_error     Replicates mcelog routine to get errors
+ *                             This routine simply queues mcelog errors, and
+ *                             return. The error itself should be handled later
+ *                             by sbridge_check_error.
+ * WARNING: As this routine should be called at NMI time, extra care should
+ * be taken to avoid deadlocks, and to be as fast as possible.
+ */
+static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
+                                  void *data)
+{
+       struct mce *mce = (struct mce *)data;
+       struct mem_ctl_info *mci;
+       struct sbridge_pvt *pvt;
+       char *type;
+
+       if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
+               return NOTIFY_DONE;
+
+       mci = get_mci_for_node_id(mce->socketid);
+       if (!mci)
+               return NOTIFY_BAD;
+       pvt = mci->pvt_info;
+
+       /*
+        * Just let mcelog handle it if the error is
+        * outside the memory controller. A memory error
+        * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
+        * bit 12 has an special meaning.
+        */
+       if ((mce->status & 0xefff) >> 7 != 1)
+               return NOTIFY_DONE;
+
+       if (mce->mcgstatus & MCG_STATUS_MCIP)
+               type = "Exception";
+       else
+               type = "Event";
+
+       sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
+
+       sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
+                         "Bank %d: %016Lx\n", mce->extcpu, type,
+                         mce->mcgstatus, mce->bank, mce->status);
+       sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
+       sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
+       sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
+
+       sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
+                         "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
+                         mce->time, mce->socketid, mce->apicid);
+
+       smp_rmb();
+       if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
+               smp_wmb();
+               pvt->mce_overrun++;
+               return NOTIFY_DONE;
+       }
+
+       /* Copy memory error at the ringbuffer */
+       memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
+       smp_wmb();
+       pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
+
+       /* Handle fatal errors immediately */
+       if (mce->mcgstatus & 1)
+               sbridge_check_error(mci);
+
+       /* Advice mcelog that the error were handled */
+       return NOTIFY_STOP;
+}
+
+static struct notifier_block sbridge_mce_dec = {
+       .notifier_call      = sbridge_mce_check_error,
+};
+
+/****************************************************************************
+                       EDAC register/unregister logic
+ ****************************************************************************/
+
+static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
+{
+       struct mem_ctl_info *mci = sbridge_dev->mci;
+       struct sbridge_pvt *pvt;
+
+       if (unlikely(!mci || !mci->pvt_info)) {
+               edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
+
+               sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
+               return;
+       }
+
+       pvt = mci->pvt_info;
+
+       edac_dbg(0, "MC: mci = %p, dev = %p\n",
+                mci, &sbridge_dev->pdev[0]->dev);
+
+       /* Remove MC sysfs nodes */
+       edac_mc_del_mc(mci->pdev);
+
+       edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
+       kfree(mci->ctl_name);
+       edac_mc_free(mci);
+       sbridge_dev->mci = NULL;
+}
+
+static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
+{
+       struct mem_ctl_info *mci;
+       struct edac_mc_layer layers[2];
+       struct sbridge_pvt *pvt;
+       struct pci_dev *pdev = sbridge_dev->pdev[0];
+       int rc;
+
+       /* Check the number of active and not disabled channels */
+       rc = check_if_ecc_is_active(sbridge_dev->bus, type);
+       if (unlikely(rc < 0))
+               return rc;
+
+       /* allocate a new MC control structure */
+       layers[0].type = EDAC_MC_LAYER_CHANNEL;
+       layers[0].size = NUM_CHANNELS;
+       layers[0].is_virt_csrow = false;
+       layers[1].type = EDAC_MC_LAYER_SLOT;
+       layers[1].size = MAX_DIMMS;
+       layers[1].is_virt_csrow = true;
+       mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
+                           sizeof(*pvt));
+
+       if (unlikely(!mci))
+               return -ENOMEM;
+
+       edac_dbg(0, "MC: mci = %p, dev = %p\n",
+                mci, &pdev->dev);
+
+       pvt = mci->pvt_info;
+       memset(pvt, 0, sizeof(*pvt));
+
+       /* Associate sbridge_dev and mci for future usage */
+       pvt->sbridge_dev = sbridge_dev;
+       sbridge_dev->mci = mci;
+
+       mci->mtype_cap = MEM_FLAG_DDR3;
+       mci->edac_ctl_cap = EDAC_FLAG_NONE;
+       mci->edac_cap = EDAC_FLAG_NONE;
+       mci->mod_name = "sbridge_edac.c";
+       mci->mod_ver = SBRIDGE_REVISION;
+       mci->dev_name = pci_name(pdev);
+       mci->ctl_page_to_phys = NULL;
+
+       /* Set the function pointer to an actual operation function */
+       mci->edac_check = sbridge_check_error;
+
+       pvt->info.type = type;
+       switch (type) {
+       case IVY_BRIDGE:
+               pvt->info.rankcfgr = IB_RANK_CFG_A;
+               pvt->info.get_tolm = ibridge_get_tolm;
+               pvt->info.get_tohm = ibridge_get_tohm;
+               pvt->info.dram_rule = ibridge_dram_rule;
+               pvt->info.get_memory_type = get_memory_type;
+               pvt->info.get_node_id = get_node_id;
+               pvt->info.rir_limit = rir_limit;
+               pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+               pvt->info.interleave_list = ibridge_interleave_list;
+               pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
+               pvt->info.interleave_pkg = ibridge_interleave_pkg;
+               mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
+
+               /* Store pci devices at mci for faster access */
+               rc = ibridge_mci_bind_devs(mci, sbridge_dev);
+               if (unlikely(rc < 0))
+                       goto fail0;
+               break;
+       case SANDY_BRIDGE:
+               pvt->info.rankcfgr = SB_RANK_CFG_A;
+               pvt->info.get_tolm = sbridge_get_tolm;
+               pvt->info.get_tohm = sbridge_get_tohm;
+               pvt->info.dram_rule = sbridge_dram_rule;
+               pvt->info.get_memory_type = get_memory_type;
+               pvt->info.get_node_id = get_node_id;
+               pvt->info.rir_limit = rir_limit;
+               pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
+               pvt->info.interleave_list = sbridge_interleave_list;
+               pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
+               pvt->info.interleave_pkg = sbridge_interleave_pkg;
+               mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
+
+               /* Store pci devices at mci for faster access */
+               rc = sbridge_mci_bind_devs(mci, sbridge_dev);
+               if (unlikely(rc < 0))
+                       goto fail0;
+               break;
+       case HASWELL:
+               /* rankcfgr isn't used */
+               pvt->info.get_tolm = haswell_get_tolm;
+               pvt->info.get_tohm = haswell_get_tohm;
+               pvt->info.dram_rule = ibridge_dram_rule;
+               pvt->info.get_memory_type = haswell_get_memory_type;
+               pvt->info.get_node_id = haswell_get_node_id;
+               pvt->info.rir_limit = haswell_rir_limit;
+               pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+               pvt->info.interleave_list = ibridge_interleave_list;
+               pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
+               pvt->info.interleave_pkg = ibridge_interleave_pkg;
+               mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
+
+               /* Store pci devices at mci for faster access */
+               rc = haswell_mci_bind_devs(mci, sbridge_dev);
+               if (unlikely(rc < 0))
+                       goto fail0;
+               break;
+       case BROADWELL:
+               /* rankcfgr isn't used */
+               pvt->info.get_tolm = haswell_get_tolm;
+               pvt->info.get_tohm = haswell_get_tohm;
+               pvt->info.dram_rule = ibridge_dram_rule;
+               pvt->info.get_memory_type = haswell_get_memory_type;
+               pvt->info.get_node_id = haswell_get_node_id;
+               pvt->info.rir_limit = haswell_rir_limit;
+               pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+               pvt->info.interleave_list = ibridge_interleave_list;
+               pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
+               pvt->info.interleave_pkg = ibridge_interleave_pkg;
+               mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
+
+               /* Store pci devices at mci for faster access */
+               rc = broadwell_mci_bind_devs(mci, sbridge_dev);
+               if (unlikely(rc < 0))
+                       goto fail0;
+               break;
+       }
+
+       /* Get dimm basic config and the memory layout */
+       get_dimm_config(mci);
+       get_memory_layout(mci);
+
+       /* record ptr to the generic device */
+       mci->pdev = &pdev->dev;
+
+       /* add this new MC control structure to EDAC's list of MCs */
+       if (unlikely(edac_mc_add_mc(mci))) {
+               edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
+               rc = -EINVAL;
+               goto fail0;
+       }
+
+       return 0;
+
+fail0:
+       kfree(mci->ctl_name);
+       edac_mc_free(mci);
+       sbridge_dev->mci = NULL;
+       return rc;
+}
+
+/*
+ *     sbridge_probe   Probe for ONE instance of device to see if it is
+ *                     present.
+ *     return:
+ *             0 for FOUND a device
+ *             < 0 for error code
+ */
+
+static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+       int rc = -ENODEV;
+       u8 mc, num_mc = 0;
+       struct sbridge_dev *sbridge_dev;
+       enum type type = SANDY_BRIDGE;
+
+       /* get the pci devices we want to reserve for our use */
+       mutex_lock(&sbridge_edac_lock);
+
+       /*
+        * All memory controllers are allocated at the first pass.
+        */
+       if (unlikely(probed >= 1)) {
+               mutex_unlock(&sbridge_edac_lock);
+               return -ENODEV;
+       }
+       probed++;
+
+       switch (pdev->device) {
+       case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
+               rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
+               type = IVY_BRIDGE;
+               break;
+       case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
+               rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
+               type = SANDY_BRIDGE;
+               break;
+       case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
+               rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
+               type = HASWELL;
+               break;
+       case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
+               rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
+               type = BROADWELL;
+               break;
+       }
+       if (unlikely(rc < 0)) {
+               edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
+               goto fail0;
+       }
+
+       mc = 0;
+
+       list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+               edac_dbg(0, "Registering MC#%d (%d of %d)\n",
+                        mc, mc + 1, num_mc);
+
+               sbridge_dev->mc = mc++;
+               rc = sbridge_register_mci(sbridge_dev, type);
+               if (unlikely(rc < 0))
+                       goto fail1;
+       }
+
+       sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
+
+       mutex_unlock(&sbridge_edac_lock);
+       return 0;
+
+fail1:
+       list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
+               sbridge_unregister_mci(sbridge_dev);
+
+       sbridge_put_all_devices();
+fail0:
+       mutex_unlock(&sbridge_edac_lock);
+       return rc;
+}
+
+/*
+ *     sbridge_remove  destructor for one instance of device
+ *
+ */
+static void sbridge_remove(struct pci_dev *pdev)
+{
+       struct sbridge_dev *sbridge_dev;
+
+       edac_dbg(0, "\n");
+
+       /*
+        * we have a trouble here: pdev value for removal will be wrong, since
+        * it will point to the X58 register used to detect that the machine
+        * is a Nehalem or upper design. However, due to the way several PCI
+        * devices are grouped together to provide MC functionality, we need
+        * to use a different method for releasing the devices
+        */
+
+       mutex_lock(&sbridge_edac_lock);
+
+       if (unlikely(!probed)) {
+               mutex_unlock(&sbridge_edac_lock);
+               return;
+       }
+
+       list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
+               sbridge_unregister_mci(sbridge_dev);
+
+       /* Release PCI resources */
+       sbridge_put_all_devices();
+
+       probed--;
+
+       mutex_unlock(&sbridge_edac_lock);
+}
+
+MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
+
+/*
+ *     sbridge_driver  pci_driver structure for this module
+ *
+ */
+static struct pci_driver sbridge_driver = {
+       .name     = "sbridge_edac",
+       .probe    = sbridge_probe,
+       .remove   = sbridge_remove,
+       .id_table = sbridge_pci_tbl,
+};
+
+/*
+ *     sbridge_init            Module entry function
+ *                     Try to initialize this module for its devices
+ */
+static int __init sbridge_init(void)
+{
+       int pci_rc;
+
+       edac_dbg(2, "\n");
+
+       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
+       opstate_init();
+
+       pci_rc = pci_register_driver(&sbridge_driver);
+       if (pci_rc >= 0) {
+               mce_register_decode_chain(&sbridge_mce_dec);
+               if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
+                       sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
+               return 0;
+       }
+
+       sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
+                     pci_rc);
+
+       return pci_rc;
+}
+
+/*
+ *     sbridge_exit()  Module exit function
+ *                     Unregister the driver
+ */
+static void __exit sbridge_exit(void)
+{
+       edac_dbg(2, "\n");
+       pci_unregister_driver(&sbridge_driver);
+       mce_unregister_decode_chain(&sbridge_mce_dec);
+}
+
+module_init(sbridge_init);
+module_exit(sbridge_exit);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mauro Carvalho Chehab");
+MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
+MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
+                  SBRIDGE_REVISION);